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Abstract Multiparty computation protocols have been known for more
than twenty years now, but due to their lack of efficiency their use is still
limited in real-world applications: the goal of this paper is the design
of efficient two and multi party computation protocols aimed to fill the
gap between theory and practice. We propose a new protocol to securely
evaluate reactive arithmetic circuits, that offers security against an active
adversary in the universally composable security framework. Instead of
the “do-and-compile” approach (where the parties use zero-knowledge
proofs to show that they are following the protocol) our key ingredient
is an efficient version of the “cut-and-choose” technique, that allow us to
achieve active security for just a (small) constant amount of work more
than for passive security.

1 Introduction

In multi party computation (MPC) a set of parties (P1, P2, . . . , Pn) owns some
private inputs (x1, x2, . . . , xn) and wants to compute some function f of these
inputs in such a way that the output z = f(x1, x2, . . . , xn) is correct and even if
n− 1 parties are corrupted and cooperate, they cannot learn more information
about the honest party’s input than what they can learn from their inputs and
the output of the computation.

The first solutions for this problem were given by Yao [Yao82] for the two
party case and by Goldreich, Micali and Wigderson [GMW87] for the multi party
case. Those solutions provide computational security: if we are willing to assume
that a majority of the parties are honest, information-theoretical secure solutions
were introduced by Ben-Or, Goldwasser and Widgerson [BGW88] and Chaum,
Crepeau and Damg̊ard: [CCD88]. An unexpected advantage of the latter kind of
protocols with respect to the former, is that information-theoretical secure pro-
tocols are more efficient than the computational secure one, and therefore have
been implemented and successfully used to solve real-world problems [BCD+09],
while protocols that are secure against a dishonest majority – and therefore con-
sider a more realistic threat model, and in particular can be used in the crucial
two-party setting – are still too cumbersome to be used in real life.

The goal of this paper is to fill this gap and design an efficient protocol for
arithmetic MPC secure against a dishonest majority.
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Another advantage of the protocols in [BGW88,CCD88] over the ones in
[Yao82,GMW87], is to provide security also in concurrent settings: when we run
an MPC protocol over an Internet-like network, we need to be sure that the
protocol remains secure also when other protocols are running over the network:
in particular, the adversary might use the information that he gets running
one protocol in order to break the security of the other one. The universally
composable (UC) security framework of [Can01] provides a strong definition
of security, and if a protocol is UC secure then we know that it’s going to
be secure also when arbitrarily composed with itself or other protocols. The
protocols of [BGW88,CCD88] are secure also in the UC sense, while the security
of [Yao82,GMW87] does not hold in the concurrent case.

We achieve the best of both worlds and present a truly efficient protocol that
can be implemented and used in real life, and that guarantees static UC security
against any dishonest majority. An earlier version of this protocol, described in
[Orl09], has already been implmenented and tested by Jakobsen, Makkes and
Nielsen in [JMN10], where timings for different level of security and circuit sizes
can be found.

The price to pay when designing protocols secure against any dishonest ma-
jority is high. First of all, it is clearly impossible to guarantee termination,
meaning that even if one single party leaves the protocol, the protocol is going
to abort. Also, it is not possible to guarantee fairness for general MPC [Cle86],
meaning that the adversary can see the output and then decide whether to let
the honest parties receive their output or not.

Our protocol requires a (small) constant amount of public key operations per
gate of the circuit. The protocol has a preprocessing flavor with a first (heavier)
preprocessing phase and a (lighter) on-line phase of actual computation. The
preprocessing phase is independent of the function to be computed and the
inputs.

Informal Theorem 1 Assuming semi-honest multiplication protocols and ho-
momorphic trapdoor commitment schemes, there exist a protocol for arithmetic
multi party computation that is UC secure against any dishonest majority.

– If n parties want to preprocess M multiplication gates with security 1− 2−s,
every party calls the multiplication protocol n(5M + 18s) times.

– In the on-line phase, 3 commitments are computed for each multiplication
gate.

