
Cryptographic Extraction and Key Derivation:
The HKDF Scheme

Hugo Krawczyk?

Abstract. In spite of the central role of key derivation functions (KDF)
in applied cryptography, there has been little formal work addressing the
design and analysis of general multi-purpose KDFs. In practice, most
KDFs (including those widely standardized) follow ad-hoc approaches
that treat cryptographic hash functions as perfectly random functions.
In this paper we close some gaps between theory and practice by con-
tributing to the study and engineering of KDFs in several ways. We
provide detailed rationale for the design of KDFs based on the extract-
then-expand approach; we present the first general and rigorous definition
of KDFs and their security that we base on the notion of computational
extractors; we specify a concrete fully practical KDF based on the HMAC
construction; and we provide an analysis of this construction based on the
extraction and pseudorandom properties of HMAC. The resultant KDF
design can support a large variety of KDF applications under suitable
assumptions on the underlying hash function; particular attention and
effort is devoted to minimizing these assumptions as much as possible
for each usage scenario.

Beyond the theoretical interest in modeling KDFs, this work is intended
to address two important and timely needs of cryptographic applications:
(i) providing a single hash-based KDF design that can be standardized
for use in multiple and diverse applications, and (ii) providing a conser-
vative, yet efficient, design that exercises much care in the way it utilizes
a cryptographic hash function.
(The HMAC-based scheme presented here, named HKDF, is being stan-
dardized by the IETF.)

1 Introduction

A Key derivation function (KDF) is a basic and essential component of
cryptographic systems: Its goal is to take a source of initial keying ma-
terial, usually containing some good amount of randomness, but not dis-
tributed uniformly or for which an attacker has some partial knowledge,

? IBM T.J. Watson Research Center, Hawthorne, New York. hugo@ee.technion.ac.il
Full version: http://eprint.iacr.org/2010/264

and derive from it one or more cryptographically strong secret keys. We
associate the notion of “cryptographically strong” keys with that of pseu-
dorandom keys, namely, indistinguishable by feasible computation from
a random uniform string of the same length. In particular, knowledge of
part of the bits, or keys, output by the KDF should not leak information
on the other generated bits. Examples of initial keying material include
the output of an imperfect physical random number generator, a bit se-
quence obtained by a statistical sampler (such as sampling system events
or user keystrokes), system PRNGs that use renewable sources of ran-
domness, and the less obvious case of a Diffie-Hellman value computed in
a key exchange protocol.

The main difficulty in designing a KDF relates to the form of the ini-
tial keying material (which we refer to as source keying material). When
this key material is given as a uniformly random or pseudorandom key
K then one can use K to seed a pseudorandom function (PRF) or pseu-
dorandom generator (PRG) to produce additional cryptographic keys.
However, when the source keying material is not uniformly random or
pseudorandom then the KDF needs to first “extract” from this “imper-
fect” source a first pseudorandom key from which further keys can be
derived using a PRF. Thus, one identifies two logical modules in a KDF:
a first module that takes the source keying material and extracts from it
a fixed-length pseudorandom key K, and a second module that expands
K into several additional pseudorandom cryptographic keys.1

The expansion module is standard in cryptography and can be imple-
mented on the basis of any secure PRF. The extraction functionality, in
turn, is well modeled by the notion of randomness extractors [31, 30] as
studied in complexity theory and related areas (informally, an extractor
maps input probability distributions with sufficient entropy into output
distributions that are statistically close to uniform). However, in many
cases the well-established extractors (e.g., via universal hashing) fall short
of providing the security and/or functionality required in practice in the
KDF context. Here we study randomness extraction from the crypto-
graphic perspective and specifically in the context of KDFs (building
upon and extending prior work [26, 14, 6, 5]). A main objective is to de-
velop a basis for designing and analyzing secure key derivation functions
following the above natural extract-then-expand approach. We are inter-
ested in the engineering of practical designs that can serve a variety of

1 KDF is sometimes used only with the meaning of expanding a given strong key into
several additional keys (e.g., [33]); this ignores the extract functionality which is
central to a general multi-purpose KDF.

2

applications and usage scenarios and hence can be standardized for wide
use. In particular, we need to be able to design extractors that will be
well-suited for a large variety of sources of keying material (see detailed
examples in [28]) and work in liberal as well as constrained environments.
For this we resort to the use of cryptographic functions, especially cryp-
tographic hash functions, as the basis for such multi-purpose extraction.

We identify computational extractors, namely randomness extractors
where the output is only required to be pseudorandom rather than sta-
tistically close to uniform, as the main component for extraction in cryp-
tographic applications, and build the notion of a KDF and its imple-
mentations on the basis of such extractors. Computational extractors are
well-suited for the crypto setting where attackers are computationally
bounded and source entropy may only exist in a computational sense. In
particular, one can build such extractors in more efficient and practical
ways through the use of cryptographic functions under suitable assump-
tions. Advantages of such cryptographic extractors range from purely
practical considerations, such as better performance and the operational
advantage of re-using functions (e.g., cryptographic hash functions) that
are already available in cryptographic applications, to their more essential
use for bypassing some of the inherent limitations of statistical extractors.
We use the ability of cryptographic hash functions to be keyed as a way to
include a salt value (i.e., a random but non-secret key) which is essential
to obtain generic extractors and KDFs that can extract randomness from
arbitrary sources with sufficiently high entropy.

We then study the requirements from computational extractors in
the cryptographic setting, ranging from applications where the source key
material has large entropy (and a good source of public randomness is also
available) to the much more constrained scenarios encountered in practice
where these resources (entropy and randomness) are much more limited.
On this basis, we offer a KDF design that accommodates these different
scenarios under suitable assumptions from the underlying cryptographic
functions. In some cases, well-defined combinatorial assumptions from the
hash functions will suffice while in others one has to resort to idealized
modeling and “random oracle” abstractions. Our goal is to minimize such
assumptions as much as possible for each usage scenario, but for this we
need to first develop a good understanding of the properties one can
expect from cryptographic hash functions as well as an understanding of
the extraction functionality and the intrinsic limitations of unconditional
statistical extractors in practical settings. We provide a detailed account
of these issues throughout the paper.

