
Secure Multiparty Computation with
Minimal Interaction

Yuval Ishai1?, Eyal Kushilevitz2??, and Anat Paskin2

1 Computer Science Department, Technion and UCLA (yuvali@cs.technion.ac.il)
2 Computer Science Department, Technion ({eyalk,anatp}@cs.technion.ac.il)

Abstract. We revisit the question of secure multiparty computation (MPC) with
two rounds of interaction. It was previously shown by Gennaro et al. (Crypto
2002) that 3 or more communication rounds are necessary for general MPC proto-
cols with guaranteed output delivery, assuming that there may be t ≥ 2 corrupted
parties. This negative result holds regardless of the total number of parties, even
if broadcast is allowed in each round, and even if only fairness is required. We
complement this negative result by presenting matching positive results.
Our first main result is that if only one party may be corrupted, then n ≥ 5 par-
ties can securely compute any function of their inputs using only two rounds of
interaction over secure point-to-point channels (without broadcast or any addi-
tional setup). The protocol makes a black-box use of a pseudorandom generator,
or alternatively can offer unconditional security for functionalities in NC1.
We also prove a similar result in a client-server setting, where there are m ≥ 2
clients who hold inputs and should receive outputs, and n additional servers with
no inputs and outputs. For this setting, we obtain a general MPC protocol which
requires a single message from each client to each server, followed by a single
message from each server to each client. The protocol is secure against a single
corrupted client and against coalitions of t < n/3 corrupted servers.
The above protocols guarantee output delivery and fairness. Our second main
result shows that under a relaxed notion of security, allowing the adversary to se-
lectively decide (after learning its own outputs) which honest parties will receive
their (correct) output, there is a general 2-round MPC protocol which tolerates
t < n/3 corrupted parties. This protocol relies on the existence of a pseudoran-
dom generator in NC1 (which is implied by standard cryptographic assumptions),
or alternatively can offer unconditional security for functionalities in NC1.

Key Words: Secure multiparty computation, round complexity.

1 Introduction

This work continues the study of the round complexity of secure multiparty compu-
tation (MPC) [53,29,9,13]. Consider the following motivating scenario. Two or more
employees wish to take a vote on some sensitive issue and let their manager only learn
? Supported in part by ISF grant 1310/06, BSF grant 2008411 and NSF grants 0830803,

0716835, 0627781.
?? Work done in part while visiting UCLA. Supported in part by ISF grant 1310/06 and BSF

grant 2008411.

whether a majority of the employees voted “yes”. Given an external trusted server, we
have the following minimalist protocol: each employee sends her vote to the server,
who computes the result and sends it to the manager.

When no single server can be completely trusted, one can employ an MPC protocol
involving the employees, the manager, and (possibly) additional servers. A practical
disadvantage of MPC protocols from the literature that offer security against malicious
parties is that they involve a substantial amount of interaction. This interaction includes
3 or more communication rounds, of which at least one requires broadcast messages.

The question we consider is whether it is possible to obtain protocols with only two
rounds of interaction, which resemble the minimal interaction pattern of the centralized
trusted server solution described above. That is, we would like to employ several un-
trusted servers instead of a single trusted server, but still require each employee to only
send a single message to each server and each server to only send a single message
to the manager. (All messages are sent over secure point-to-point channels, without
relying on a broadcast channel or any further setup assumptions.)

In a more standard MPC setting, where there are n parties who may contribute
inputs and expect to receive outputs, the corresponding goal is to obtain MPC protocols
which involve only two rounds of point-to-point communication between the parties.

The above goal may seem too ambitious. In particular:

– Broadcast is a special case of general MPC, and implementing broadcast over se-
cure point-to-point channels generally requires more than two rounds [23].

– Even if a free use of broadcast messages is allowed in each round, it is known
that three or more communication rounds are necessary for general MPC protocols
which tolerate t ≥ 2 corrupted parties and guarantee output delivery, regardless of
the total number of parties [26].

However, neither of the above limitations rules out the possibility of realizing our
goal in the case of a single corrupted party, even when the protocols should guarantee
output delivery (and in particular fairness). This gives rise to the following question:

Question 1. Are there general MPC protocols (i.e., ones that apply to general function-
alities with n inputs and n outputs) that resist a single malicious party, guarantee output
delivery, and require only two rounds of communication over point-to-point channels?

The above question may be highly relevant to real world situations where the num-
ber of parties is small and the existence of two or more corrupted parties is unlikely.

Another possibility left open by the above negative results is to tolerate t > 1
malicious parties by settling for a weaker notion of security against malicious parties. A
common relaxation is to allow the adversary who controls the malicious parties to abort
the protocol. There are several flavors of “security with abort.” The standard notion from
the literature (cf. [28]) allows the adversary to first learn the output, and then decide
whether to (1) have the correct outputs delivered to the uncorrupted parties, or (2) abort
the protocol and have all uncorrupted parties output a special abort symbol “⊥”.

Unfortunately, the latter notion of security is not liberal enough to get around the
first negative result. But it turns out that a further relaxation of this notion, which we
refer to as security with selective abort, is not ruled out by either of the above negative

results. This notion, introduced in [30], differs from the standard notion of security
with abort in that it allows the adversary (after learning its own outputs) to individually
decide for each uncorrupted party whether this party will obtain its correct output or
will output “⊥”.1 Indeed, it was shown in [30] that two rounds of communication over
point-to-point channels are sufficient to realize broadcast under this notion, with an
arbitrary number of corrupted parties. This gives rise to the following question:

Question 2. Are there general MPC protocols that require only two rounds of commu-
nication over point-to-point channels and provide security with selective abort against
t > 1 malicious parties?

We note that both of the above questions are open even if broadcast messages are
allowed in each of the two rounds.

1.1 Our Results

We answer both questions affirmatively, complementing the negative results in this area
with matching positive results.

– Our first main result answers the first question by showing that if only one party can
be corrupted, then n ≥ 5 parties can securely compute any function of their inputs
with guaranteed output delivery by using only two rounds of interaction over secure
point-to-point channels (without broadcast or any additional setup). The protocol
can provide computational security for general functionalities (assuming one-way
functions exist) or statistical security for functionalities in NC1.

– We also prove a similar result in the client-server setting (described in the initial
motivating example), where there are m ≥ 2 clients who hold inputs and/or should
receive outputs, and n additional servers with no inputs and outputs. For this setting,
we obtain a general MPC protocol which requires a single message from each client
to each server, followed by a single message from each server to each client. The
protocol is secure against a single corrupted client and against coalitions of t < n/3
corrupted servers,2 and guarantees output delivery to the clients. We note that the
proofs of the negative results from [26] apply to this setting as well, ruling out
protocols that resist a coalition of a client and a server.