State of the art: The first solution for MPC with dishonest majority in the UC
framework was given by Canetti, Lindell, Ostrovsky and Sahai [CLOS02]: while
their construction is an important feasibility result, the protocol is completely
impractical due to the use of generic zero-knowledge proofs.

Efficient solutions for MPC over Boolean circuits have been extensively in-
vestigated in the past years [LP07,LPS08,NO09,PSSW09]. For the case of arith-
metic computation, a step towards efficient solutions has been taken by Cramer,
Damg̊ard and Nielsen in [CDN01,DN03], based on threshold homomorphic en-
cryption: however efficient protocols for the distributed key generation phase are
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still lacking and the use of homomorphic encryption during the on-line compu-
tation makes these protocol impractical.

In a recent work Ishai, Prabhakaran and Sahai [IPS09], following the “MPC
in the head” approach of [IPS08], present a protocol for arithmetic computa-
tion with characteristics similar to ours, but where the constants involved are
significantly bigger. On the other hand, the focus of [IPS09] is on optimizing
the amortized asymptotic complexity, ignoring multiplicative constants and low-
order additive terms, whereas our goal is to optimize practical efficiency.

1.1 Main Ideas

Secret representation: We call a shared commitment a secret-shared value in
Zp between the parties: the sharing of a value a is represented by an additive
secret sharing of the value a and some randomness r, together with a public
homomorphic trapdoor commitment to Comm(a; r).

MPC with a trusted dealer: Suppose there exists a trusted dealer that pro-
vides the parties with random triplets of multiplicative shared commitments
Comm(a),Comm(b),Comm(c), with c = a · b, and additive sharings of the open-
ings. We will call these commitments to random multiplications together with
the sharing of their openings multiplicative triplets or triplets from now on.

Given access to this trusted dealer, the parties can efficiently compute any
arithmetic circuit over the field: given that shared commitments are linear (the
commitments are homomorphic and the openings additively shared), it is possi-
ble to evaluate additions without any interaction. Using circuit derandomization
from [Bea91], it is possible to evaluate a multiplication in the circuit using one
of the preprocessed triplets.

The resulting protocol is extremely efficient as the interaction is limited to
the opening of a triplets of commitments for every multiplication gate in the
circuit, and some local computation. As for security, n − 1 corrupted parties
have no information about the honest party’s inputs, and cannot force the com-
putation to output the wrong value without breaking the binding property of
the commitment scheme.

Implementing the trusted dealer: The main challenge of this paper is to im-
plement the trusted dealer i.e., to generate the triplets in an efficient way. We
start from any two party multiplication protocol that satisfies strong semi-honest
security. This could be done using homomorphic encryption, OT, or other cryp-
tographic assumptions, see for instance [IPS09]. Intuitively, a protocol is strongly
secure against a semi-honest adversary if 1) the security is guaranteed for any
choice of the corrupted parties’ randomness and 2) the view of the protocol com-
mits the adversary to his randomness and given the view and the randomness it
is possible to verify whether any party deviated from the protocol.1

1 Most “natural” multiplication protocols satisfy these requirement. If not, they can
be easily modified to do that.



4

The main challenge now is to turn this semi-honest protocol into a protocol
with security against a malicious adversary in the UC setting. In order to do so,
we will employ a kind of cut-and-choose technique reminiscent of the one from
[NO09], that works as follow:

1. First, many random triplets are created.
2. Then, a fraction (say half) of the triplets are checked to detect cheating

attempts. The parties randomly select a subset of the generated triplets and
disclose the randomness that they used during the multiplication protocol.
If any cheating is detected the protocol aborts, otherwise the parties proceed
to the next step.

