
Time space tradeoffs for attacks against one-way
functions and PRGs

Anindya De1?, Luca Trevisan2??, and Madhur Tulsiani3? ? ?

1 University of California at Berkeley
anindya@cs.berkeley.edu

2 University of California at Berkeley and Stanford University
luca@cs.berkeley.edu

3 Institute for Advanced Study, Princeton
madhurt@math.ias.edu

Abstract. We study time space tradeoffs in the complexity of attacks
against one-way functions and pseudorandom generators.
Fiat and Naor [7] show that for every function f : [N]→ [N], there is an
algorithm that inverts f everywhere using (ignoring lower order factors)
time, space and advice at most N3/4.
We show that an algorithm using time, space and advice at most

max{ε
5
4N

3
4 ,
√
εN}

exists that inverts f on at least an ε fraction of inputs. A lower bound of

Ω̃(
√
εN) also holds, making our result tight in the “low end” of ε ≤ 3

q
1
N

.

(Both the results of Fiat and Naor and ours are formulated as more
general trade-offs between the time and the space and advice length of
the algorithm. The results quoted above correspond to the interesting
special case in which time equals space and advice length.)
We also show that for every length-increasing generator G : [N]→ [2N]
there is a algorithm that achieves distinguishing probability ε between
the output of G and the uniform distribution and that can be im-
plemented in polynomial (in logN) time and with advice and space
O(ε2 · N logN). We prove a lower bound of S · T ≥ Ω(ε2N) where T
is the time used by the algorithm and S is the amount of advice. This
lower bound applies even when the distinguisher has oracle access to G.
We prove stronger lower bounds in the common random string model,
for families of one-way permutations and of pseudorandom generators.

Keywords: One-way functions, pseudorandom generators, random permuta-
tions, time-space tradeoffs
? Supported by the “Berkeley fellowship for Graduate Study” and by the BSF under

grant 2006060.
?? This material is based upon work supported by the National Science Foundation

under grant No. CCF-0729137 and by the BSF under grant 2006060.
? ? ? This material is based upon work supported by the National Science Foundation

under grant No. CCF-0832797 and IAS Sub-contract no. 00001583. Work done partly
when the author was a graduate student at UC Berkeley.

2 Anindya De, Luca Trevisan, and Madhur Tulsiani

1 Introduction

In the applied cryptography literature, a cryptographic primitive with a key of
length k is typically considered “broken” if the key can be recovered in time
less than 2k, that is, faster than via an exhaustive brute force search. Implicit
in this attitude is the belief in the existence of primitives for which a brute
force attack is optimal. A time t brute force attack against a one-way function
f : {0, 1}n → {0, 1}n, consisting in trying about t random guesses for the inverse,
only succeeds with probability about t/2n, and a brute force attack that attempts
to distinguish a length increasing generator G : {0, 1}n−1 → {0, 1}n from the
uniform distribution by attempting to guess the seed achieves distinguishing
probability about t/2n. Is it plausible that such trade-offs are optimal? Would
it be plausible to assume that AES with 128 key bit cannot be distinguished
from a random permutation with distinguishing probability more than 2−40 by
adversaries running in time 260?4

If we apply a non-uniform measure of complexity, that is, if we restrict our-
selves to a fixed finite one-way function or pseudorandom generator, and allow
our adversary to use precomputed information as advice, then it turns out that
the above “brute force” bounds can always be improved upon.

In 1980, Hellman [12] proved that for every one-way permutation f : [N] →
[N] (for this discussion, it will be convenient to set N = 2n and identify {0, 1}n
with [N]) and for every parameters S, T satisfying S · T ≥ N , there is a data
structure of size Õ(S) and an algorithm that, with the help of the data structure,
given f(x) is always able to find x in time Õ(T). The notation Õ(·) hides lower
order factors that are polynomial in logN ; we will ignore such factors from now
on in the interest of readability. We shall refer to S, the size of the pre-computed
data structure used by the algorithm, as the space used by the algorithm.

In particular, every one-way permutation can be inverted in time
√
N using√

N bits of advice.5

Hellman’s algorithm only requires oracle access to the permutation. Yao [18]
proves that, in this oracle setting, Hellman’s trade-off is tight for random per-
mutations. (See also [10].)

4 The answer to the last question is no. It follows from our results that there is a
distinguisher that makes two queries, then performs a computation realizable as
a circuit of size 256, assuming a complete basis of fan-in two gates, and achieves
distinguishing probability ≥ 2−40 between AES128 and a random permutation
{0, 1}128 → {0, 1}128. Otherwise, after the two oracle queries, the distinguisher can
be implemented in a 64-bit architecture with two table look-ups and three unit-cost
RAM operations, given access to a precomputed table of 249 entries.

5 This doesn’t mean that there is a circuit of size Õ(
√
N); the running time of Õ(

√
N)

is in the RAM model. The relationship between non-uniform time/space complexity
measures and circuit complexity is the following: a circuit of size C can be simulated
using time at most Õ(C) given a pre-computed data structure of size Õ(C); and
an algorithm that uses time T and a pre-computed data structure of size S can be
simulated by a circuit of size Õ((S + T)2).

Time space tradeoffs for attacks against one-way functions and PRGs 3

Hellman also considers the problem of inverting a random function f : [N]→
[N] given oracle access to f . He provides a heuristic argument suggesting that
for every S, T satisfying TS2 ≥ N2, and with high probability over the choice
or a random function f : [N] → [N], there is a data structure of size S and an
algorithm of complexity T that inverts f everywhere using the data structure
and given oracle access f . This trade-off yields the interesting special case S =
T = N2/3.