As is typically the case for protocols in the setting of an honest majority, the above
protocols are in fact UC-secure [12,43]. Moreover, similarly to the constant-round pro-
tocols from [21,46] (and in contrast to the protocol from [7]), the general version of the
above protocols can provide computational security while making only a black-box use

1 Our notions of “security with abort” and “security with selective abort” correspond to the
notions of “security with unanimous abort and no fairness” and “security with abort and no
fairness” from [30]. We note that the negative result from [26] can be extended to rule out the
possibility of achieving fairness in our setting with t > 1.

2 Achieving the latter threshold requires the complexity of the protocol to grow exponentially
in the number of servers n. When t = O(n1/2 logn), the complexity of the protocol can be
made polynomial in n.

of a pseudorandom generator (PRG). This suggests that the protocols may be suitable
for practical implementations.

Our second main result answers the second question, showing that by settling for
security with selective abort, one can tolerate a constant fraction of corrupted parties:

– There is a general 2-round MPC protocol over secure point-to-point channels which
is secure with selective abort against t < n/3 malicious parties. The protocol can
provide computational security for general functionalities (assuming there is a PRG
in NC1, which is implied by most standard cryptographic assumptions [2]) or sta-
tistical security for functionalities in NC1.

We note that the bound t < n/3 matches the security threshold of the best known
2-round protocols in the semi-honest model [9,7,33]. Thus, the above result provides
security against malicious parties without any loss in round complexity or resilience. In
the case of security against malicious parties, previous constant-round MPC protocols
(e.g., the ones from [7,25,39]) require at least 3 rounds using broadcast, or at least 4
rounds over point-to-point channels using a 2-round implementation of broadcast with
selective abort [30].

Our results are motivated not only by the quantitative goal of minimizing the amount
of interaction, but also by several qualitative advantages of 2-round protocols over pro-
tocols with three or more rounds. In a client-server setting, a 2-round protocol does not
require servers to communicate with each other or even to know which other servers are
employed. The minimal interaction pattern also allows to break the secure computation
process into two non-interactive stages of input contribution and output delivery. These
stages can be performed independently of each other in an asynchronous manner, al-
lowing clients to go online only when their inputs change, and continue to (passively)
receive periodic outputs while inputs of other parties may change. Finally, their mini-
mal interaction pattern allows for a simpler and more direct security analysis than that
of comparable protocols from the literature with security against malicious parties.

1.2 Related Work

The round complexity of secure computation has been the subject of intense study. In
the 2-party setting, 2-round protocols (in different security models and under various
setup assumptions) were given in [53,52,10,31,15]. Constant-round 2-party protocols
with security against malicious parties were given in [45,41,46,37,35]. In [41] it was
shown that the optimal round complexity for secure 2-party computation without setup
is 5 (where the negative result is restricted to protocols with black-box simulation).

More relevant to our work is previous work on the round complexity of MPC with an
honest majority and guaranteed output delivery. In this setting, constant-round protocols
were given in [4,7,6,5,33,25,17,34,19,21,39,40,16]. In particular, it was shown in [25]
that 3 rounds are sufficient for general secure computation with t = Ω(n) malicious
parties, where one of the rounds requires broadcast. Since broadcast in the presence of
a single malicious party can be easily done in two rounds, this yields 4-round protocols
in our setting. The question of minimizing the exact round complexity of MPC over
point-to-point networks was explicitly considered in [39,40]. In contrast to the present
work, the focus of these works is on obtaining nearly optimal resilience.

Two-round protocols with guaranteed output delivery were given in [26] for spe-
cific functionalities, and for general functionalities in [19,16]. However, the protocols
from [19,16] rely on broadcast as well as setup in the form of correlated randomness.

The round complexity of verifiable secret sharing (VSS) was studied in [25,24,40,50].
Most relevant to the present work is the existence of a 1-round VSS protocol which tol-
erates a single corrupted party [25]. However, it is not clear how to use this VSS protocol
for the construction of two-round MPC protocols. The recent work on the round com-
plexity of statistical VSS [50] is also of relevance to our work. In the case where n = 4
and t = 1, this work gives a VSS protocol in which both the sharing phase and the
reconstruction phase require two rounds. Assuming that two rounds of reconstruction
are indeed necessary (which is left open by [50]), the number of parties in the statistical
variant of our first main result is optimal. (Indeed, 4-party VSS with a single round of
reconstruction reduces to 4-party MPC of a linear function, which is in NC1.)

Finally, a non-interactive model for secure computation, referred to as the private
simultaneous messages (PSM) model, was suggested in [22] and further studied in [32].
In this model, two or more parties hold inputs as well as a shared secret random string.
The parties privately communicate to an external referee some predetermined function
of their inputs by simultaneously sending messages to the referee. Protocols for the
PSM model serve as central building blocks in our constructions. However, the model
of [22] falls short of our goal in that it requires setup in the form of shared private
randomness, it cannot deliver outputs to some of the parties, and does not guarantee
output delivery in the presence of malicious parties.

Organization. Following some preliminaries (Section 2), Section 3 presents a 2-round
protocol in the client-server model. Our first main result (a fully secure protocol for
t = 1 and n ≥ 5) is presented in Section 4 and our second main result (security with
selective abort for t < n/3) in Section 5. For lack of space, some of the definitions and
protocols, as well as most of the proofs, are deferred to the full version.

2 Preliminaries

2.1 Secure Computation

We consider n-party protocols that involve two rounds of synchronous communication
over secure point-to-point channels. All of our protocols are secure against rushing,
adaptive adversaries, who may corrupt at most t parties for some specified security
threshold t. See [11,12,28] and the full version for more complete definitions.

In addition to the standard simulation-based notions of full security (with guaran-
teed output delivery) and security with abort, we consider several other relaxed notions
of security. Security in the semi-honest model is defined similarly to the standard defi-
nition, except that the adversary cannot modify the behavior of corrupted parties (only
observe their secrets). Privacy is also the same as in the standard definition, except that
the environment can only obtain outputs from the adversary (or simulator) and not from
the uncorrupted parties. Intuitively, this only ensures that the adversary does not learn
anything about the inputs of uncorrupted parties beyond what it could have learned by

submitting to the ideal functionality some (distribution over) valid inputs. Privacy, how-
ever, does not guarantee any form of correctness. Privacy with knowledge of outputs is
similar to privacy except that the adversary is also required to “know” the (possibly
incorrect) outputs of the honest parties. This notion is defined similarly to full security
(in particular, the environment receives outputs from both the simulator and the honest
parties), with the difference that the ideal functionality first delivers the corrupted par-
ties’ output to the simulator, and then receives from the simulator an output to deliver
to each of the uncorrupted parties. Finally, security with selective abort is defined sim-
ilarly to security with abort, except that the simulator can decide for each uncorrupted
party whether this party will receive its output or ⊥.