3. If the test goes through, we know that with high probability the adversary
didn’t cheat in most of the executions of the multiplication protocol. Given
that any triplet is checked with probability 1/2, if the adversary cheats in the
generation of s triplets the cheating will be detected during the test except
with probability 2−s. So the honest parties can reasonably assume that if the
test goes through there are no more than, say 80, triplets that were generated
maliciously among the untested ones. For this informal description let’s call
a triplet good if it was honestly generated, and bad if it was maliciously
generated. Given that the protocol to generate the triplets is semi-honest
secure, a good triplet will satisfy correctness (c = a · b) and privacy (a, b are
uniformly random in the view of the adversary), while a bad triplet might
nor be correct nor private.

4. The triplets are checked for correctness: they are paired two-by-two, and a
sanity-check is performed. If any bad triplet is found, the protocol aborts,
otherwise we know that all the triplets are correct i.e. for every triplets it
holds that c = a · b. Every check “burns” one of the two triplets.

5. At this point we know that the triplets are correct, but still the adversary
might have some extra knowledge about some of the honest parties’ shares:
So we combine the remaining triplets in such a way that we can “distill” M
fully private triplets from a set of O(M + s) triplets, where s of them might
not be private. The way the triplets are combined can be seen as a new and
unexpected application of packed Shamir’s secret sharing [FY92].

6. The last step to achieve UC security is, informally, to ask every party to
prove knowledge of their shares — thus ensuring input independence. To
do that, the parties generate some random homomorphic UC commitments,
and open the differences of the triplets and those commitments. Opening the
differences between those commitments can be seen as a very simple proof
of knowledge.

UC commitments: For the last step of the protocol sketched above, we need some
UC commitments that are compatible with the homomorphic commitments used
during the MPC protocol.

A really easy way to construct UC commitments is to ask a party to pro-
vide a commitment Comm(a; r) together with an encryption of its opening. The
encryption is relative to a public key in the common reference string (CRS).
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Therefore, the simulator (by choosing the CRS) can “extract” the commitment
by decrypting the ciphertext. Clearly a malicious committer can encrypt some-
thing different than the opening of the commitment. To force honest behavior,
we use again a cut-and-choose technique. This protocol also has a preprocessing
flavor, with a heavier preprocessing phase and a light on-line phase.

Informal Theorem 2 Assuming semantic secure encryption and trapdoor ho-
momorphic commitment schemes, it is possible to implement UC commitments
in the CRS model.

– The protocol generates M secure UC commitments with probability 1 − 2−s

using 4M + 4s invocations of both primitives.
– The actual commit phase uses no cryptographic primitives and in the open

phase 1 trapdoor commitment is verified.

Higher level operations: Our protocols are designed to be compatible with higher
level protocols to perform complex operation such as exponentiation, bit decom-
position and comparison in an efficient way — as in [DFK+06] and related work

2 Preliminaries

Homomorphic commitment schemes: A double-trapdoor homomorphic commit-
ment scheme is defined by four efficient algorithms (Gen,Comm,TOpen,�),
where (ck, τ1, τ2) ← Gen(1κ, p) generates a commitment key together with two
trapdoors, C = Commck(x; r) takes a message x ∈ Zp and randomness r in the
commitment randomness space RC and produces a commitment C. Using one
of the trapdoors it is possible to trapdoor open a commitment C to any message
x′ 6= x. Finally the plain-text space defined by the commitment key ck is the
field Zp of prime order p, with |p| > κ, and the commitments are homomorphic
meaning that Comm(x; r)� Comm(y; s) = Comm(x+ y mod p; r + s).2

Definition 1. We call a tuple of algorithms (Gen,Comm,TOpen,�) a double-
trapdoor homomorphic commitment scheme if: let (ck, τ1, τ2)← Gen(1κ, p), then
the following properties hold:

Trapdoor Security: There is no PPT A s.t. τ3−i ← A(1κ, ck, τi).
Computational Binding: There is an efficient PPT E s.t. τ ← E(ck, x, r, x′, r′)

if Commck(x; r) = Commck(x′; r′), x 6= x′, with τ ∈ {τ1, τ2}.
Statistical Hiding: ∀x, x′ ∈ Zp and randomness r, let r′i = TOpen(C, x, r, x′, τi)

with i = 1, 2 then Commck(x; r) = Commck(x′; r′i); moreover r′1, r
′
2’s distri-

butions are statistically close.