Fiat and Naor [7] prove Hellman’s result rigorously, and are able to handle
arbitrary functions, not just random functions. If the given function f : [N] →
[N] has collision probability6 λ, then the algorithm of Fiat and Naor requires
the trade-off TS2 ≥ λ ·N3. Note that with high probability a random function
has collision probability about 1/N (recall that we ignore (logN)O(1) terms),
and so one recovers Hellman’s tradeoff. For general functions, Fiat and Naor are
able to prove the trade-off TS3 ≥ N3, which has the special case S = T = N3/4.

Barkan, Biham, and Shamir [4] prove that the TS2 = N2 trade-off of Fiat
and Naor for random functions is optimal under certain assumptions on what is
stored in the data structure and on the behavior of the algorithm.

The result of Fiat and Naor can also be applied to the task of distinguishing a
given pseudorandom generator from the uniform distribution (and hence a given
pseudorandom permutation from a random permutation or a given pseudoran-
dom function from a random function) by recovering the seed. We are not aware
of previous work that focused specifically on the complexity of distinguishers for
pseudorandom generators. Two related results, however, should be mentioned.
It has been known for a long time (going back to, as far we know, [2]) that
every distribution that has constant statistical distance from the uniform distri-
bution, and, in particular, the output of any length increasing generator, can be
distinguished from the uniform distribution over n bits using a parity function
(of linear circuit complexity), and with distinguishing probability Ω(2−

n
2). The

other result is due to Andreev, Clementi and Rolim [3], who prove that for ev-
ery boolean predicate P : {0, 1}n → {0, 1} and every ε there is a circuit of size
O(ε22n) that computes P on at least a 1/2 + ε fraction of inputs. This implies
that for every pseudorandom generator of the form x → f(x)P (x), where f is
a permutation and P is a hard-core predicate for f , and every ε > 0, there is a
circuit of size O(ε22n) that achieves distinguishing probability ε.

Our Results

Upper bounds for inverting one-way functions We introduce a new way
to analyze the Fiat-Naor construction. Instead of being limited by the collision
probability, it is limited by the “irregularity” of the function. In particular, if f
is a regular function, then our bound is as good as that for a random function.
While this approach yields no improvement for the worst-case complexity of
inverting a function everywhere, it improves the complexity if we only seek to

6 Here by the collision probability of a function we mean the probability that after
sampling two independent random inputs x, y we have f(x) = f(y).

4 Anindya De, Luca Trevisan, and Madhur Tulsiani

invert on an ε fraction of the inputs. In particular, we show that there is an
algorithm such that for every f : [N]→ [N] and every ε, the algorithm inverts f
on an ε fraction of inputs and its time complexity, space complexity and advice
length are bounded by

Õ
(

max
{√

εN , ε
5
4N

3
4

})
Here the Õ hides factors of 2poly log log. It follows from known results, and we

present a proof in the full version, that, in an oracle setting, it is not possible to
do better than Ω(

√
εN), so our result is best possible when ε < N−1/3.

Indeed, we establish the following more general trade-off: for every T < 1/ε
and S satisfying the trade-off ST = εN we can construct an algorithm that has
time T and uses a data structure of size S (up to lower order factors); for every
T > 1/ε, we can use time T and space S provided TS3 = ε5N3. As we discuss
below, a straight-forward application of the analysis of Fiat and Naor would have
given a trade-off TS3 = ε3N3, or a time and space complexity Õ(ε

3
4N

3
4) in the

T = S case. For comparison, when ε = N−1/3, we can achieve (optimal) time
and space N1/3; the straight-forward use of the Fiat-Naor analysis would have
given time and space

√
N . Given an upper bound λ on the collision probability,

we can achieve the optimal trade-off TS = εN if S ≥ ε2N2λ, and the trade-
off TS = ε2N2λ otherwise. For example, if we have a function with collision
probability close to 1/N , and we want to achieve inversion probability ε = N−1/4,
then we can do so, using the latter construction, employing time, space and
advice at most N5/12 = N .416...; using our generic construction (which applies
to functions of arbitrary collision probability) would have given a complexity of
N7/16 = N .4375. We note however that all our tradeoffs (as well as the previous
ones that we state) apply only for S = Ω̃(

√
εN). The difference between our

analysis and the one in [7] is explained in Section 2.

Upper bounds for breaking pseudorandom generators We also give non-
uniform attacks to distinguish between distributions with significant statistical
difference. For the sake of simplicity, in this version, we only consider the case
of distinguishing the output of a pseudorandom generator from the uniform dis-
tribution. Given an arbitrary length-increasing generator G : {0, 1}n → {0, 1}m,
m > n, we show that, for every ε, there is a distinguisher that runs in poly-
nomial time, uses a data structure of size O(ε22n), and achieves distinguishing
probability ε. The distinguisher can also be implemented as a circuit of size
O(ε22n). Notably, the distinguisher need not have oracle access to G, and so our
result applies to generators constructed for applications in derandomization, in
which the generator may have complexity 2O(n), or even higher. In this setting,
in which the complexity of the generator is not bounded, it is easy to see that
advice Ω(ε22n) is necessary. We also present a simpler construction that achieves
the slightly worse circuit size O(ε2n2n).