2.2 The PSM Model

A private simultaneous messages (PSM) protocol [22] is a non-interactive protocol in-
volving m parties Pi, who share a common random string r, and an external referee
who has no access to r. In such a protocol, each party sends a single message to the
referee based on its input xi and r. These m messages should allow the referee to com-
pute some function of the inputs without revealing any additional information about
the inputs. Formally, a PSM protocol for a function f : {0, 1}`×m → {0, 1}∗ is de-
fined by a randomness length parameter R(`), m message algorithms A1, ..., Am and a
reconstruction algorithm Rec, such that the following requirements hold.

– Correctness: for every input length `, all x1, ..., xm ∈ {0, 1}`, and all r ∈ {0, 1}R(`),
we have Rec(A1(x1, r), ..., Am(xm, r)) = f(x1, ..., xm).

– Privacy: there is a simulator S such that, for all x1, ..., xm of length `, the distribu-
tion S(1`, f(x1, ..., xm)) is indistinguishable from (A1(x1, r), ..., Am(xm, r)).

We consider either perfect or computational privacy, depending on the notion of indis-
tinguishability. (For simplicity, we use the input length ` also as security parameter, as
in [28]; this is without loss of generality, by padding inputs to the required length.)

A robust PSM protocol should additionally guarantee that even if a subset of the m
parties is malicious, the protocol still satisfies a notion of “security with abort.” That is,
the effect of the messages sent by corrupted parties on the output can be simulated by
either inputting to f a valid set of inputs (independently of the honest parties’ inputs)
or by making the referee abort. This is formalized as follows.

– Statistical robustness: For any subset T ⊂ [m], there is an efficient (black-box)
simulator S which, given access to the common r and to the messages sent by
(possibly malicious) parties P ∗i , i ∈ T , can generate a distribution x∗T over xi, i ∈
T , such that the output of Rec on inputs AT (x

∗
T , r), AT̄ (xT̄ , r) is statistically close

to the “real-world” output of Rec when receiving messages from the m parties on a
randomly chosen r. The latter real-world output is defined by picking r at random,
letting party Pi pick a message according to Ai, if i 6∈ T , and according to P ∗i
for i ∈ T , and applying Rec to the m messages. In this definition, we allow S to
produce a special symbol ⊥ (indicating “abort”) on behalf of some party P ∗i , in
which case Rec outputs ⊥ as well.

The following theorem summarizes some known facts about PSM protocols that are
relevant to our work.

Theorem 1. [22] (i) For any f ∈ NC1, there is a polynomial-time, perfectly private
and statistically robust PSM protocol. (ii) For any polynomial-time computable f , there
is a polynomial-time, computationally private and statistically robust PSM protocol
which uses any pseudorandom generator as a black box.

For self-containment, the full version contains a full description and proof of the
robust variants, which are only sketched in [22, Appendix C].

2.3 Secret Sharing

An (n, t)-threshold secret sharing scheme, also referred to as a t-private secret sharing
scheme, is an n-party secret sharing scheme in which every t parties learn nothing
about the secret, and every t+ 1 parties can jointly reconstruct it. In this work, we rely
on variants of several standard secret sharing schemes, such as Shamir’s scheme [49], a
bivariate version of Shamir’s scheme [9], and the CNF scheme [36].

Recall that in Shamir’s scheme over a finite field F (where |F| > n), a secret s ∈ F
is shared by picking a random polynomial p of degree (at most) t over F such that
p(0) = s, and distributing to each party Pi the value of p on a distinct field element
associated with this party. In the bivariate version of Shamir’s scheme, Pi receives the
i’th row and column (from an n× n matrix of evaluations) of a random bivariate poly-
nomial p(x, y) of degree at most t in each variable such that p(0, 0) = s. In the CNF
scheme over an Abelian group G, a secret s ∈ G is shared by first additively breaking
it into

(
n
t

)
shares, a share per size-t subset of [n], and then distributing to Pi all shares

corresponding those subsets T such that i /∈ T .
We will refer to a few abstract properties of secret sharing schemes which will

be useful for our protocols. In a d-multiplicative secret sharing scheme over F, each
party should be able to apply a local computation (denoted MULT) on its shares of
d secrets, such that the outcomes of the n local computations always add up to the
product of the d secrets (where addition and multiplication are in F). The standard
notion of multiplicative secret sharing from [20] corresponds to the case d = 2. The
three concrete schemes, mentioned above, are d-multiplicative when n > dt.

Another property we will rely on is pairwise verifiability. This property has been im-
plicitly used in the context of verifiable secret sharing [9,20,25]. In a pairwise verifiable
scheme, checking that the shares are globally consistent (with some sharing of some
secret) reduces to pairwise equality tests between values that are locally computed by
pairs of parties. More concretely, each pair i, j defines an equality test between a value
computed from the share of Pi and a value computed from the share of Pj . These

(
n
2

)
equality tests should have the property that for any subset T of two or more parties, if
all
(|T |

2

)
tests involving parties in T pass then the shares given to T are consistent with

some valid sharing of a secret. The CNF and bivariate Shamir schemes are pairwise
verifiable. For instance, in the CNF scheme, each pair of parties compares the

(
n−2
t

)
additive shares they should have in common. See the full version for more details, in-
cluding a construction of an efficient secret sharing scheme over the binary field F2

which is both d-multiplicative and pairwise verifiable.

One last property we will need is efficient extendability. A secret sharing scheme
is efficiently extendable, if for any subset T ⊆ [n], it is possible to efficiently check
whether the (purported) shares to T are consistent with a valid sharing of some secret
s. Additionally, in case the shares are consistent, it is possible to efficiently sample a
(full) sharing of some secret which is consistent with that partial sharing. This property
is satisfied, in particular, by the schemes mentioned above, as well as any so-called
“linear” secret sharing scheme.