Intuitively we need the commitments to have two trapdoors because we need
to argue that even after the simulator opens some commitments towards the

2 To ease the notation, we will write RC as an additive group.
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adversary using one of the trapdoor, the adversary still cannot break the binding
property of the commitment scheme.

In [CD98] it has been shown that trapdoor homomorphic commitment schemes
can be instantiated using any q-one-way group homomorphism: this primitive
can be built from the discrete logarithm assumption, RSA, and other standard
assumptions.

Semi-honest multiplication protocol: The building block of our protocol is any
strong-semi-honest multiplication protocol (c1, c2) ← πmul(a, b) where a, b ∈ Zp
are respectively the first and the second party’s inputs, c1 is random in Zp and
c2 = a · b− c1 mod p.

The two party multiplication protocol can be instantiated using a variety of
assumption, like homomorphic encryption, OT, and more. The exact require-
ments for the multiplication protocol are slightly stronger than the standard
definition of semi-honest security. Most “natural” semi-honest multiplication
protocol would satisfy this stronger requirement, or can be easily modified in
order to do so. Intuitively we need the protocol to be 1) secure also if the ad-
versary chooses maliciously the randomness for the corrupted parties and 2) the
adversary cannot cheat during the protocol and then pretend that he behaved
honestly, if that instance of the protocol is checked during the cut-and-choose.

More in detail, consider any two party semi-honest secure protocol view ←
π(r1, r2) where ri is the randomness used by Pi. Without loss of generality
assume that P1 is honest and fix his randomness r1.

Definition 2. A protocol π is strongly secure against a semi-honest adversary if
π is 1) secure for any adversary that follows the protocol but chooses its random
r2 maliciously and 2) if P ∗2 deviates from the protocol π it holds that either a)
P ∗2 does not break the security of π or b) for all PPT P ∗2 : r∗2 ← P ∗2 (view, r2)
then view 6= π(r1, r

∗
2) with all but negligible probability.

3 MPC Protocol

In Figure 1 the ideal functionality FAMPC is presented. This ideal functionality
allows n parties to input values in Zp, manipulate them (via additions and
multiplications) and output the result to a given party.

In this description of the protocol3 we assume that the parties already have
secure and authenticated point to point channels, and a functionality for broad-
cast. Also, following the modular spirit of the UC framework we will implement
the protocol in the presence of a “trusted dealer” that gives to the party a pub-
lic key for the commitment scheme, together with random shared commitments.
The ideal functionality describing the behavior of this trusted dealer is detailed
in Figure 2.

3 In the full version of this paper [DO10] an actual instantiation of the protocol, for a
specific choice of trapdoor commitments and multiplication protocol is presented.



7

The functionality FAMPC has the following commands:

Initialize: On input (init, p) from all parties, activate and store the modulo p.
Rand: On input (rand, Pi, varid) from all parties Pi, with varid a fresh identifier,

pick r ← Zp and store (varid, r).
Input: On input (input, Pi, varid, x) from Pi and (input, Pi, varid, ?) from all

other parties, with varid a fresh identifier, store (varid, x).
Add: On command (add, varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), retrieve (varid1, x), (varid2, y) and
store (varid3, x+ y mod p).

Multiply: On input (multiply, varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), retrieve (varid1, x),
(varid2, y) and store (varid3, x · y mod p).

Output: On input (output, Pi, varid) from all parties (if varid is present in mem-
ory), retrieve (varid, x) and output it to Pi.

Figure 1. The ideal functionality for arithmetic MPC

The functionality Frand has the following commands.

Initialize: On input (init, p) from all parties, activate, generate a key for a double-
trapdoor homomorphic commitment scheme ck ← Gen(1κ, p) with plain-text
space Zp and send ck to the parties.