3

Based on the notion of computational extractors (and on a better
understanding of the complexities and subtleties of the use of KDFs in
practice), we present a formal definition of the key derivation functional-
ity suitable for capturing multiple uses of KDFs and a basis for judging
the quality of general KDF designs such as those considered here. Some-
what surprisingly, in spite of being one of the most central and widely
used cryptographic functionalities (in particular, specified in numerous
standards), there appears to be little formal work on the specific sub-
ject of multi-purpose key derivation functions. Ours seems to be the first
general definition of the KDF functionality in the literature. Our defi-
nitions include a formalization of what is meant by a “source of keying
material” and they spell the security requirements from the KDF tak-
ing into account realistic adversarial capabilities such as the possession
by the attacker of side information on the input to the KDF. In our
formulation, KDFs accept four inputs: a sample from the source of key-
ing material from which the KDF needs to extract cryptographic keys,
a parameter defining the number of key bits to be output, an (optional)
randomizing salt value as mentioned before, and a fourth “contextual
information” field. The latter is an important parameter for the KDF in-
tended to include key-related information that needs to be uniquely and
cryptographically bound to the produced key material (e.g., a protocol
identifier, identities of principals, timestamps, etc.).

We then use the above theoretical background, including results from
[14, 12], to describe and analyze a concrete practical design of a multi-
purpose KDF based on cryptographic hash functions. The scheme (de-
noted HKDF), that uses HMAC as the underlying mode of operation,
supports multiple KDF scenarios and strives to minimize the required
assumptions from the underlying hash function for each such scenario.
For example, in some applications, assuming that the underlying hash
function has simple combinatorial properties, e.g., universal hashing, will
suffice while in the most constrained scenarios we will need to model the
hash function as a random oracle. The important point is that we will
be able to use the same KDF scheme in all these cases as required for a
standardized multi-purpose KDF.2

We end by observing that most of today’s standardized KDFs (e.g.,
[3, 4, 32, 23]) do not differentiate between the extract and expand phases
but rather combine the two in ad-hoc ways under a single cryptographic
hash function (refer to [28] for a description and discussion of these KDF
schemes and their shortcomings). This results in ad-hoc designs that are

2 The proposed HKDF scheme is being standardized by the IETF as RFC 5869 [27].

4

hard to justify with formal analysis and which tend to “abuse” the hash
function, requiring it to behave in an “ideally random” way even when
this is not strictly necessary in most KDF applications (these deficiencies
are present even in the simple case where the source of keying material
is fully random). In contrast, we formulate and analyze a fully practical
KDF scheme based on current theoretical research as well as on sound
engineering principles. The end result is a well-defined hash-based KDF
scheme applicable to a wide variety of scenarios and which exercises much
care in the way it utilizes cryptographic hash functions. Our view is that
given the current (healthy) skepticism about the strength of our hash
functions we must strive to design schemes that use the hash function
as prudently as possible. Our work is intended to fulfill this principle in
the context of key derivation functions (especially at a time that new
standards based on hash functions are being developed, e.g., [33]).

Related Work. As already mentioned, in spite of their importance
and wide use, there is little formal work on the specific subject of multi-
purpose key derivation functions. The first work to analyze KDFs in the
context of cryptographic hash functions and randomness extractors ap-
pears to be [14], which was followed-up in the context of random oracles
by [12]. The former work laid the formal foundations for the HMAC-
based KDF scheme presented here. This scheme, in turn, is based on
the KDF originally designed by this author for the IKE protocols [19, 24]
and which put forth the extract-then-expand paradigm in the context of
practical KDFs. A variant of the expansion stage of HKDF has also been
adopted elsewhere, e.g. into TLS [13] (however, TLS does not use the ex-
tract approach; for example, keys from a DH exchange are used directly
as PRF keys without any extraction operation). The extract-then-expand
approach has subsequently been taken in [5] in the context of designing
“system random number generators”; that work shares many elements
with ours although the papers differ significantly in emphasis and scope.
Another related work is [6] which proposes the use of statistical extractors
in the design of physical random-number generators and points out to the
potential practicality of these extractors in this specific setting. Both [5,
6] offer interesting perspectives on the use of randomness extractors in
practice that complement our work; our HKDF design is well suited for
use also in the settings studied by these works. A good discussion of ex-
traction issues in the context of KDFs in the Diffie-Hellman setting can
be found in [11] where a dedicated deterministic extractor for specific DH
groups is presented. Another such extractor (very different in techniques
and applicability) is presented in [16]. See more on related work in [28].

5

Full version. Due to space limitations we have omitted some important
material that complements this presentation. Please refer to the full ver-
sion [28] for expanded rationale, a treatment of the role of random oracles
in the KDF setting, comparison with the most commonly used KDFs in
practice, discussion of additional KDF applications, and more.

2 Statistical and Computational Extractors

This section is intended to introduce the basic notions behind the ab-
stract randomness extraction functionality; in particular we define “com-
putational extractors” that are central in our treatment.

The goal of the extract part of a KDF scheme is to transform the
input source (seen as a probability distribution) into a close-to-uniform
output. This corresponds to the functionality of randomness extractors
which have been extensively studied in complexity theory and related
areas [31]. Informally, a randomness extractor is a family of functions
indexed by a public, i.e., non-secret, parameter (which we refer to as
“salt”) with the property that on any input distribution with sufficiently
large entropy, if one chooses a salt value at random (and independently of
the source distribution) the output of the extractor is statistically close
to uniform (see below for a formal definition). Moreover, this statistical
closeness holds even if conditioned on the salt value. Extractors with the
latter property are called strong randomness extractors but since we only
consider this type we often omit both the “strong” and “randomness”
qualifiers. On the other hand, we often add the qualifier “statistical” to
differentiate these extractors from computational ones (defined below)
that are an essential part of our work.