3 A Protocol in the Client-Server Model

In this section, we present a two-round protocol which operates in a setting where the
parties consist of m clients and n servers. The clients provide the inputs to the protocol
(in its first round) and receive its output (in its second round) but the “computation”
itself is performed by the servers alone. Our construction provides security against any
adversary that corrupts either a single client or at most t servers. We refer to this kind of
security as (1, t)-security3. The protocol in this setting illustrates some of the techniques
we use throughout the paper, and it can be viewed as a warmup towards our main re-
sults; hence, we do not present here the strongest statement (e.g., in terms of resilience)
and defer various improvements to the full version. Specifically, for any functionality
f ∈ POLY, we present a 2-round (1, t)-secure MPC protocols (with guaranteed output
delivery) for m ≥ 2 clients and n = Θ(t3) servers. The protocol makes a black-box
use of a PRG, or alternatively can provide unconditional security for f ∈ NC1.

Tools. Our protocol relies on the following building blocks:

1. An (n, t)-secret sharing scheme for which it is possible to check in NC1 whether a
set of more than t shares is consistent with some valid secret. For instance, Shamir’s
scheme satisfies this requirement. Unlike the typical use of secret sharing in the
context of MPC, our constructions do not rely on linearity or multiplication prop-
erty of the secret sharing scheme.

2. A set system T ⊆ 2[n] of size ` such that (a) T is t-resilient, meaning that every
B ⊆ [n] of size t avoids at least `/2 + 1 sets; and (b) T is (t + 1)-pairwise inter-
secting, meaning that for all T1, T2 ⊆ T we have |T1 ∩ T2| ≥ t + 1. See the full
version for a construction with n = Θ(t3), ` = poly(n).

3. A PSM protocol, with the best possible privacy (according to Theorem 1, either
perfect or computational) for some functions f ′ depending on f (see below).

Perfect security with certified randomness. We start with a protocol for m ≥ 2 clients
and n = Θ(t3) servers, denoted ΠR, that works in a scenario where each set of servers
T ∈ T , shares a common random string rT (obtained in a trusted setup phase). We
explain how to get rid of this assumption later.

– Round 1: Each Client i secret-shares its input xi among the n servers using the
t-private secret sharing scheme.

3 Recall that the impossibility results of [26] imply that general 2-round protocols in this setting
tolerating a coalition of a client and a server are impossible.

– Round 2: For each T ∈ T and i ∈ [m], the set T runs a PSM protocol with the
shares s received from the clients in Round 1 as inputs, rT as the common random-
ness, and Client i as the referee (i.e., one message is sent from each server in T to
Client i). This PSM protocol computes the following functionality f ′i :
- If all shares are consistent with some input value x, then f ′i(s) = f(x).
- Else, if the shares of a single Client i are inconsistent, let f ′i(s) = ⊥.
- Otherwise, let j be the smallest such that the shares of Client j are inconsistent.
Then, f ′i(s) is an “accusation” of Client j; i.e., a pair (j, f(x′)), where x′ is ob-
tained from x by replacing xj with 0.

– Reconstruction: Each Client i computes its output as follows: If all sets T blame
some Client j, then output the (necessarily unanimous) “backup” output f(x′)
given by the PSM protocols. Otherwise, output the majority of the outputs reported
by non-blaming sets T .

Proof idea. If the adversary corrupts at most t servers (and no client), then privacy
follows from the use of a secret sharing scheme (with threshold t). By the t-resilience
of the set system, a majority of the sets T ∈ T contain no corrupted server and thus
will not blame any client and will output the correct value f(x).

If the adversary corrupts Client j, then all servers are honest. Every set T ∈ T either
does not blame any client or blames Client j. Consider two possible cases: (a) Client j
makes all sets T observe inconsistency: in such a case, Client j receives ⊥ from all
T and hence does not learn any information; moreover, all honest clients will output
the same backup output f(x′). (b) Client j makes some subsets T observe consistent
shares: since the intersection of every two subsets in T is of size at least t + 1 then,
using the (t+ 1) reconstruction threshold of the secret sharing scheme, every two non-
blaming sets must agree on the same input x. This means that Client j only learns f(x).
Moreover, all other (honest) clients will receive the actual output f(x) from at least
one non-blaming set T and, as discussed above, all outputs from non-blaming sets must
agree.

Observe that the fact that a set T uses the same random string rT in all m PSM
instances it participates in does not compromise privacy. This is because in each of
them the output goes to a different client and only a single client may be corrupted.4

Lemma 1. ΠR is a 2-round, (1, t)-secure MPC protocol for m > 1 clients and n =
Θ(t3) servers, assuming that the servers in each set T ∈ T have access to a common
random string rT (unknown to the clients). The security can be made perfect for f ∈
NC1, and computational for f ∈ POLY by making a black-box use of a PRG.

Note that the claim about f ∈ NC1 holds since the functions f ′ evaluated by the PSM
sub-protocols are in NC1 whenever f is.

Removing the certified randomness assumption. If we have at least 4 clients, we can let
each Client i generate its own candidate PSM randomness riT and send it to all servers
in T . Each PSM protocol, corresponding to some set T , is executed using each of these

4 Alternatively, rT can be made sufficiently long so that the set T can use a distinct portion of
rT in each invocation of a PSM sub-protocol.

strings, where in the i-th invocation (using randomness riT) Client i receives no message
(otherwise, the privacy of the protocol could be compromised). The other clients receive
the original messages as prescribed by the PSM protocol. Upon reconstruction, Client i
lets the PSM output for a set T be the majority over the m− 1 PSM outputs it sees. We
observe that this approach preserves perfect security. If statistical (or computational)
security suffices, we can rely on 2 or 3 clients as well. Here, the high level idea is to
use a transformation as described for the case m ≥ 4, and let Client i authenticate
the consistency of the randomness rjT used in the j’th PSM protocol executed by set
T , using a random string it sent in Round 1. Upon reconstruction, each client only
considers the PSM executions which passed the authentication. Combining the above
discussion with Theorem 1, we obtain the following theorem.

Theorem 2. There exists a statistically (1, t)-secure 2-round general MPC protocol in
the client-server setting for m ≥ 2 clients and n = Θ(t3) servers. For f ∈ NC1, the
protocol is perfectly secure if m ≥ 4, and statistically secure otherwise. The protocol is
computationally secure for f ∈ POLY.