Req. Share: On input (share, sid, ai, ri, Pi), with sid a fresh identifier, create and
output a shared commitment Commck(a, r) with a =

∑
ai, r =

∑
ri.

Figure 2. The ideal functionality that models Frand

3.1 Notation and Library

We will call a shared commitment of x (and write [x]) the following configuration:
Pi, i = 1, . . . , n owns xi ∈ Zp, ri in the commitment scheme’s randomness space
RC and Commck(x; r), where it holds that x =

∑n
i=1 xi mod p and r =

∑n
i=1 ri.

For convenience we define a library of commands that the parties can perform
on shared commitments. Call H, C respectively the sets of honest parties and the
set of corrupted parties. H ∩ C = ∅ and H ∪ C = {1, . . . , n}. Finally |H| ≥ 1. In
Figure 3 some basic commands are introduced and in Figure 4 some advanced
commands are defined.

3.2 On-line Phase

As mentioned our protocol has two phases: the preprocessing phase described in
Figure 7 produces many random triplets, and in the on-line phase the triplets are
used to implement the ideal functionality FAMPC: the on-line protocol, detailed
in Figure 5, is quite simple. Parties provide inputs and compute multiplications
by opening differences between random commitments generated during the pre-
processing and the actual values of the computation. The security of the protocol
intuitively follows from the fact that the random preprocessing material is used
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Share Secret: To share an element x ∈ Zp, choose random x1, . . . , xn−1 ∈R Zp,
define xn = x −

∑n−1
i=1 xi mod p. Choose random ρx,1, . . . , ρx,n ∈ RC, define

ρx =
∑n
i=1 ρx,i and Cx = Commck(x, ρx). Send [x]i = (xi, ρx,i, Cx) to party Pi.

We denote this operation by [x] = Share(Pi, x, ρx).
Open Secret: every party Pi broadcasts a share pair (x′i, ρ

′
x,i). The parties com-

pute the sums x′, ρ′x and check Commck(x′, ρ′x)
?
= Cx. If yes, output x = x′,

else output x =⊥. We denote this operation by x = Open([x]). If just a party
Pi should learn the output, we modify the above protocol in the sense that all
parties send their shares to Pi, that verifies the correctness and outputs the
result in the same way. We denote this operation by x = OpenTo(Pi, [x]).

Random Share: To generate a share of a random element r ∈R Zp, party Pi
chooses at random (ri, ρr,i) ∈R Zp ×RC and broadcast Cir = Commck(ri, ρr,i).
Every party computes Cr =

∏n
i=1 C

i
r = Commck(r, ρr), where r =∑n

i=1 ri, ρr =
∑n
i=1 ρr,i. Party Pi sets [r]i = (ri, ρr,i, Cr). We denote this oper-

ation by [r] = Rand().
Addition: We denote by [z] = [x]+[y] the following: each Pi computes [z]i = [x]i+

[y]i = (xi+yi mod p, ρx,i+ρy,i, Cx�Cy). From now on we will write commands
like [z] = 3[x]− [y] + 2 with the obvious semantic. Any additive constant c can
be interpreted as [c]1 = (c, 0,Commck(c, 0)), and [c]i = (0, 0,Commck(c, 0)) for
i 6= 1.
Note that no communication is involved in this command.

Figure 3. Basic commands on shared commitments

Shift: Assume the parties have a shared commitment [r]. Then we denote by [x] =
Shift(Pi, x, [r]) the following protocol:
1. r = OpenTo(Pi, [r]);
2. Pi broadcast ∆ = r − x mod p;
3. [x] = [r]−∆;

Multiplication: Assume the parties have a triplet of shared commitments
([a], [b], [c]). Then we define the following command [z] = Mul([x], [y], [a], [b], [c])
(the output z is equal to x · y if c = a · b). The command is implemented as:
1. d = Open([x]− [a]); e = Open([y]− [b]);
2. [z] = e[x] + d[y]− de+ [c];

Figure 4. Advanced commands for shared commitments

to mask the actual values of the computation. Also, when a value is opened, the
presence of the commitment prevents cheating parties to force a wrong output
value.