Time space tradeoffs for attacks against one-way functions and PRGs 5

Lower bounds We prove lower bounds for non-uniform attacks on one-way
permutations and pseudorandom generators. Our lower bound for permutations
is proven in the following model : Given any permutation f , the algorithm (call
it A) is allowed to store a data structure of size S which can be arbitrarily
dependent on f . Further, on any input x, A is allowed to make T queries to f
along with any other computation it may perform. We say that there is a lower
bound on time space tradeoff of time T and space S for inverting permutations
on ε fraction of the inputs, if for any such algorithm A, there exists a permutation
f such that to invert f on ε fraction of the inputs, if A stores a data structure
of size S, then it must make T queries on some of its inputs. In this model,
we prove that S · T = Ω̃(εN). This in particular implies that the technique to
invert a permutation described previously is optimal. While such lower bounds
had previously been proven by Yao [18], Gennaro and Trevisan [8] and Wee [17],
they were only applicable till T = O(

√
εN) while our proof shows the lower

bound for the full range of T . Also, arguably our proof is simpler than the
previous proofs.

Another problem we consider is that of showing lower bounds on time space
tradeoffs for attacks on pseudorandom generators. The model is the same as
that of permutations except that the algorithm is given access to the stretching
function G and it is required to distinguish between the output of the pseudo-
random generator from the uniform by at least ε. In this model, we get a lower
bound of S · T = Ω̃(ε2N). From the previous discussion, this is tight even when
restricted to distinguishers with no oracle access. To the best of our knowledge,
this question has not been considered previously. Interestingly, the family G that
we use to prove the lower bound is a random permutation f : [N]→ [N] followed
by a random predicate P : [N]→ {0, 1} i.e. G(x) = f(x) ◦ P (x).

Common random string model Finally, we prove time space lower bounds
for the problem of inverting a function (or breaking a pseudorandom generator)
sampled from a family of functions (or a family of pseudorandom generators).
This is the case when a common source of randomness is available to all the
parties and this randomness is used to sample the one-way permutation or the
pseudorandom generator as the case may be. We prove stronger lower bounds
in this model. In particular, we show that if there is an algorithm which inverts
any family of permutation f : [N] × [K] → [N] (where K denotes the common
randomness), then for large K, the brute force attack in the best possible. Simi-
larly, if there is an algorithm which for any family of pseudorandom generators,
G : [N] × [K] → [N] × {0, 1} distinguishes the output of G from uniform by
more than ε, then S · T = Ω̃(ε2KN) provided K is large enough. Here S and T
have their usual meanings. We specify the exact trade-offs with K in the next
section.

Open Questions

It remains open to either improve the Fiat-Naor construction or to prove a
stronger lower bound for the problem of inverting a random function or an

6 Anindya De, Luca Trevisan, and Madhur Tulsiani

arbitrary function everywhere. It is plausible that the optimal trade-off ST = N ,
while achievable for permutations, is impossible to achieve for general functions,
maybe even impossible for random functions. Such a separation between the
complexity of dealing with general or random functions versus permutations
would be extremely interesting.

If one wants to invert a random permutation or function uniformly (that is,
given no advice), then the lower bound T ≥ N (ignoring lower-order factors)
holds. A quantum computer, however, can achieve T =

√
N [11], which is opti-

mal [5]. What is the complexity of inverting a random permutation, a random
function, or an arbitrary function with a quantum computation that takes ad-
vice? It was pointed out to us by Scott Aaronson that extension of the techniques
in [1] can prove that any pointer-jumping arguments (as the one in Hellman’s
scheme) cannot beat the

√
N bound even with access to quantum advice. Hence,

if at all quantum computation can beat the classical
√
N bound, it will have to

use significantly new techniques.
We do not have matching upper and lower bounds for the problem of con-

structing distinguishers for pseudorandom generators, except in the extremal
case T = O(1), S = ε2N . Is T = ε2N , S = O(1) achievable? More generally, for
what range of parameters is it possible to achieve distinguishability even though
inversion of one-way permutations or functions is impossible?

2 Inverting One-Way Functions

How can one invert one-way functions, in general, faster than by brute force?

2.1 An Overview of the Ideas of Hellman and of Fiat and Naor

If we are given a one-way permutation f : [N]→ [N], then it is easy to construct
an inverter for f() that uses time and space Õ(

√
N). Suppose for simplicity that

f() is a cyclic permutation and that N = s2 is a perfect square: then pick
√
N

“equally spaced” points x1, . . . , xs, such that xi+1 = f (s)(xi), and create a data
structure to store the pairs (xi, xi+1). Then given y, we compute f(y), f(f(y)),
and so on, until, for some j, we reach a point f (j)(x) which is one of the special
points in the data structure. Then we can read from the data structure the value
f (j−s)(y), and then by repeatedly computing f again we will eventually reach
f (−1)(y). Note that this takes O(s) evaluations of f and table look-ups, so both
the time and space complexity are approximately s =

√
N . If f() is not cyclic,

we do a similar construction for each cycle of length less than s, and if N is not
a perfect square we can round s to d

√
Ne.

Abstractly, this construction works for the following reason. Consider the
graph Gf = ([N], E) that has [N] as set of vertices and that for every x has the
directed edge (x, f(x)). Then, if f is a permutation, it is possible to cover Gf

using
√
N edge-disjoint paths, each of length

√
N or, more generally, S edge-

disjoint paths of length T , provided ST ≥ N . Furthermore, if f is a function

Time space tradeoffs for attacks against one-way functions and PRGs 7

such that Gf can be covered using S edge-disjoint paths, each of length at most
T , then we have an algorithm to invert f using space S and time T .