4 Full Security for t = 1

In this section, we return to the standard model where all parties may contribute inputs
and receive outputs. We present a 2-round protocol in this model for n ≥ 5 parties and
t = 1. This protocol uses some similar ideas to our basic client-server protocol above,
but it is different in the types of secret sharing scheme and set system that it employs.
Specifically, we use the following ingredients:

1. A 1-private pairwise verifiable secret sharing scheme (see Section 2.3). For sim-
plicity, we use here the CNF scheme, though one could use the bivariate version of
Shamir’s scheme for better efficiency. Recall that in the 1-private CNF scheme the
secret s is shared by first randomly breaking it into n additive parts s = s1+. . .+sn,
and then distributing each si to all parties except for party i. Here we can view a
secret as an element of Fm

2 .
2. A robust (n − 2)-party PSM protocol (see Section 2.2). In particular, such a PSM

protocol ensures that the effect of any single malicious party on the output can be
simulated in the ideal model (allowing the simulator to send “abort” to the func-
tionality).

3. A simple set system, consisting of the
(
n
2

)
sets Ti,j = [n] \ {i, j}. (Note that, for

n ≥ 5, we have |Ti,j | ≥ 3.)

Again, we assume for simplicity that members of each set Ti,j share common ran-
domness ri,j . Similarly to the client-server setting, this assumption can be eliminated
by letting 3 of the parties in Ti,j pick their candidate for ri,j and distributing it to the
parties in the set (in Round 1 of our protocol), and then letting Ti,j execute the PSM
sub-protocol (in Round 2) using each of the 3 candidates and sending the outputs to
Pi, Pj (which are not in the set); the final PSM output will be the majority of these
three outputs. Finally, for a graph G, let VC(G) denote the size of the minimal vertex
cover in G.

Our protocol proceeds as follows:

– Round 1: Each party Pk shares its input xk among all other parties using a 1-
private, (n − 1)-party CNF scheme (i.e., each party gets n − 2 out of the n − 1
additive shares of xk). In addition, to set up the consistency checks, each pair Pi, Pj

(i < j) generates a shared random pad si,j by having Pi pick such a pad and send
it to Pj .

– Round 2: For each “dealer” Pk, each pair Pi, Pj send the n − 3 additive shares
from Pk they should have in common, masked with the pad si,j , to all parties.5

Following this stage, each party Pi has an inconsistency graph Gi,k corresponding
to each dealer Pk (k 6= i), with node set [n] \ {k} and edge (j, l) if Pj , Pl report
inconsistent shares from Pk.
In addition, each set Ti,j invokes a robust PSM protocol whose inputs are all the
shares received (in Round 1) by the n − 2 parties in this set, and whose outputs to
Pi, Pj (which are not in Ti,j) are as follows:
- If all input shares are consistent with some input x, then both Pi, Pj receive v =
f(x).
- Else, if shares originating from exactly one Pk are inconsistent, then Pk gets ⊥
(in case k ∈ {i, j}) and the other party(s) get an “accusation” of Pk; namely, a pair
(k, x∗) where x∗ = (x1, . . . , xk−1, x

′
k, xk+1, . . . , xn). Here, each xj (for j 6= k) is

the protocol input recovered from the (consistent) shares and x′k = xk if the shares
of any n − 3 out of the n − 2 parties in Ti,j are consistent with each other and
x′k = 0 (a default value) otherwise.
- Else, if shares originating from more than one party are inconsistent, output ⊥.

– Reconstruction: Each party Pi uses the n − 1 inconsistency graphs Gi,k (k 6= i),
and the PSM outputs that it received, to compute its final output:
(a) If some inconsistency graph Gi,k has VC(Gi,k) ≥ 2 then the PSM output of
Ti,k is of the form (k, x∗); substitute x∗k by 0, to obtain x′, and output f(x′).
Else, (b) if some inconsistency graph Gi,k has a vertex cover {j} and at least 2
edges, consider the PSM outputs of Ti,j , Ti,k (assume that i 6= j; if i = j it is
enough to consider the output of Ti,k). If any of them outputs v of the form f(x)
then output v; otherwise, if the output is of the form (k, x∗), output f(x∗).
Else, (c) if some inconsistency graph Gi,k contains exactly one edge (j, j′), con-
sider the outputs of Ti,j , Ti,j′ (again, assume i /∈ {j, j′}), and use any of them
which is non-⊥ to extract the output (either directly, if the output is of the form
f(x), or f(x∗) from an output (k, x∗)).
Finally, (d) if all Gi,k’s are empty, find some Ti,j that outputs f(x) (with no accu-
sation), and output this value.

Intuitively, a dishonest party Pd may deviate from the protocol in very limited ways:
it may distribute inconsistent shares (in Round 1) which will be checked (in Round 2)
and will either be caught (if the inconsistency graph has VC larger than 1) or will be
“corrected” (either to a default value or to its original input, if the VC is of size at

5 This is similar to Round 2 of the 2-round VSS protocol of [25], except that we use point-to-
point communication instead of broadcast; note that, in our case, if the dealer is dishonest, then
all other parties are honest.

most 1). Pd may report false masked shares, for the input of some parties, but this will
result in very simple inconsistency graphs (with vertex cover of size 1) that can be
detected and fixed. And, finally, Pd may misbehave in the robust PSM sub-protocols (in
which it participates) but this has very limited influence on their output (recall that, for
sets in which Pd participates, it does not receive the output). A detailed analysis appears
in the full version. This proves:

Theorem 3. There exists a general, 2-round MPC protocol for n ≥ 5 parties which is
fully secure (with guaranteed output delivery) against a single malicious party. The pro-
tocol provides statistical security for functionalities in NC1 and computational security
for general functionalities by making a black-box use of a pseudorandom generator.

5 Security with Selective Abort

This section describes our second main result; namely, a 2-round protocol which achieves
security with selective abort against t < n/3 corruptions. This means that the adver-
sary, after learning its own outputs, can selectively decide which honest parties will
receive their (correct) output and which will output “⊥”. More precisely, we prove the
following theorem:

Theorem 4. There exists a general 2-round MPC protocol for n > 3t parties which
is t-secure, with selective abort. The protocol provides statistical security for function-
alities in NC1 and computational security for functionalities in POLY, assuming the
existence of a pseudorandom generator in NC1.

Our high-level approach is to apply a sequence of reductions, where the end protocol
we need to construct only satisfies the relaxed notion of “privacy with knowledge of
outputs”, described in Section 2, and only applies to vectors of degree-3 polynomials.
In particular,

1. We concentrate, without loss of generality, on functionalities which are determin-
istic with a public output.

2. We reduce (using unconditional one-time MACs) the secure evaluation of a func-
tion f ∈ POLY to a private evaluation, with knowledge of outputs, of a related
functionality f ′ ∈ POLY. The reduction is statistical, and if f ∈ NC1 then so is f ′.