3.3 Preprocessing

The main contribution of this paper is in the way the random triplets are gen-
erated. The task is to start from a strong semi-honest multiplication protocol as
defined in Definition 2 and a dealer that provides random shared commitments as
described in Figure 2, and finish with a fully secure protocol that outputs triplets
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The protocol implements FAMPC’s commands in the following way:

Initialize: The parties invoke Frand(init, p) and store ck. Run the preprocessing
as in Figure 7 to produce a big enough set of triplets.

Rand: The parties invoke Frand(share, varid) and store the commitment [a].
Input: The parties invoke Frand(share, varid) and store the commitment [a], then

perform [x] = Shift(Pi, x, [a]).
Add: To add [x], [y] with identifiers varid1, varid2 the parties perform [z] = [x]+[y]

and assign [z] the identifier varid3.
Multiply: To multiply [x], [y] with identifiers varid1, varid2 the parties take

a triplet ([a], [b], [c]) from the set of the available ones, perform [z] =
Mul([x], [y], [a], [b], [c]) and assign [z] the identifier varid3 and remove
([a], [b], [c]) from the set of the available triplets.

Output: To output [x] with identifier varid to Pi perform x = OpenTo(Pi, [x]).

Figure 5. The on-line protocol ΠAMPC

of multiplicative shared commitments. The main technical tool is a somewhat
new and surprising application of packed Shamir’s secret sharing [FY92].

Every party Pi does the following:

1. Choose random shares ai, bi ∈ Zp.
2. For all j 6= i, run (dij , eji)← πmul(ai, bj) as party 1.
3. For all j 6= i, run (dji, eij)← πmul(aj , bi) as party 2.
4. Set ci = ai · bi +

∑
j dij +

∑
j eij mod p.

5. Choose ri, si, ti ∈ RC, compute Ai = Commck(ai, ri),Bi = Commck(bi, si),
Ci = Commck(ci, ti), and broadcast Ai, Bi, Ci.

6. Everyone computes A = �iAi, B = �iBi, C = �iCi

Figure 6. The protocol to generate one triplet Πtri

We start with a protocol to generate one triplets: the parties use πmul to
compute cross products of their shares and broadcast commitments to their
shares (details are given in Figure 6). This protocol is not secure against a
malicious adversary (that could cheat in πmul or commit to inconsistent values):
Intuitively to achieve full security we need the following: 1) the triplets are
correct i.e. c = a · b, 2) the triplets are private i.e. a, b are uniformly random in
the view of the adversary and 3) the adversary knows his shares of the shared
commitments. The protocol, presented in Figure 7 will proceed in steps and
ensure one property after the other.

Note that in the protocol of Figure 7 every “distilled” triplets is the product
of every produced triplets. This give a quadratic blow-up in local computation.
A solution that might be more efficient in practice is to change the step Privacy
as follows: instead of creating just one big polynomial, randomly partition the
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Start by running (1 + λ)(4M + 4B − 2) times the protocol Πtri. Call M =
{([ai], [bi], [ci])}i=1,...,(1+λ)(4M+4B−2) the set of produced triplets.

Test: Using Frand sample a string t that determines a subset T ⊂ M of size
λ(4M + 4B − 2). For every triplet in T , the parties reveal all the randomness
used during Πtri, πmul. If any cheating is detected the protocol aborts.

Proof of Knowledge: for each of the untested triplets ([a], [b], [c]), sample three
random shared commitments [r], [s], [u] using Frand and perform Open([r −
a]),Open([s− b]),Open([u− c]).

Correctness: For every pair of triplets left ([a], [b], [c]) and ([x], [y], [z]) do: using
Frand sample a random r ∈ Zp. Compute [c′] = Mul([a], [b], r[x], r[y], r2[z]).
Then if Open([c − c′]) 6= 0 abort the protocol, otherwise store [a], [b], [c] for
future use and drop [x], [y], [z].