The problem is that, in general, no good collection of paths may exist. Sup-
pose, for example, that Gf looks like the graph on the left in Figure 1: a directed
path of length 1

3N with a length-2 path joining in at each point. Then we see
that there is a set S (the vertices of indegree zero in the picture) of size N/3
such that no path can contain more than one vertex of S, and so no collection
of o(N) paths can cover the entire graph.

Hellman [12] considers the case in which f() is a random function. Then, even
though it’s not clear how many edge-disjoint paths of what length can cover Gf

it is not hard to see that one can find N
1
3 paths of length N

1
3 having very few

“collisions.” This gives a construction that uses time and space N
1
3 and that

inverts f() at N
2
3 points. Hellman then suggests to modify f() by composing

it with a fixed permutation of the input bits, and to reason heuristically as if
the new function behaved as an independently chosen new random function.
Then one can repeat the construction, and have a new algorithm of time and
space complexity N

1
3 that inverts f() at N

2
3 points, which are assumed to be an

independent random subset of size N
2
3 . After iterating this process N

1
3 times

one has N
1
3 candidate algorithms, each of time and space complexity N

1
3 , such

that, for every x, f(x) is inverted by at least one of the algorithms. Overall, one
gets an algorithm of complexity N

2
3 that inverts f everywhere.

Fiat and Naor [7] make Hellman’s argument rigorous. The idea of Fiat and
Naor is to pick a good random hash function g, and then work with the new
function h(x) := g(f(x)). (See Figure 1 for an example of the effect of this ran-
domization.) If g were a truly random function, and f where a function such that
every output has few pre-images, then one can repeat Hellman’s calculation that
N

1
3 nearly disjoint paths of length N

1
3 exist. Picking N

1
3 random functions gi

then would give a rigorous version of the full argument, except for the depen-
dency on several random oracles. For a more general trade-off, it is possible to
pick m nearly disjoint paths of length t provided that m·t2 < N , and then iterate
the construction r times, where r = N/mt. Thus one gets a data structure of
size r ·m, plus the space needed to store the descriptions of the hash functions,
and an inversion procedure whose complexity is dominated by the complexity
of evaluating the r random hash functions at t points each. Fiat and Naor then
show that each gi only needs to be k-wise independent where k is approximately
t, the length of the paths. While one evaluation of a t-wise independent hash
function would take time t, Fiat and Naor show that the overall time for the rt
evaluations can be made t2 + rt via a careful evaluation process and amortized
analysis. The different gi, in turn, only need to be pair-wise independent with
respect to each other. Overall, the r hash functions can be represented using only
about t bits, so that the space complexity is of the order of r ·m+ t. Choosing
the parameters r,m, t optimally shows that the time-space tradeoff TS2 = N2

is achievable.
For general functions, the above ideas continue to work if the collision prob-

ability λ of the distribution f(U[N]) is small. In particular, one can have an

8 Anindya De, Luca Trevisan, and Madhur Tulsiani

0

1

2

5

8

3

4

11

6

7

14

9

10

17

12

13

20

15

16

23

18

19

26

21

22

29

24

25

32

27

28

35

30

31

38

33

34

41

36

37

44

39

40

47

42

43

50

45

46

53

48

49

56

51

52

59

54

55 57

58

0

20

131

44

59

2

29

4

3

28

53

14

5

11

26

6

40

52

7

56

31

8

41

9

58

10

17

50

12

15

22

16

18

19

43

37

21

34

23

24

46 27

38

30

49

32

33

35

47

36

39

55

42

45

4851 5457

Fig. 1. A graph Gf that cannot be partitioned into few edge-disjoint paths and the
graph Gf◦g where g is a random permutation.

algorithm of space S = m ·r+ t and time T = t2 + t ·r provided that m · t2 ≤ 1/λ
and m · t · r ≥ N . This optimizes to the time-space tradeoff TS2 = λ ·N3.

For functions having large collision probability, the idea is to create an addi-
tional look-up table L (we also refer to it as a list), containing, for each of the `
elements y such that f (−1)(y) is largest, the pair (x, y) where x is an arbitrary
pre-image of y. Then, given f(x) ∈ L we can immediately find an inverse by
searching L, and the problem of inverting f reduces to the problem of inverting
the restriction of f to {0, 1}n − f (−1)(L), which, intuitively, is the problem of
inverting a function of low collision probability. More precisely, if we define the
“effective” collision probability of f relative to L as the probability that, picking
x, x′ uniformly at random we have f(x) = f(x′) conditioned on f(x) 6∈ L, then
the effective collision probability is at most 1/`. The TS2 = λN3 trade-off can
be extended to the case in which λ is the effective collision probability, although
at the additional cost of ` in the space. The optimal choice ends up being ` = S,
and so the trade-off becomes TS3 = N3. One additional difficulty that comes
up in the analysis is that we need hash functions gi with the property that
gi(f(x)) 6∈ f (−1)(L) if f(x) 6∈ L. This is achieved by realizing gi by starting from
a sequence of functions g1

i , . . . , g
k
i , and then defining gi(y) to be hj

i (y) for the
first j such that hj

i (y) 6∈ f (−1)(L).

2.2 Scaling Down the Fiat-Naor Construction

Consider now the issue of scaling down this construction in order to invert only
εN points.