3. We reduce the private evaluation with knowledge of outputs of a function f ′ ∈
POLY to a private evaluation with knowledge of outputs of a related functionality
f ′′, where f ′′ is a vector of degree-3 polynomials. The reduction (using [34]) is per-
fect for functions in NC1, and only computationally secure (using [2]) for general
functionalities in POLY.

4. We present a 2-round protocol that allows dt + 1 parties to evaluate a vector of
degree-d polynomials, for all d ≥ 1, and provides privacy with knowledge of out-
puts. In particular, for d = 3 the protocol requires n = 3t+ 1 parties.

In the following subsections, we describe steps 2–4 in detail.

5.1 A private protocol with knowledge of outputs

In this section, we present a 2-round protocol for degree-d polynomials which is private
with knowledge of outputs. Let p(x1, . . . , xm) be a multivariate polynomial over a finite
field F, of total degree d. Assume, without loss of generality, that the degree of each
monomial in p is exactly d.6 Hence, p can be written as p =

∑
g1≤...≤gd αg

∏d
l=1 xgl .

We start by describing a protocol for evaluating p with security in the semi-honest
model. (This protocol is similar to previous protocols from [9,33].) The protocol can
rely on any d-multiplicative secret sharing scheme overF. Recall that, in such a scheme,
each party should be able to apply a local computation MULT to the shares it holds of
some d secrets, to obtain an additive share of their product.

– Round 1: Each party Pi, i ∈ [n], shares every input xh it holds by computing
shares (sh1 , . . . , s

h
n), using the d-multiplicative scheme, and distributes them among

the parties. Pi also distributes random additive shares of 0; i.e., it sends to each Pj a
field element zji such that zj1, . . . , z

j
n are random subject to the restriction that they

sum up to 0.
– Round 2: Each party Pi, i ∈ [n], computes yi = pi(s

1
i , . . . , s

m
i)+

∑n
j=1 z

j
i , where

pi(s
1
i , . . . , s

m
i)
4
=
∑

g1≤...≤gd αgMULT(i, sg1i , . . . , s
gd
i). It sends yi to all parties.

– Outputs: Each party computes and outputs
∑n

i=1 yi which is equal to p(s1, . . . , sm),
as required.

We will refer to the above protocol as the “basic protocol”. The proof of correctness and
privacy in the semi-honest case are standard, and are omitted. Interestingly, this basic
protocol happens to be private with knowledge of outputs (but not secure) against ma-
licious parties for d ≤ 2, when using Shamir’s scheme as its underlying secret sharing
scheme. However, the following simple example demonstrates that the basic protocol is
not private against malicious parties already for d = 3. 7

Example 1. Consider 4 parties where only P1 is corrupted and the parties want to
compute the degree-3 polynomial x1x2x3 (party P4 has no input). We argue that,
when x3 = 0, party P1 can compute x2, contradicting the privacy requirement. Let
q2(z) = r2z + x2 and q3(z) = r3z be the polynomials used by P2, P3 (respectively)
to share their inputs. Their product is q(z) = r2r3z

2 + x2r3z. Note that the messages
sent by P1 to the other 3 parties in Round 1 can make P1 learn (in Round 2) an arbitrary
linear combination of the values of q(z) at 3 distinct points. Since the degree of p is at
most 2, this means that P1 can also learn an arbitrary linear combination of the coeffi-
cients of q. In particular, it can learn x2r3. This alone suffices to violate the privacy of
x2, because it can be used to distinguish with high probability between, say, the case
where x2 = 0 and the case x2 = 1.

6 Otherwise, replace each monomial m(x) of degree d′ < d by m(x) · xd−d′

0 , where x0 is a
dummy variable whose value is set to 1 (by using some fixed valid n-tuple of shares).

7 Note that degree-3 polynomials are “complete”, in the sense that they can be used to represent
every function, whereas degree-2 polynomials are not [33].

To prevent badly-formed shares from compromising privacy, we use the following
variant of conditional disclosure of secrets (CDS) [27] as a building block. This prim-
itive will allow an honest player to reveal a secret s subject to the condition that two
secret values a, b held by other two honest players are equal.

Definition 1. An MCDS (multiparty CDS) protocol is a protocol for n parties, which
include three distinct special parties S,A,B. The sender S holds a secret s, and parties
A,B hold inputs a, b (respectively). The protocol should satisfy the following properties
(as usual, the adversary is rushing).

1. If a = b, and A,B, S are honest, then all honest parties output s.
2. If a = b, and A,B are honest, then the adversary’s view is independent of a, even

conditioned on s.
3. If a 6= b, and A,B, S are honest, then the adversary’s view is independent of s,

even conditioned on a, b.

Note that there is no requirement when a 6= b and some of the special parties are
corrupted (e.g., a corrupted A may still learn s). To be useful for our purposes, an
MCDS protocol needs to have only two rounds, and also needs to satisfy the technical
requirement that the message sent by A and B in the first round do not depend on the
values a and b.

A simple MCDS protocol with the above properties may proceed as follows (see the
full version for a proof): In Round 1, partyA picks random independent values r, z ∈ F
and sends them toB, and party S sends s toA. In Round 2,A sends to each of the parties
mA = a · r − z + s and B sends mB = z − b · r. Each party outputs mA +mB .

An MCDS protocol as above will be used to compile the basic protocol for n =
dt + 1 semi-honest parties into a protocol Πpriv which is private against malicious
parties. For this, we instantiate the basic protocol with a d-multiplicative secret sharing
scheme which is also pairwise-verifiable and efficiently extendable (see Section 2.3).
More precisely, the parties run the basic protocol, and each party Pi masks its Round 2
message with a sum of random independent masks si,j,k,h, corresponding to a shared
input xh and a pair of parties Pj , Pk (not holding xh). In parallel, the MCDS protocol is
executed for revealing each pad si,j,k,h under the condition that the shares of xh given to
Pj andPk are consistent, as required by the pairwise verifiable scheme (where a, b in the
MCDS are values locally computed by Pj , Pk that should be equal by the corresponding
local check). Intuitively, this addresses the problem in Example 1 by ensuring that,
if a party sends inconsistent shares of one of its inputs to the honest parties, some
consistency check would fail (by pairwise-verifiability), and thus at least one random
mask is not “disclosed” to the adversary, and so the adversary learns nothing.