Before presenting a formal definition of statistical extractors, we recall
the notion of entropy considered in this context, called min-entropy, that
captures a “worst case” notion of entropy different than the traditional
average notion of Shannon’s entropy (it is not hard to see that Shannon’s
notion is insufficient in the context of randomness extraction).

Background definitions and notation. Refer to Appendix A for some
background definitions and notation used throughout the paper (e.g., the
notion of δ-close).

Definition 1. A probability distribution X has min-entropy (at least)m if
for all a in the support of X and for random variable X drawn according
to X , Prob(X = a) ≤ 2−m.

6

Definition 2. Let X be a probability distribution over {0, 1}n. A function
ext : {0, 1}t × {0, 1}n → {0, 1}m′ is called a δ-statistical extractor with
respect to X if the distribution of pairs (r, y), where r is chosen with
uniform probability over {0, 1}t and y = extr(x) for x chosen according
to distribution X , is δ-close to the distribution of pairs (r, z) where z
is chosen with uniform probability from {0, 1}m′. If ext is a δ-statistical
extractor with respect to all distributions over {0, 1}n with min-entropy
m, then we say that ext is a (m, δ)-statistical extractor.

This notion was first defined in [31]; see [30, 38] for surveys.

Randomization of the extractor function via the parameter r (the
salt) is mandatory if the same extractor function is to be able to ex-
tract randomness from any high min-entropy distribution. Indeed, for
any deterministic function one can construct a high min-entropy source
on which the function will produce very non-uniform outputs. On the
other hand, one may consider randomness extractors that are suited for a
specific source (or family of sources). In the latter case, one can consider
deterministic extractors. Examples of such source-specific extractors in
the cryptographic setting include the well-known hard-core schemes for
RSA [2, 15] and for discrete-log based functions [21, 34], and the recent
elegant extraction functions specific to some Diffie-Hellman groups in [11,
16]. For most of our study we focus on generic extractors, i.e., those that
can extract randomness from any source with sufficient min-entropy, and
hence require some non-secret salt.

A natural (and practical) question is whether common KDF appli-
cations may have a randomness source from which to obtain salt. After
all, the whole purpose of extractors is to generate randomness, so if one
already has such a random salt why not use it directly as a PRF key? The
answer is that this randomness needs not be secret while in KDF applica-
tions we want the output of the extractor to be secret. Obtaining public
randomness is much easier than producing secret bits, especially since in
most applications the extractor key (or salt) can be used repeatedly with
many (independent) samples from the same source (hence it can be cho-
sen in an out-of-band or setup stage and be repeatedly used later). For
example, a random number generator (RNG) that requires an extractor
to “purify” its possibly imperfect output can simply have a random, non-
secret, extractor key built-in; the same extractor key is used to purify
each output from the RNG [6]. In other cases, such as key-exchange pro-
tocols, extraction keys can be generated as part of the protocol (e.g., by
using random nonces exchanged in the clear [19, 24]). See [28] for further
elaboration on the issue of randomization in extractors, in particular as a

7

means to enforce independence between the source distribution and the
extractor.

Efficient constructions of generic (hence randomized) statistical ex-
tractors exist such as those built on the basis of universal hash functions
[10]. However, in spite of their simplicity, combinatorial and algebraic con-
structions present significant limitations for their practical use in generic
KDF applications. For example, statistical extractors require a signifi-
cant difference (called the gap) between the min-entropy m of the source
and the required number m′ of extracted bits (in particular, no statistical
extractor can achieve a statistical distance, on arbitrary sources, better

than 2−
m−m′

2 [35, 38]). That is, one can use statistical extractors (with its
provable properties) only when the min-entropy of the source is signifi-
cantly higher than the length of output. These conditions are met by some
applications, e.g., when sampling a physical random number generator or
when gathering entropy from sources such as system events or human typ-
ing (where higher min-entropy can be achieved by repeated sampling). In
other cases, very notably when extracting randomness from computa-
tional schemes such as the Diffie-Hellman key exchange, the available gap
may not be sufficient (for example, when extracting 160 bits from a DH
over a 192-bit group). In addition, depending on the implementation, sta-
tistical extractors may require from several hundred bits of randomness
(or salt) to as many bits of salt as the number of input bits.

To obtain more practical instantiations of extractors we relax their
requirements in several ways. Most significantly, we will not require that
the output of the extractor be statistically close to uniform but just “com-
putationally close”, i.e., pseudorandom. The following notion is implicit
in [17, 14].

Definition 3. A (t, ε)-computational extractor with respect to a probabil-
ity distribution X is defined as in Definition 2 except that the require-
ment for statistical closeness between the distributions (r, y) and (r, z) is
replaced with (t, ε)-computational indistinguishability3. An extractor that
is (t, ε)-computational with respect to all distributions with min-entropy
m is called (m, t, ε)-computational.

This relaxed notion will allow for more practical instantiations of ex-
tractors, particularly well-suited for the key derivation setting. Compu-
tational extractors fit the cryptographic settings where attackers are as-
sumed to be computationally bounded, and they allow for constructions

3 See Appendix A for the definition of computational indistinguishability.

8

based on cryptographic hash functions. In addition, computational ex-
traction is natural in settings such as the Diffie-Hellman protocol where
the input gxy to the extractor is taken from a source that has zero sta-
tistical entropy (since an attacker that knows gx, gy has full information
to compute gxy), yet may contain a significant amount of “computational
min-entropy” [20] as defined next.

Definition 4. A probability distribution X has (t, ε)-computational min-
entropy m if there exists a distribution Y with min-entropy m such that
X and Y are (t, ε)-computationally indistinguishable.

Note: In our application of extraction to the KDF setting, where an at-
tacker often has some a-priori information about the source (e.g., it knows
the public DH values gx, gy from which the source key material gxy is de-
rived), we use a notion of min-entropy (statistical or computational) that
is conditioned on such a-priori information (see following section).