Time space tradeoffs for attacks against one-way functions and PRGs 9

If we fix parameters r,m, t, ` such that r ·m · t = εN and m · t2 ≤ `, then
we have an algorithm that inverts the function at εN points and whose time
complexity is t2 +rt and whose space complexity is `+rm+ t. Some calculations
show that this gives a time-space trade-off of TS3 = (εN)3.

Parameters

` := Size of list L
t := Length of each walk
r := Number of independent functions g ∈ F used
m := Number of walks according to each function gi

F := Family of k = 2t · (logN)2-wise independent functions.

Construction of Data Structure

1. Consider the ` elements in the range of f with highest value of I(y). For each
such element y, store an entry (y, x) in the list for some x ∈ f−1(y).

2. Choose functions g1, . . . , gr ∈ F pairwise independently at random. For each
function gi, define the partial function g∗i : [N]→ [N] as

g∗i (x) =

8<:
gi(x, u) if u is the least index such that f(gi(x, u)) /∈ L

undefined if ∀u ∈ [(logN)2]. f(gi(x, u)) ∈ L

For each i, define the partial function hi = g∗i ◦ f .
3. For each i ∈ [r] and j ∈ [m], construct a walk Wij of length t; by starting

at a random point xij and computing the sequence xij , hi(xij), . . . , ht
i(xij).

Discard the walk if
– for some t1 ≤ t, ht1

i (xij) is undefined.
– the walk cycles i.e. for t1, t2 ≤ t, ht1

i (xij) = ht2
i (xij).

For walks Wij that are not discarded, store the pairs (xij , h
t
i(xij)).

Fig. 2. Description of data structure for inverting f

A first improvement comes by considering that if |f (−1)(L)| ≥ εN , then just
by constructing L we are done. This means that we may assume that the elements
not in L have each at most εN/` pre-images, and there are (1 − ε)N > N/2
elements not in f (−1)(L), meaning that the collision probability of f restricted
to {0, 1}n− f (−1)(L) is at most ε/`. This is a stronger bound than the “effective
collision probability” bound 1/` in the Fiat-Naor analysis. This means that we
can set the parameters so that rmt = εN , mt2 ≤ `/ε, and have S = `+ rm+ t
and T = t2 + rt. This leads to the improved trade-off TS3 = ε4N3, provided
εN > T > ε−2.

A second improvement comes by using new constructions of k-wise indepen-
dent hash functions (with k = Õ(t)) that can be evaluated in time negligible in
t. We present such a construction in the full version of the paper. Using such
a construction, the running time of the algorithm becomes just rt, rather than

10 Anindya De, Luca Trevisan, and Madhur Tulsiani

Invert(y)

1. If (x, y) ∈ L for some L, return x.
2. For each i ∈ [r]

(a) Construct the sequence (g∗i (y), hi(g
∗
i (y)), . . . , ht−1

i (g∗i (y))).
(b) If there are indices j0 ∈ [m] and t0 ≤ t − 1 such that ht0

i (g∗i (y)) =
ht

i(xij0), then compute ht−t0−1
i (xij0). In case there are multiple choices

for j0, pick the smallest one.
(c) If f(ht−t0−1

i (xij0)) = y, output ht−t0−1
i (xij0) else output fail.

Fig. 3. Procedure for inverting a given element y

t2 + rt. In the original Fiat-Naor construction, the two bounds are of the same
order, because optimizing the parameters always leads to r > t. In the scaled-
down construction we described above, however, r > t is optimal only as long
as T > ε−2, which is why we added such a constraint above. Hence, we require
a family of hash functions with two properties:

– Small size: it is sufficient for our purposes that each function be representable
with Θ(t) +No(1) bits;

– Efficient evaluation: given the description of a function in the family and a
point in the domain, we would like the evaluation of the function at that
point to take time to(1) ·No(1)

We note that most known constructions with small size do not satisfy the
efficient computation requirement. The construction that we use in this paper
is based on an observation by Siegel [15] coupled with the lossless expander
construction by Capalbo et al. [6]. The only other construction to us, which
satisfies both the properties is the construction by Ostlin and Pagh [14] but
their construction can differ from being uniform on a set of size t by an inverse
polynomial in t which is too large an error for us. Using these hash functions
would lead to the same trade-off TS3 = ε4N3, but for the wider range of param-
eters εN > T > ε−1.

2.3 The Main New Idea

Our main improvement over the techniques of Fiat and Naor comes from the
use of a more precise counting of the number of inputs x such that f(x) can be
inverted using a given data structure.

We note that if we have the endpoints of a path of length t in our data
structure, then we are able to invert f not just at t inputs, but rather at as
many inputs as the sum of the indegrees (in Gf) of the vertices of the path.7

7 Said differently, Fiat and Naor count the number of y which are inverted, while one
should count the number of x such that f(x) is inverted.

Time space tradeoffs for attacks against one-way functions and PRGs 11

If, for example, the function f is k-regular (meaning that, for every x, f(x) has
exactly k pre-images), then a special case of the analysis that we provide shows
that we can invert everywhere with trade-off TS2 = N2/k2, while the Fiat-Naor
analysis would give a trade-off TS2 = N2 ·k. They are the same when k = Õ(1),
but for larger k the analysis of Fiat and Naor provides worse bounds, because
the collision probability increases, while our analysis provides better bounds.

For functions that are not regular, providing a good bound on the number
of elements that are inverted by the data structure is more challenging.