The resulting protocol Πpriv proceeds as follows:

– Round 1:
• Each party Pi, i ∈ [n] shares every input xh it holds by computing shares
(sh1 , . . . , s

h
n) and distributing them among the parties. Each Pi also sends to

each Pj a share zij where zi1, . . . , z
i
n form a random additive sharing of 0.

• Each triple of distinct parties Pi, Pj , Pk such that j < k runs, for each h ∈ [m]
such that xh is not held by {Pi, Pj , Pk}, Round 1 of the MCDS protocol (play-
ing the roles of S,A,B respectively, where all n parties receive the MCDS
output), with secret s = si,j,k,h, selected independently at random by Pi.

– Round 2:
• Each party Pi, i ∈ [n], computes yi = pi(s

1
i , . . . , s

m
i) +

∑n
j=1 z

j
i , where

pi(s
1
i , . . . , s

m
i)
4
=
∑

g1≤...≤gd∈[m] αgMULT(i, sg1i , . . . , s
gd
i). It sends y′i

4
= yi+∑

j,k,h si,j,k,h to all parties.
• Each triple of parties Pi, Pj , Pk runs Round 2 of their MCDS protocols for

each (relevant) xh, where a, b are the outputs of the relevant local computations
applied to shares of xh held by Pj , Pk which should be equal. Denote by sui,j,k,h
the output of Pu in this MCDS protocol.

– Outputs: Each party Pu computes
∑n

i=1 y
′
i −
∑

i,j,k,h s
u
i,j,k,h.

See the full version, for a proof of the following lemma.

Lemma 2. Suppose n = dt + 1. Then the protocol Πpriv, described above, computes
the degree-d polynomial p and satisfies statistical t-privacy with knowledge of outputs.

Remark 1. The above protocol can be easily generalized to support a larger number of
parties n > dt+1. This can be done by letting all parties share their inputs among only
the first dt + 1 parties in the first round, and letting only these dt + 1 parties reply to
all parties in the second round. A similar generalization applies to the other protocols
in this section.

Our protocols were described as if we need to evaluate a single polynomial. To
evaluate a vector of polynomials (which is actually required for our application), we
make the following observation. Both the basic semi-honest protocol and Πpriv can
be directly generalized to this case by running one copy of Round 1, except for the
additive shares od 0 that are distributed for each output, and then executing Round 2
separately for each polynomial (using the corresponding additive shares). The analysis
of the extended protocols is essentially the same. Combining Πpriv, instantiated with
bivariate Shamir, with the above discussion, we get the following lemma:

Lemma 3. For any d ≥ 1 and t ≥ 1, there exists a 2-round protocol for n = dt + 1
parties which evaluates a vector of polynomials of total degree d over a finite field F of
size |F| ≥ n, such that the protocol is statistically t-private with knowledge of outputs.

The transition from degree-3 polynomials to general functions f ∈ POLY is essen-
tially done by adapting known representations of general functions by degree-3 poly-
nomials [34,2]. That is, securely evaluating f(x1, . . . , xm) : {0, 1}m → {0, 1}∗ is re-
duced to securely evaluating a vector of randomized polynomials p(x1, . . . , xm, r1, . . . , rl)
of degree d = 3, over (any) finite field Fp. However, the reduction is not guaranteed to
work if the adversary shares a value of xi’s which is not in {0, 1}. If the secret domain
of the underlying secret sharing is F2, then the adversary is unable to share non-binary
values, and there is no problem. This is the case with the CNF scheme over F2, but
using (3t + 1, t)-CNF would result in exponential (in n) complexity for the protocol.
An alternative approach is to rely on (say) bivariate Shamir, but using a variant of the
above reduction from [14], applied to a function f ′ over Fm (rather than {0, 1}m) re-
lated to f , which is always consistent with f(x), for some x ∈ {0, 1}m. In particular,
f ′ ∈ NC1 if f ∈ NC1 and f ′ ∈ POLY if f ∈ POLY . Another solution is to devise
an efficient 3-multiplicative, pairwise-verifiable (3t+1)-party scheme overF2. See the
full version, for more details on both solutions. We obtain the following:

Lemma 4. Suppose there exists a PRG in NC1. Then, for any n-party functionality f ,
there exists a 2-round MPC protocol which is (computationally) t-private with knowl-
edge of outputs, assuming that n > 3t. Alternatively, the protocol can provide statistical
(and unconditional) privacy with knowledge of outputs for f ∈ NC1.

5.2 From privacy with knowledge of outputs to security with selective abort

The final step in our construction is a reduction from secure evaluation of functions with
selective abort to private evaluation with knowledge of outputs. For this, we make use
of unconditional MACs. Our transformation starts with a protocol Π ′ for evaluating
a single output function f , which is private with knowledge of outputs. We then use
Π ′ to evaluate an augmented (single output) functionality f ′, which computes f along
with n MACs on the output of f , where the i-th MAC uses a private key chosen by
party Pi at random. That is, f ′ takes an input x, and ki ∈ K from each party Pi, and
returns y = f(x) along with MAC(y, k1), . . . , MAC(y, kn). The protocol Π is obtained
by running Π ′ on f ′ and having each party Pi locally verify that the output y it gets is
consistent with the corresponding MAC. If so, then Pi outputs y; otherwise, it outputs
⊥. Intuitively, this is enough for getting security with selective abort since to make
an uncorrupted party output an inconsistent value, the adversary would have to find y′

with MAC(y′, k) = MAC(y, k) for a random unknown k and a known y, which can only
be done with negligible probability. A formal construction and a proof of Theorem 4
appear in the full version.

Acknowledgements. We thank the anonymous CRYPTO 2010 referees for helpful com-
ments and suggestions. We also would like the thank the third author’s husband, Beni,
for a lot of help on technical issues and for proofreading the paper.

References

1. N. Alon, M. Merritt, O. Reingold, G. Taubenfeld and R.N. Wright. Tight bounds for shared
memory systems accessed by Byzantine processes. In Journal of Distributed Comput-
ing,18(2): 99–109,2005.

2. B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing polyno-
mials and their applications. Computational Complexity, 15(2):115–162, 2006.

3. D.A. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. In Proc. 18th STOC, pp. 150–164. 1986.

4. J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant number
of rounds. In Proc. 8th ACM PODC, pp. 201–209. 1989.

5. D. Beaver. Minimal-Latency Secure Function Evaluation. In Eurocrypt ’00, pp. 335–350,
2000. LNCS No. 1807.

6. D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low communication
overhead (extended abstract). In Proc. of CRYPTO ’90.

7. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended
abstract). In Proc. 22nd STOC, pp. 503–513. 1990.

8. A. Beimel Secure Schemes for Secret Sharing and Key Distribution. Phd. thesis. Dept. of
Computer Science, 1996.

9. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Noncrypto-
graphic Fault-Tolerant Distributed Computations. Proc. 20th STOC88, pp. 1–10.

10. C. Cachin, J. Camenisch, J. Kilian, and J. Muller. One-round secure computation and secure
autonomous mobile agents. In Proceedings of ICALP’00, 2000.

11. R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1): 143–202, 2000.

12. R. Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols.cfik03 In FOCS, pp. 136–145, 2001.

13. D. Chaum, C. Crepeau, and I. Damgard. Multiparty Unconditionally Secure Protocols. In
Proc. 20th STOC88, pp. 11–19.

14. R. Cramer, S. Fehr, Y. Ishai, E. Kushilevitz: Efficient Multi-party Computation over Rings.
In Proc. EUROCRYPT 2003, pp. 596–613

15. S. G. Choi, A. Elbaz, A. Juels, T. Malkin, and M. Yung. Two-Party Computing with En-
crypted Data. In Proc. ASIACRYPT 2007, pp. 298–314.

16. S. G. Choi, A. Elbaz, T. Malkin, and M. Yung. Secure Multi-party Computation Minimizing
Online Rounds. In Proc. ASIACRYPT 2009, to appear.

17. R. Cramer and I. Damgård. Secure distributed linear algebra in a constant number of rounds.
In Proc. Crypto 2001.

18. R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty com-
putations with dishonest minority. In Eurocrypt ’99, pp. 311–326, 1999. LNCS No. 1592.

19. R. Cramer, I. Damgård, and Y. Ishai. Share conversion, pseudorandom secret-sharing and
applications to secure computation. In Proc. of second TCC, 2005.

20. R. Cramer, I. Damgård, U. M. Maurer. General Secure Multi-party Computation from any
Linear Secret-Sharing Scheme. EUROCRYPT 2000: 316–334

21. I. Damgård and Y. Ishai. Secure multiparty computation using a black-box pseudorandom
generator. In Proc. CRYPTO 2005.

22. U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation. In Proc. 26th
STOC, pp. 554–563. 1994.

23. M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive consistency.
Information Processing Letters, 14(4): 183–186, 1982.

24. M. Fitzi, J. A. Garay, S. Gollakota, C. P. Rangan, K. Srinathan. Round-Optimal and Efficient
Verifiable Secret Sharing. In Proc. TCC 2006, pp. 329–342.

25. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The Round Complexity of Verifiable
Secret Sharing and Secure Multicast. In Proc. 33th STOC. 2001.

26. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. On 2-Round Secure Multiparty Compu-
tation. In Proc. Crypto 2002, pp. 178–193.

27. Y. Gertner, Y. Ishai, E. Kushilevitz, T. Malkin. Protecting Data Privacy in Private Information
Retrieval Schemes. STOC 1998: 151–160

28. O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University
Press, 2004.

29. O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game. In Proc. 19th
STOC, pp. 218–229. 1987.

30. S. Goldwasser and Y. Lindell. Secure Multi-Party Computation without Agreement. J. Cryp-
tology 18(3), pp. 247–287, 2005.

31. O. Horvitz and J. Katz. Universally-Composable Two-Party Computation in Two Rounds.
In Proc. CRYPTO 2007, pp. 111–129.

32. Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with applications. In
ISTCS97, pp. 174–184, 1997.

33. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applica-
tions to round-efficient secure computation. In Proc. 41st FOCS, 2000.

34. Y. Ishai and E. Kushilevitz. Perfect Constant-Round Secure Computation via Perfect Ran-
domizing Polynomials. In Proc. ICALP ’02.

35. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding Cryptography on Oblivious Transfer -
Efficiently. In Proc. CRYPTO 2008, pp. 572–591.

36. M. Ito, A. Saito, T. Nishizeki Secret sharing scheme realizing general access structure.
Electronics and Communications in Japan, Part III: Fundamental Electronic Science, Volume
72 Issue 9, pp. 56–64.

37. S. Jarecki and V. Shmatikov. Efficient Two-Party Secure. Computation on Committed Inputs.
EUROCRYPT 2007, pp. 97–114.

38. M. Karchmer, and A. Wigderson. On Span Programs. Proceedings of the 8th Structures in
Complexity conference, pp. 102–111, 1993.

39. J. Katz and C.-Y. Koo. Round-Efficient Secure Computation in Point-to-Point Networks.
Proc. EUROCRYPT 2007, pp. 311–328.

40. J. Katz, C.-Y. Koo, R. Kumaresan. Improving the Round Complexity of VSS in Point-to-
Point Networks. Proc. ICALP 2008, pp. 499–510.

41. J. Katz and R. Ostrovsky. Round-Optimal Secure Two-Party Computation. Proc. CRYPTO
2004, pp. 335–354.

42. J. Katz, R. Ostrovsky, and A. Smith. Round Efficiency of Multi-party Computation with a
Dishonest Majority. In EUROCRYPT 2003, pp. 578–595.

43. E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure protocols and
security under composition. In STOC 2006, pp. 109–118. Full version: Cryptology ePrint
Archive, Report 2009/630.

44. L. Lamport, R.E. Shostack, and M. Pease. The Byzantine generals problem. ACM Trans.
Prog. Lang. and Systems, 4(3):382–401, 1982.

45. Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. In
Crypto ’01, pp. 171–189, 2001. LNCS No. 2139.

46. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the
presence of malicious adversaries. In Proc. EUROCRYPT 2007, pp. 52–78.

47. N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
48. R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In

Proc. STOC 2004, pp. 232–241.
49. A. Shamir How to share a secret. In Communications of the ACM 22, pp. 612–613.
50. A. Patra, A. Choudhary, T. Rabin, and C. P. Rangan. The Round Complexity of Verifiable

Secret Sharing Revisited. In Proc. CRYPTO 2009, pp. 487–504.
51. T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with Honest

Majority. In Proc. 21st STOC, pp. 73–85. 1989.
52. T. Sander, A. Young, and M. Yung. Non-Interactive CryptoComputing For NC1. In Proc.

40th FOCS, pp. 554–567. IEEE, 1999.
53. A. C-C. Yao. How to Generate and Exchange Secrets. In Proc. 27th FOCS, pp. 162–167.

IEEE, 1986.

	Secure Multiparty Computation with Minimal Interaction