3 Formalizing Key Derivation Functions

We present a formal definition of (secure) key derivation functions and a
formalization of what is meant by a “source of keying material”. To the
best of our knowledge, no such general definitions have been given in the
literature.4 We start with a definition of KDF in terms of its inputs and
outputs (consistent with the KDF description in Section 4). Later, after
introducing the notion of sources of keying material, we define what it
means for a KDF to be secure.

Definition 5. A key derivation function (KDF) accepts as input four ar-
guments: a value σ sampled from a source of keying material (Def. 6), a
length value `, and two additional arguments, a salt value r defined over
a set of possible salt values and a context variable c, both of which are
optional, i.e., can be set to the null string or to a constant. The KDF
output is a string of ` bits.5

The security and quality of a KDF depends on the properties of the
“source of keying material”, defined next, from which the input σ is chosen
(see [28] for more examples of such sources.)

4 Yao and Yin [40] provide a formal definition of KDFs specific to the password setting
which is different from and inapplicable to the general setting treated here (see [28]).

5 The values σ, `, r, c correspond to the values SKM, L,XTS,CTXinfo in the descrip-
tion of Section 4.

9

Definition 6. A source of keying material (or simply source) Σ is a two-
valued probability distribution (σ, α) generated by an efficient probabilistic
algorithm. (We will refer to both the probability distribution as well as
the generating algorithm by Σ.)

This definition does not specify the input to the Σ algorithm (but
see below for a discussion related to potential adversary-chosen inputs to
such an algorithm). It does specify the form of the output: a pair (σ, α)
where σ (the “sample”) represents the (secret) source key material to be
input to a KDF, while α represents some auxiliary knowledge about σ
(or its distribution) that is available to the attacker. For example, in a
Diffie-Hellman application the value σ will consist of a value gxy while
α could represent a quintuple (p, q, g, gx, gy). In a different application,
say a random number generator that works by hashing samples of system
events in a computer system, the value α may include some of the sampled
events used to generate σ. The importance of α in our formal treatment
is that we will require a KDF to be secure on inputs σ even when the
knowledge value α is given to the attacker. The restriction to sources that
can be generated efficiently represents our interest in sources that can
arise (and be used/sampled) in practice.

Next, we define the security of a KDF with respect to a specific source
Σ. See Definition 9 for the generic case.

Definition 7. A key derivation function KDF is said to be (t, q, ε)-secure
with respect to a source of key material Σ if no attacker A running in time
t and making at most q queries can win the following distinguishing game
with probability larger than 1/2 + ε:

1. The algorithm Σ is invoked to produce a pair σ, α.
2. A salt value r is chosen at random from the set of possible salt values

defined by KDF (r may be set to a constant or a null value if so defined
by KDF).

3. The attacker A is provided with α and r.
4. For i = 1, . . . , q′ ≤ q: A chooses arbitrary values ci, `i and receives the

value KDF(σ, r, ci, `i) (queries by A are adaptive, i.e., each query may
depend on the responses to previous ones).

5. A chooses values c and ` such that c /∈ {c1, . . . , cq′}.
6. A bit b ∈R {0, 1} is chosen at random. If b = 0, A is provided with

the output of KDF(σ, r, c, `), else A is given a random string of ` bits.
7. Step 4 is repeated for up to q − q′ queries (subject to the restriction

ci 6= c).
8. A outputs a bit b′ ∈ {0, 1}. It wins if b′ = b.

10

It is imperative for the applicability of this definition that the attacker
is given access to both α and r. This models the requirement that the
KDF needs to remain secure even when the side-information α and salt
r are known to the attacker (in particular, note that the choice of the c’s
and `’s by the attacker may depend on α and r). Allowing for multiple
values of ci to be chosen by the attacker under the same input σ to KDF
ensures that even if an attacker can force the use of the same input σ to
the KDF in two different contexts (represented by c), the outputs from
the KDF in these cases are computationally independent (i.e., leak no
useful information on each other).

The following definition extends the min-entropy definitions from Sec-
tion 2 to the setting of keying material sources (for a detailed treatment
of conditional (computational) entropy as used in the next definition see
[36, 37, 22]).

Definition 8. We say that Σ is a statistical m-entropy source if for all
s and a in the support of the distribution Σ, the conditional probability
Prob (σ = s | α = a) induced by Σ is at most 2−m.
We say that Σ is a computational m-entropy source (or simply an m-
entropy source) if there is a statistical m-entropy source Σ′ that is com-
putationally indistinguishable from Σ.

We note that in the above definition we can relax the “for all a” to “all but
a negligible fraction of a”. That is, we can define α = a to be “bad” (for
a given value m) if there is s such that Prob (σ = s | α = a) > 2−m and
require that the joint probability induced by Σ on bad a’s be negligible.

Definition 9. A KDF function is called (t, q, ε) m-entropy secure if it is
(t, q, ε)-secure with respect to all (computational) m-entropy sources.

We note that for the most part of this paper the (implicit) notion of
security of a KDF corresponds to this last definition, namely, we think of
KDFs mainly as a generic function that can deal with different sources as
long as the source has enough computational min-entropy. We stress that
this notion of security can only be achieved for randomized KDFs where
the salt value r is chosen at random from a large enough set. Yet, this
work also touches on deterministic KDFs (see more in [28]) that may be
good for specific applications and sources and whose security is formalized
in Definition 7.

On adversarially-chosen inputs to Σ. Please refer to [28] for a dis-
cussion on extending the above definitions to incorporate possiblly adver-
sarial inputs to the generation of the source Σ.

11

4 Extract-then-Expand KDF and an HMAC-based
Instantiation

In this section we first describe an abstract KDF that implements the
extract-then-expand approach discussed throughout this paper, and then
specify an instantiation solely based on HMAC [7].