If the function has collision probability λ (or “effective” collision probability
λ after discounting the elements in the high-indegree table), and we construct r
data structures, each having m paths of length t, then the average sum of the
indegrees of the vertices in the data structure is m ·t ·r ·λ ·N , which is potentially
much more than mtr if the collision probability is large. It seems, then, that we
could fix parameters m, t, r such that

m · t2 ≤ λ−1

m · t · r · λN ≥ εN (1)

and be able to invert εN elements using time rt and space rm + t. This
would optimize, in the interesting case in which space and time are equal, to
having space and time max{

√
εN, εN2/3}, which would be great. In particular,

it would improve the Fiat-Naor construction even when ε = 1. Unfortunately,
while mrtλN is the expectation of the sum of the indegrees of the vertices in
all the paths of the data structure, it is not the expectation of the number of x
such that f(x) is inverted: the problem is that, if the collision probability is very
high, there might be elements y with many pre-images that occur in multiple
data structures, and which would then be counted multiple times.

We then proceed by considering three cases. If the collision probability is
small, that is, less than ε2/S, where S is the amount of space we plan to use,
then we find parameters m, t, r such that

mt2 ≤ S/ε2
mtr ≥ εN

that is, we take advantage of the bound on collision probability but we do not
attempt to improve the Fiat-Naor count on the number of inverted elements.
This allows us to invert an ε fraction of elements using time and space at most
max{

√
εN, ε5/4N3/4}.

If the collision probability is more than ε2/S, then we consider how much
mrtλN is overcounting the real number of inverted elements. The overcounting
is dominated by the elements x such that, for a given choice of r,m, t, f(x)
has probability Ω(1), say, probability ≥ 1/100, of belonging to one of the data
structures. Call such a y = f(x) a heavy image to invert.

If the number of pre-images of heavy elements is at least 100εN , then we are
done, because we expect to be able to invert at least a 1/100 fraction of heavy
elements.

12 Anindya De, Luca Trevisan, and Madhur Tulsiani

The remaining case, then, is when the collision probability is more than ε2/S,
but the total number of pre-images of heavy elements is less than 100εN . This
information, together with the fact that (thanks to the size-S high-indegree
table) we are only trying to invert elements with at most εN/S pre-images,
allows us to bound the total number of occurrences of heavy elements in the
data structure, and to conclude that the total number of pre-images of non-
heavy elements (which are inverted) is at least Ω(mrtλN). This means that a
choice of m, r, t satisfying (1) leads us to invert an ε fraction of inputs, and to
do so with time and space at most max{

√
εN, εN2/3}.

Applying these ideas to get full time-space trade-offs give us that, if ε <
1/N1/3 we can have the optimal trade-off TS = εN ; otherwise we achieve the
trade-off TS3 = ε5N3. We now formally state the main theorem.

Theorem 1. There is an oracle algorithm Invert such that given any f : {0, 1}n →
{0, 1}n, there is a data structure DS with parameters `, m, t and r such that

Pr
x∈[N]

[
Invertf,DS(f(x)) ∈ f−1(f(x))

]
≥ ε

where the total space required for DS is Õ(` + mr + t), space required by Invert
is Õ(t) and the total time required by Invert is Õ(tr). Hence, assuming that
(` + mr + t) = O(S) and tr = T , there is an algorithm (in the RAM model)
which uses space Õ(S) and time Õ(T) and inverts f on an ε fraction of inputs.
Here Õ hides factors of 2poly log log N .

Remark 1. For most of the allowed range of the parameters we have r < t, and
that in the “low-end” range ε < N−1/3 for which our result is optimal we have
r = 1. For this reason there is a notable improvement in using our efficient hash
functions instead of the amortized hash function evaluation of Fiat and Naor.

As described above, the algorithm by Hellman, Fiat and Naor, as well as
ours involve a significant amount of search and hence it is interesting to ask if
this search can be parallelized. There have been results in this direction by van
Oorschot and Wiener [16] and more recently by Joux and Lucks [13]. Some of
these results can be helpful in parallelizing even in the regime when ε is small
(as in our case).

3 Attacks on Pseudorandom Generators

The starting point of our result for pseudorandom generators is the fact [2] that
if two random variables ranging over {0, 1}m have constant statistical distance,
then there is a linear function (of O(m) circuit complexity) that distinguishes
the two random variables with advantage at least 2−m/2.

Suppose that we are given a length-increasing pseudorandom generator G :
{0, 1}n−1 → {0, 1}n and that we want to construct a distinguisher achieving
distinguishing probability ε.

Time space tradeoffs for attacks against one-way functions and PRGs 13

Our idea is to partition {0, 1}n into ε22n sets each of size ε−2, for example
based on the value of the first n − 2 log 1/ε bits, and then apply within each
block the linear function that provides, within that block, the best distinguishing
probability. Overall, this defines a function of circuit complexity O(ε2 · n · 2n).
Then, intuitively, within each block we achieve distinguishing probability at least
ε, because each block is a set of size ε−2, and the distinguishing probability is at
least the square root of the inverse of the block size.

The straightforward implementation of this intuition would be to use, in
each block, the linear function that best distinguishes the uniform distribution
within the block from the conditional distribution of the output of the generator
conditioned on landing in the block. Unfortunately this approach would not work
because the overall distinguishing probability is not a convex combination of the
conditional distinguishing probabilities.8

Instead, in each block, we choose the linear function that most contributes
to the overall distinguishing probability. In order to quantify this contribution
we need a slight generalization of the result of [2].