An extract-then-expand key derivation function KDF comprises two mod-
ules: a randomness extractor XTR and a variable-length output pseudo-
random function PRF∗ (the latter is usually built on the basis of a regular
PRF with output extension via counter mode, feedback mode, etc.). The
extractor XTR is assumed to produce “close-to-random”, in the statistical
or computational sense, outputs on inputs sampled from the source key
material distribution (this should be the case also when the SKM value
includes auxiliary knowledge α, per Definition 6, that is provided to the
distinguisher). XTR may be deterministic or keyed via an optional “salt
value” (i.e., a non-secret random value) that we denote by XTS (for ex-
tractor salt). The key to PRF∗ is denoted by PRK (pseudorandom key)
and in our scheme it is the output from XTR; thus, we are assuming that
XTR produces outputs of the same length as the key to PRF∗. The func-
tion PRF∗ also gets a length parameter indicating the number of bits to
be output by the function. In all, KDF receives four inputs: the source key
material SKM, the extractor salt XTS (which may be null or constant), the
number L of key bits to be produced by KDF, and a “context informa-
tion” string CTXinfo (which may be null). The latter string should include
key-related information that needs to be uniquely (and cryptographically)
bound to the produced key material. It may include, for example, infor-
mation about the application or protocol calling the KDF, session-specific
information (session identifiers, nonces, time, etc.), algorithm identifiers,
parties identities, etc. The computation of the extract-then-expand KDF
proceeds in two steps; the L-bit output is denoted KM (for “key mate-
rial”):

1. PRK = XTR (XTS, SKM)

2. KM = PRF∗(PRK, CTXinfo, L)

The following theorem establishes the security of a KDF built using
this extract-then-expand approach. The proof, presented in [28], follows
from the definition of computational extractors (Definition 3), the secu-
rity definition of variable-length-output pseudorandom functions (Defini-
tion 14 in Appendix A), and the definition of KDF security (Definition 7).

12

Theorem 1. Let XTR be a (tX , εX)-computational extractor w.r.t. a source
Σ and PRF∗ a (tP , qP , εP)-secure variable-length-output pseudorandom
function family, then the above extract-then-expand KDF scheme is
(min{tX , tP }, qP , εX + εP)-secure w.r.t. source Σ.

An HMAC-based instantiation. For the sake of implementation in
real applications we propose to instantiate the above general scheme with
HMAC serving as the PRF underlying PRF∗ as well as the XTR function.
We denote the resultant scheme by HKDF.

We use the following notational conventions: (i) the variable k denotes
the output (and key) length of the hash function used with HMAC; (ii)
we represent HMAC as a two-argument function where the first argu-
ment always represents the HMAC key; (iii) the symbol ‖ denotes string
concatenation. Thus, when writing HMAC(a, b ‖ c) we mean the HMAC
function (using a given hash function) keyed with the value a and applied
to the concatenation of the strings b and c.

The scheme HKDF is specified as:

HKDF(XTS, SKM, CTXinfo, L) = K(1) ‖ K(2) ‖ . . . ‖ K(t)

where the values K(i) are defined as follows:

PRK = HMAC(XTS, SKM)

K(1) = HMAC(PRK,CTXinfo ‖ 0),

K(i+ 1) = HMAC(PRK, K(i) ‖ CTXinfo ‖ i), 1 ≤ i < t,

where t = dL/ke and the value K(t) is truncated to its first d = L mod k
bits; the counter i is non-wrapping and of a given fixed size, e.g., a single
byte. Note that the length of the HMAC output is the same as its key
length and therefore the scheme is well defined.
When the extractor salt XTS is not provided (i.e., the extraction is deter-
ministic) we set XTS = 0.

Example: Let HMAC-SHA256 be used to implement KDF. The salt XTS

will either be a provided 256-bit random (but not necessarily secret) value
or, if not provided, XTS will be set to 0. If the required key material
consists of one AES key (128 bits) and one HMAC-SHA1 key (160 bits),
then we have L = 288, k = 256, t = 2, d = 32 (i.e., we will apply HMAC-
SHA256 with key PRK twice to produce 512 bits but only 288 are output
by truncating the second output from HMAC to its first 32 bits). Note
that the values K(i) do not necessarily correspond to individual keys but
they are concatenated to produce as many key bits as required.

13

Practical Notes. Please refer to [28] for several notes on the use of the
HKDF in practice, including some variants such as replacing HMAC with
a block-cipher based construct or with other “multi-property preserving”
hash schemes, and using hybrid schemes where the extract and expand
modules are implemented with separate components. [28] also contains a
discussion on the use of feedback mode in the expansion stage of HKDF.

5 The Security of HKDF

Theorem 1 from Section 4 allows us to argue the security of HKDF on the
basis of the properties of the HMAC scheme both as extractor and PRF.
In this section we review results concerning these properties of HMAC
and use them to prove the security of HKDF. These results demonstrate
that the structure of HMAC works well in achieving the basic functional-
ities that underline HKDF including PRF, extraction, and random-oracle
domain extension. In particular, they exploit the versatility of HMAC
that supports working with a secret key, a random non-secret key (salt),
or deterministically (i.e., with a fixed-value key). We also note that the
security analysis of HKDF uses in an essential way the structure of HMAC
and would not hold if one simply replaces HMAC with a plain (Merkle-
Damgard) hash function.

Notation. We use H to denote a Merkle-Damgard hash function and h
the underlying compression function. We also consider these as keyed fam-
ilies, where hκ and Hκ denote, respectively, the compression function and
the Merkle-Damgard hash with their respective IVs set to κ; the key and
output lengths of these functions is denoted by k. We will abuse notation
and talk about “the family hκ” instead of the more correct {hκ}κ∈{0,1}k ;
same for Hκ. When we say that “the family hκ is random”, we mean that
each of the functions hκ is chosen at random (with the corresponding in-
put/output lengths). When we talk about HMAC (or NMAC), we assume
underlying functions h and H (or their keyed versions).

The properties of HMAC as a pseudorandom function family are well
established [8, 9] and are based on the assumed pseudorandomness of the
underlying compression function family hκ.6 It is not hard to see that the
use of HMAC in“feedback mode” in HKDF (for realizing PRF∗) results
in a secure variable-length-output pseudorandom function family. Indeed,

6 Although the security of HMAC as PRF degrades quadratically with the number
of queries, such attack would require the computation of the PRF (by the owner of
the key) over inputs totalizing 2k/2 blocks. This is not a concern in typical KDF
applications where the number of applications of the PRF is relatively small.

14

the latter is a generic transformation from fixed-length output PRF into
a variable-length output PRF∗ (see more on this transformation and the
rationale for the use of feedback mode in [28]).

The suitability of HMAC as a computational extractor is more com-
plex and is treated in detail below. These results show the extraction
properties of HMAC for a wide variety of scenarios under suitable assump-
tions on the underlying hash function, ranging from purely combinatorial
properties, such as universality, to the idealized modeling of compression
functions as random oracles.

We first state the following general theorem.

Theorem 2. (informal) Let H be a Merkle-Damgard hash function built
on a family of pseudorandom compression functions {hκ}κ. Let S be a
collection of probability distributions acting as sources of keying material.
Assume that the instantiation of HMAC with the family {hκ}κ is a secure
computational extractor w.r.t. sources in S, then HKDF is a secure KDF
w.r.t. sources in S.

The theorem follows from Theorem 1 applied to the collection of sources
S and the fact, discussed above, that HMAC is a secure PRF when in-
stantiated with a pseudorandom family of compression functions hκ. Each
of the lemmas presented below provides a condition on HMAC extraction
that can be plugged into this theorem to obtain a proof of security for
HKDF for the appropriate sources of key material in a well-defined and
quantifiable way.

The results below involve the notion of “almost universal (AU)” hash
functions [10, 39]: A family hκ is δ-AU if for any inputs x 6= y and for
random κ, Prob(hκ(x) = hκ(y)) ≤ δ. This is a natural (combinatorial)
property of hash functions and also one that any (even mildly) collision
resistant hash family must have and then a suitable assumption for cryp-
tographic hash functions. Specifically, if the hash family hκ is δ-collision-
resistant against linear-size circuits (i.e., such an attacker finds collisions
in hκ with probability at most δ) then hκ is δ-AU [14]. For results that
apply to the most constrained scenarios (as those discussed in the Ran-
dom Oracles section of [28]) we need to resort to stronger, idealized as-
sumptions, in which we model functions as random oracles (RO), namely,
random functions which the attacker can only query on a limited number,
q, of queries.

NMAC as extractor. The following lemmas are adapted from [14]
and apply directly to the NMAC scheme underlying HMAC (recall that
NMACκ1,κ2(x) = Hκ2(Hκ1(x)), where Hκ2 is called the “outer function”

15

and Hκ1 the “inner function”). The results extend to HMAC as explained
below. They show that HMAC has a structure that supports its use as
a generic extractor and, in particular, it offers a much better design for
extraction than the plain hash function H used in many of the existing
KDFs.

Lemma 1. If the outer function is modeled as a RO and the inner func-
tion is δ-AU then NMAC applied to an m-entropy source produces an
output that is

√
q(2−m + δ)-close to uniform where q is a bound on the

number of RO queries.

The above modeling of the outer function as a random oracle applies
to the case where the outer function is a single (fixed) random function
(in which case the source distribution needs to be independent of this
function) or when it is represented as a keyed family of random functions
(in which case only the key, or salt, needs to be chosen independently of
the source distribution).

One natural question is whether one can ensure good extraction prop-
erties for NMAC based on the extraction properties of the underlying
compression functions and without idealized assumptions. The following
result from [14] provides an affirmative answer for m-blockwise sources,
namely, where each k-bit input block has min-entropy m when condi-
tioned on other blocks. Denote by ĥκ a family identical to the compres-
sion function family hκ but where the roles of key and input are swapped
relative to the definition of hκ.

Lemma 2. If hκ is a (m, δ)-statistical extractor and ĥκ is a (t, q, ε)-
pseudorandom family for q = 1, then NMAC is a (t, nδ+ε)-computational
extractor for m-blockwise sources with n input blocks.

An example of a practical application where this non-idealized result can
be used is the IKE protocol [19, 24] where all the defined “mod p” DH
groups have the required block-wise (computational) min-entropy. In par-
ticular, the output from HKDF is guaranteed to be pseudorandom in this
case without having to model h as a random oracle.

Truncated NMAC. Stronger results can be achieved if one truncates
the output of NMAC by c bits to obtain k′ = k − c bits of output (e.g.,
one computes NMAC with SHA-512 but only outputs 256 bits). In this
case one can show that NMAC is a good statistical extractor (not just
computational) under the following sets of assumptions:

16

Lemma 3. If hκ is a family of random compression functions (with k bits
of output) then NMAC truncated by c bits is a (k,

√
(n+ 2)2−c)-statistical

extractor where n is the number of input blocks.

Lemma 4. If the inner function is δ1-AU and the outer is (2−k
′
+δ2)-AU

then truncated NMAC (with k′ bits of output) is a (m,
√

2k′(2−m + δ1 + δ2))-
statistical extractor.

The latter lemma is particularly interesting as its guarantee is “uncondi-
tional”: it does not depend on hardness assumptions or idealized assump-
tions, and it ensures statistical extraction. Moreover, it fits perfectly the
HKDF setting if one implements the extract phase with, say, SHA2-512
(with output truncated to 256 bits) and the PRF part with SHA2-256
(as discussed in the practical notes section of [28]).
In particular, we have the following significant case:

Corollary 1. If the family of compression functions hκ is strongly uni-
versal (or pairwise independent) and the family Hκ is generically collision
resistant against linear-size circuits, then NMAC truncated by c bits is a
(k, (n+ 2)2−c/2)-statistical extractor on n-block inputs.

Indeed, the assumption that the family hκ is strongly universal means
δ2 = 0; and it is not hard to see that if there is no trivial (linear size)
algorithm to find collisions in the family Hκ better than guessing then
δ1 ≤ n2−k. Putting these values and m = k into Lemma 4 the corollary
follows.