We then present a more efficient distinguisher of circuit complexity O(ε2 ·2n)
which employs a hash function sampled from a 4-wise independent family, and
whose analysis employs a more involved fourth-moment argument, inspired by
[3]. As noted before, all our ideas apply to the case when we want to distin-
guish between two arbitrary distributions D1 and D2. In particular, given two
distributions D1 and D2 with statistical distance δ, we can construct a circuit of
size O(ε22n) which distinguishes between D1 and D2 with probability εδ. More,
formally, we have the following result.

Theorem 2. Given any two distributions D1 and D2 over {0, 1}n such that
their statistical distance is δ and ε ≤ 2n/2, there is a circuit C of size O(ε2 · 2n)
such that

P[C(D1) = 1]−P[C(D2) = 1] ≥ 2εδ

4 Lower Bounds

Using techniques of Yao [18], Gennaro and Trevisan [8], and Wee [17], it is
possible to show that, in the generic oracle setting that we consider in this
paper, there are permutations for which the amount of advice S and the oracle
query complexity T must satisfy

S · T ≥ Ω̃(εN)

for any algorithm that inverts an ε fraction of inputs. More precisely, we prove
the following theorem.
8 This is a subtle issue related to the fact that the condition of landing in a given block

might have different probabilities in the uniform distribution versus the output of
the generator. If so, then the respective conditional probabilities are normalized
differently, and the use of a distinguisher for the conditional distributions in a block
does not necessarily contribute to the task of distinguishing the original distributions.

14 Anindya De, Luca Trevisan, and Madhur Tulsiani

Theorem 3. If A is an oracle algorithm that runs in time at most T and such
that for every permutation f : [N] → [N] there is a data structure adv of size
≤ S such that

Px[Af
adv(f(x)) = x] ≥ ε

Then

S · T = Ω̃(εN)

Such lower bound proofs are based on the idea that an algorithm with better
performance could be used to encode every permutation f : [N] → [N] using
strictly less than logN ! bits, which is impossible. Here, we simplify such proofs
by using randomized encodings. (Even a randomized encodings cannot represent
every permutation using less than logN !, and showing that such an encoding
would be possible if the lower bound were wrong is easier by using randomiza-
tion.) In fact, while previous proofs gave a lower bound on the trade-off only
when T = Õ(

√
εN), our lower bound works for the full range of parameters.

We then consider the question of the security of pseudorandom generators
in the oracle setting. By using the aforementioned results for permutations and
applying efficient hard-core predicates [9], it is possible to show the existence of
generators for which S · T ≥ ε7N . By instead applying the ideas of randomized
encodings to a pair f, p where f is a random permutation (modeling a one-way
permutation) and p is a random predicate (modeling a “hard-core predicate”
for p), we prove the existence of length-increasing generators such that for every
distinguisher that makes T oracle queries to the generator, and which has advice
S and distinguishing probability ε, we have

S · T ≥ Ω̃(ε2N)

where N is the number of seeds. Formally, we have the following theorem.

Theorem 4. Suppose that A is an oracle algorithm that makes T queries, uses
a S-bit advice string, and is such that for every length-increasing function G :
[N]→ [N]× {0, 1} there is an advice string adv such that

|P[AG
adv(G(x)) = 1]−P[AG

adv(y) = 1]| ≥ ε

Then S · T ≥ Ω̃(ε2N)

A key intermediate result used here is a lower bound on the following kind
of computation. Given any predicate P : {0, 1}n → {0, 1} we are required to
compute P (x) by querying the oracle P on any point but x. For this kind of
computation, Yao [18] had established an (optimal) lower bound on the trade-
off between length of advice and the number of queries to the oracle P when one
is required to compute P correctly at all places. We extend this to the case when
we are only required to compute P correctly at 1/2 + ε fraction of the places, to
get the following result.

Time space tradeoffs for attacks against one-way functions and PRGs 15

Theorem 5. Suppose that A is an oracle algorithm that makes T queries while
never querying its input, uses a S bit advice string, and is such that for every
predicate P : [N]→ {0, 1}, there is an advice string adv such that

P[AP
adv(x) = P (x)] ≥ 1

2
+ ε

Then S · T ≥ Ω(ε2N).

We note that the optimal lower bound in this case seems to be S · T ≥ Ω(εN)
and we do not how to close this gap. This gap is reflected in the gap between our
lower bound for pseudorandom generators of the form x→ f(x)p(x) where f is
a permutation, and known constructions of distinguishers for such generators.
In particular, the best known algorithm is one of the following (depending on ε,
S, T) : Use the algorithm for inverting functions which can be at best S · T ≤
Ω̃(εN) or use the circuit which we described in the previous subsection. That in
particular uses S = Ω̃(ε2N) and T = Ω̃(1).

Finally, we look at the common random string model, in which all parties
share a common random string k, which they can use to select a permuta-
tion fk(·) from a family of permutations, or a generator Gk(·) from a family of
generators. In such a setting, the trivial brute force attack that achieves invert-
ing (and distinguishing) probability ε = T/N with no advice remains possible.
Alternatively, one can think of a family of permutations as a single permu-
tation (k, x) → (k, fk(x)). We show that, for families of permutations, either
the trivial uniform algorithm or Hellman’s construction applied to the mapping
(k, x) → (k, fk(x)) are best possible, depending on whether the available ad-
vice is shorter or longer than the number of keys. More precisely, we prove the
following theorem.