Applying the corollary to the above example of SHA2-512 truncated
to 256 bits we get a statistical distance of (n + 2)2−128. And there is
plenty room to get good security even if the δ values deviate from the
above numbers; e.g., for δ1 = δ2 = 21002−k we would get a statistical
closeness of (n + 2)2−78. Finally, we note that a min-entropy of m = k
is a condition satisfied by many common distributions such as statistical
samplers and Diffie-Hellman groups modulo safe primes.

From NMAC to HMAC. To use the above results with HMAC one
needs to assume the computational independence of the values h(κ⊕opad)
and h(κ⊕ipad) for random κ (i.e., each of these values is indistinguishable
from uniform even if the other is given). In the cases where h is modeled
as a random function this requires no additional assumption.

HMAC as a random oracle. In [28] (Random Oracles section) we
point out to various scenarios that require the modeling of the extraction
functionality through random oracles. This may be due to the stringent

17

requirements of an application (e.g., when all of the min-entropy of the
source is to be extracted), when extraction can be solely based on cryp-
tographic hardness without assuming additional min-entropy (the “hard
core” case), or when the application itself assumes the KDF to be a ran-
dom oracle (as in certain key exchange protocols). In all these cases we
are interested to model the extract part of HKDF as a random oracle.
Fortunately, as shown in [12] (using the framework of indifferentiability
from [29]), the HMAC structure preserves randomness in the sense that
if the underlying compression function (computed on fixed length inputs)
is modeled as a random oracle so is HMAC on variable length inputs
([12] claims the result for a variant of HMAC but it applies to HMAC
itself).7 This result together with the random-oracle-extraction lemma
from [28] implies:

Lemma 5. If the compression function h is modeled as a RO, then the
application of HMAC to an m-entropy source produces an output that is
q2−m-close to uniform where q is a bound on the number of RO queries.

As explained in [28], the above holds for source distributions that are (suf-
ficiently) independent from the function h. To obtain a generic extractor
one needs to randomize the scheme by keying HMAC with a salt value.

Finally, we point out that using random-oracle-hardcore lemma from
[28], one obtains that if hκ is a RO family then HMAC over the family Hκ

is a generic hard-core family. This is needed when extraction is to be based
on cryptographic hardness (or unpredictability) only without assuming
additional min-entropy (e.g., in a Diffie-Hellman exchange where only
CDH is assumed – see more in [28]).

References

1. Carlisle Adams, Guenther Kramer, Serge Mister and Robert Zuccherato, “On The
Security of Key Derivation Functions”, ISC’2004, LNCS 3225, 134-145.

2. Werner Alexi, Benny Chor, Oded Goldreich, Claus-Peter Schnorr: RSA and Rabin
Functions: Certain Parts are as Hard as the Whole. SIAM J. Comput. 17(2): 194-
209 (1988)

3. ANSI X9.42-2001: Public Key Cryptography For The Financial Services Industry:
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography.

7 This “RO preserving” property does not hold for the plain Merkle-Damgard hash
which is susceptible to extension attacks. Moreover, even if one considers fixed-length
inputs (to avoid extension attacks), the Merkle-Damgard family Hκ built on random
compression functions is not a good statistical extractor (e.g., [14] show that the
output of such family on any distribution for which the last block of input is fixed
is statistically far from uniform).

18

4. ANSI X9.63-2002: Public Key Cryptography for the Financial Services Industry:
Key Agreement and Key Transport.

5. Boaz Barak, Shai Halevi: A model and architecture for pseudo-random generation
with applications to /dev/random. ACM Conference on Computer and Commu-
nications Security 2005.

6. Boaz Barak, Ronen Shaltiel, and Eran Tromer, “True random number genera-
tors secure in a changing environment”, Cryptographic Hardware and Embedded
Systems (CHES), LNCS no. 2779, 2003.

7. M. Bellare, R. Canetti, and H. Krawczyk. “Keying hash functions for message
authentication”, Crypto ’96, LNCS No. 1109. pages 1–15, 1996.

8. M. Bellare, R. Canetti, and H. Krawczyk. “Pseudorandom Functions Revisited:
The Cascade Construction and Its Concrete Security”, Proc. 37th FOCS, pages
514–523. IEEE, 1996.

9. Mihir Bellare, “New Proofs for NMAC and HMAC : Security Without Collision-
Resistance”, CRYPTO 2006, LNCS 4117. pp. 602-619.

10. L. Carter and M. N. Wegman. “Universal Classes of Hash Functions”, JCSS, 18(2),
1979.

11. Olivier Chevassut, Pierre-Alain Fouque, Pierrick Gaudry, David Pointcheval: The
Twist-AUgmented Technique for Key Exchange. Public Key Cryptography 2006:
LNCS 3958.

12. Jean-Sebastien Coron, Yevgeniy Dodis, Cecile Malinaud, Prashant Puniya:
“Merkle-Damgard Revisited: How to Construct a Hash Function”, CRYPTO’05,
LNCS 3621, 430-448.

13. T. Dierks and C. Allen, ed., “The TLS Protocol – Version 1”, Request for Com-
ments 2246, 1999.

14. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk H., and Rabin, T., “Randomness
Extraction and Key Derivation Using the CBC, Cascade and HMAC Modes”,
Crypto’04, LNCS 3152.

15. R. Fischlin, C.-P. Schnorr, “Stronger Security Proofs for RSA and Rabin Bits”,
Eurocrypt’97.

16. P.-A. Fouque, D. Pointcheval, J. Stern, S. Zimmer, “Hardness of Distinguishing the
MSB or LSB of Secret Keys in Diffie-Hellman Schemes”, ICALP (2) 2006: LNCS
4052.

17. R. Gennaro, H. Krawczyk and T. Rabin. “Secure Hashed Diffie-Hellman over Non-
DDH Groups”, Eurocrypt’04.

18. S. Goldwasser and S. Micali, “Probabilistic Encryption”, JCSS, 28(2):270–299,
April 1984.

19. D. Harkins and D. Carrel, ed., “The Internet Key Exchange (IKE)”, RFC 2409,
Nov. 1998.

20. J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. “Construction of a Pseudo-
random Generator from any One-way Function”, SIAM. J. Computing, 28(4):1364–
1396, 1999.

21. J. Hastad, A. Schrift, A. Shamir, “The Discrete Logarithm Modulo a Composite
Hides O(n) Bits,” J. Comput. Syst. Sci., 47(3): 376-404 (1993)

22. Chun-Yuan Hsiao, Chi-Jen Lu, Leonid Reyzin, “Conditional Computational En-
tropy, or Toward Separating Pseudoentropy from Compressibility”, EUROCRYPT
2007, pp. 169-186

23. IEEE P1363A: Standard Specifications for Public Key Cryptography: Additional
Techniques, Institute of Electrical and Electronics Engineers.

19

24. C. Kaufman, ed., “Internet Key Exchange (IKEv2) Protocol”, RFC 4306, Dec.
2005.

25. H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Message
Authentication”, RFC 2104, Feb. 1997.

26. H. Krawczyk. “SIGMA: The ‘SiGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols”, Crypto ’03, pages 400–425, 2003

27. Krawczyk, H. and Eronen, P., “HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)”, RFC 5869, to appear.

28. Krawczyk, H., “Cryptographic Extraction and Key Derivation: The HKDF
Scheme” (full version of this paper). http://eprint.iacr.org/2010/264

29. Ueli M. Maurer, Renato Renner, Clemens Holenstein: Indifferentiability, Impossi-
bility Results on Reductions, and Applications to the Random Oracle Methodology.
TCC 2004: 21-39.

30. N. Nisan and A. Ta-Shma. “Extracting Randomness: A Survey and New Construc-
tions”, JCSS, 58:148–173, 1999.

31. N. Nisan and D. Zuckerman. “Randomness is linear in space”, J. Comput. Syst.
Sci., 52(1):43–52, 1996.

32. NIST Special Publication (SP) 800-56A, Recommendation for Pair-Wise Key Es-
tablishment Schemes Using Discrete Logarithm Cryptography, March 2006.

33. NIST Special Publication (SP) 800-108, Recommendation for Key Derivation Us-
ing Pseudorandom Functions. October 2009.

34. S. Patel and G. Sundaram. “An Efficient Discrete Log Pseudo Random Generator”,
Crypto ’98, LNCS No. 1462, pages 304–317, 1998.

35. Jaikumar Radhakrishnan and Amnon Ta-Shma. “Tight bounds for depth-two su-
perconcentrators,” SIAM J. Discrete Math. 13(1): 2-24 (2000).

36. R. Renner and S. Wolf. “Smooth Renyi entropy and applications.” Proceedings of
IEEE International Symposium on Information Theory, 2004.

37. R. Renner and S. Wolf. “Simple and tight bounds for information reconciliation
and privacy amplification.” ASIACRYPT 2005.

38. R. Shaltiel. “Recent developments in Extractors”, Bulletin of the European As-
sociation for Theoretical Computer Science, Volume 77, June 2002, pages 67-95.
Available at: http://www.wisdom.weizmann.ac.il/˜ronens/papers/survey.ps

39. Douglas R. Stinson: Universal Hashing and Authentication Codes. Des. Codes
Cryptography 4(4): 369-380 (1994).

40. Frances F. Yao, Yiqun Lisa Yin, “Design and Analysis of Password-Based Key
Derivation Functions,” CT-RSA 2005.

A Background Definitions

In this section we recall basic formal definitions for some of the notions
used throughout this work.

Notation. In the sequel X and Y denote two (arbitrary) probability
distributions over a common support set A; X and Y denote random
variables drawn from X and Y, respectively.

Definition 10. We say that probability distributions X and Y have sta-
tistical distance δ (or are δ-close) if

∑
a∈A |Prob(X = a)−Prob(Y = a)| ≤

δ.

20

Definition 11. An algorithm D is an ε-distinguisher between distribu-
tions X and Y if |Prob(D(X) = 1)− Prob(D(Y) = 1| < ε.

We note that two distributions X and Y are δ-close iff there is no ε-
distinguisher between X and Y for ε > δ.

By restricting the computational power of the distinguisher in the
above definition one obtains the following well-known definition of “com-
putational indistinguishability” [18] (we formulate definitions using the
“concrete security” (t, ε) approach as a non-asymptotic alternative to the
classical polynomial-time treatment; we also take the liberty of omitting
the (t, ε) notation when appropriate).

Definition 12. Two probability distributions X , Y are (t, ε)-computationally
indistinguishable if there is no ε-distinguisher between X and Y that runs
in time t.

Definition 13. A probability distribution X over the set {0, 1}n is called
(t, ε)-pseudorandom if it is (t, ε)-computationally indistinguishable from
the uniform distribution over {0, 1}n.

Next we recall the definition of security for a variable-length output
pseudorandom function family. Such a family consists of a collection of
keyed functions which on input a key κ, an input c and a length parameter
`, outputs ` bits.

Definition 14. A variable-length output pseudorandom function family
PRF∗ is (t, q, ε)-secure if no attacker A running in time t and making at
most q queries can win the following distinguishing game with probability
larger than 1/2 + ε:

1. For i = 1, . . . , q′ ≤ q: A chooses arbitrary values ci, `i and receives the
value PRF∗(κ, ci, `i) (queries by A are adaptive, i.e., each query may
depend on the responses to previous ones).

2. A chooses values c and ` such that c /∈ {c1, . . . , cq}.
3. A bit b ∈R {0, 1} is chosen at random. If b = 0, A is provided with

the output of PRF∗(κ, c, `), else A is given a random string of ` bits.
4. Step 4 is repeated for up to q − q′ queries.
5. A outputs a bit b′ ∈ {0, 1}. It wins if b′ = b.

21