Theorem 6. Suppose that A is an oracle algorithm that makes T queries, uses
an S-bit advice string, and is such that for every family of permutations f :
[K]× [N]→ [N] there is an advice string adv such that

Pk∈[K], x∈[N][A
f
adv(k, f(k, x)) = x] ≥ ε

Then S · T ≥ Ω̃(εKN)− Õ(KT)

We also prove strong lower bounds for distinguishers for pseudorandom genera-
tors in the common random string model. We show the following theorem.

Theorem 7. Suppose that A is an oracle algorithm that makes T queries, uses
an S-bit advice string, and is such that for every family of length-increasing
functions G : [K]× [N]→ [N]× {0, 1} there is an advice string adv such that

|Px∈[N][AG
adv(k,G(k, x)) = 1]−Py∈[2N][AG

adv(k, y) = 1]| ≥ ε

Then S · T ≥ Ω̃(ε2KN)− Õ(KT).

This translates to saying that for generators in the common random string model,
either T ≥ Ω̃(ε2N) or ST ≥ Ω̃(ε2KN), where K is the number of keys.

16 Anindya De, Luca Trevisan, and Madhur Tulsiani

5 Model of Computation

Positive Results In the time/space trade-offs of Hellman, of Fiat and Naor,
and of this paper, an algorithm uses “time T” and “space S” if it runs in time
at most T (in a RAM model), uses at most S bits of space, and works correctly
upon receiving S bits of advice, in the form of an S-bit data structure that
dominates the space requirement of the algorithm.

The “advice,” in turn, can be computed in uniform time Õ(N). In the work
of Hellman and of Fiat and Naor, one cannot hope, in general, to have processing
time significantly smaller than N in order to generate the data structure used
by the algorithm. Otherwise, one would have a uniform algorithm that inverts
an arbitrary one-way permutation (or function) in time noticeable smaller than
N , which is impossible relative to a random permutation (or function) oracle.

In our paper, the data structure we use is also easily pre-computable in time
Õ(N). Pre-processing time significantly smaller than εN should not be expected,
because then we would have a uniform algorithm to invert a random function on
an ε fraction of inputs in time significantly smaller than εN . With some care, our
data structure can indeed be pre-computed using optimal uniform time Õ(εN).
We, however, do not describe it here for the sake of simplicity.

Negative Results When we show that a particular combination of space S
and time T is not achievable, our result rules out non-uniform algorithms that
make at most T oracle queries to the function (or generator) oracle, and which
receive at most S bits of advice. The actual space used by the algorithm, as well
as the complexity of the computations performed between oracle queries, can be
unbounded. Likewise, the non-uniform advice can have arbitrary complexity.

Acknowledgements

We would like to thank Daniel Wichs for suggesting the study of the common
random string model, and Scott Aaronson, Cynthia Dwork, Omer Reingold,
Udi Wieder and Hoeteck Wee for pointers to the literature. We also thank the
anonymous reviewers for helpful comments and pointing us to [16, 13].

References

1. Scott Aaronson. Lower bounds for local search by quantum arguments. SIAM
Journal of Computing, 35(4):804–824, 2006.

2. Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construc-
tions of almost k-wise independent random variables. Random Structures and
Algorithms, 3(3):289–304, 1992.

3. Alexander E. Andreev, Andrea E.F. Clementi, and José D.P. Rolim. Optimal
bounds for the approximation of boolean functions and some applications. Theo-
retical Computer Science, 180:243–268, 1997.

4. Elad Barkan, Eli Biham, and Adi Shamir. Rigorous bounds on cryptanalytic
time/memory tradeoffs. In Proceedings of CRYPTO’06, pages 1–21, 2006.

Time space tradeoffs for attacks against one-way functions and PRGs 17

5. Charles Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–
1523, 1997.

6. Michael R. Capalbo, Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Ran-
domness conductors and constant-degree lossless expanders. In Proceedings of the
34th ACM Symposium on Theory of Computing, pages 659–668, 2002.

7. Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions.
SIAM Journal on Computing, 29(3):790–803, 1999.

8. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In Proceedings of the 41st IEEE Symposium on Foun-
dations of Computer Science, pages 305–313, 2000.

9. Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions.
In Proceedings of the 21st ACM Symposium on Theory of Computing, pages 25–32,
1989.

10. Alexander Golynski. Cell probe lower bounds for succinct data structures. In
Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms, pages
625–634, 2009.

11. Lov Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the 28th ACM Symposium on Theory of Computing, pages 212–219,
1996.

12. Martin Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on
Information Theory, 26(4):401 – 406, 1980.

13. Antoine Joux and Stefan Lucks. Improved generic algorithms for 3-collisions. In
In Proceedings of ASIACRYPT, pages 347–363, 2009.

14. Anna Ostlin and Rasmus Pagh. Uniform hashing in constant time and linear space.
In Proceedings of the 35th ACM Symposium on Theory of Computing, pages 622–
628, 2003.

15. Alan Siegel. On universal classes of extremely random constant-time hash func-
tions. SIAM Journal of Computing, 33(3):505–543, 2004.

16. Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search with Crypt-
analytic Applications. Journal of Cryptology, 12:1–28, 1999.

17. Hoeteck Wee. On obfuscating point functions. In Proceedings of the 37th ACM
Symposium on Theory of Computing, pages 523–532, 2005.

18. Andrew Yao. Coherent functions and program checkers. In Proceedings of the 22nd
ACM Symposium on Theory of Computing, pages 84–94, 1990.