Privacy: We are now left with 2M + 2B − 1 triplets. Let d = M +B − 1.
1. The parties have a set of 2d+ 1 triplets ([ai], [bi], [ci]), i = 1, . . . , 2d+ 1
2. The parties generate d+ 1 random commitments [f1], . . . , [fd+1]
3. The parties generate d+ 1 random commitments [g1], . . . , [gd+1]
4. Those commitments define two random shared polynomials [F (x)], [G(x)]

of degree d, where [F (x)] :=
∑d+1
i=1 δ

(d)
i (x)[fi], [G(x)] :=

∑d+1
i=1 δ

(d)
i (x)[gi],

where:

δdi (x) =

d+1∏
i 6=j=1

x− j
i− j

5. The parties locally evaluate [F (d + 2)], . . . , [F (2d + 1)] and [G(d +
2)], . . . , [G(2d+ 1)]

6. For all i = 1, . . . , 2d+ 1, the parties compute [hi] := [F (i) ·G(i)] using one
of the triplets ([ai], [bi], [ci])

7. These new shared commitments [hi], i = 1, . . . , 2d+ 1 define a new shared

polynomial [H(x)] :=
∑2d+1
i=1 δ

(2d)
i (x)[hi] of degree 2d.

8. The parties locally compute M new triplets [a′i], [b
′
i], [c

′
i] where [a′i] =

[F (−i)], [b′i] = [G(−i)], [c′i] = [H(−i)], with i = 1, . . . ,M .

Figure 7. The preprocessing protocol Πpre

remaining triplets in subset of smaller size and use many polynomials of smaller
degree. The analysis of this kind of approach can be found in [NO09].

Theorem 1. Let πmul be a strong semi-honest secure two-party multiplication
protocol and Comm a double trapdoor homomorphic commitment scheme, then
the protocol ΠAMPC (κ,B log2(1 +λ))-securely implements FAMPC in the Frand-
hybrid model against any static, active adversary that corrupts any number of
parties.

Remark: The statistical security of the protocol depends on both parameters
B and λ. In practice one can set λ = 1/4 and B = 3.6s, so to get a protocol that
is secure except with probability 2−3.6 log2(5/4)s < 2−s, where the total number
of invocation to Πtri is now less than 5M + 18s.
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Proof (sketch): The simulator SAMPC simulates every call to Frand and keeps
a copy of what the internal state of the corrupted parties should look like if
they had followed the protocol. The simulator can do so as this state is uniquely
determined by the output of Frand and the protocol execution. A description of
the simulator is provided in Figure 8.

The simulator SAMPC maintains at any point a copy of the shares of all parties
(honest and corrupted).

Initialize: The simulator runs (ck, τ1, τ2)← Gen(1κ), gives ck to the parties, flips a
coin b and stores τ = τ1+b, and discards τ2−b. Call init on the ideal functionality
FAMPC. The simulator simulates the preprocessing by following the protocol in
Figure 7 as an honest party would do, except that it reads the corrupted parties
shares from Frand.

Rand: Simulate the call to Frand by reading the corrupted parties shares and
choose random ai, ri for the honest parties. Call rand on the ideal functionality
FAMPC, and store internally the shares for all parties.

Output: To simulate an output of [x] to Pi where i ∈ H, the simulator receives
(x′i, r

′
i) from all corrupted parties Pi, i ∈ C. Let (xi, ri) be the internal shares of

the simulator corresponding to Pi. If
∑
i∈C xi =

∑
i∈C x

′
i and

∑
i∈C ri =

∑
i∈C r

′
i

call output on the ideal functionality, otherwise abort the protocol.
To simulate an output of [x] to Pi where i ∈ C, the simulator receives x′

from the ideal functionality, and the sum of the internal shares xi, ri is x, r,
the opening of Cx. The simulator picks the smallest j ∈ H, executes r′j =
TOpen(xj , rj , xj + (x− x′), τ) and sends (xj + (x− x′), r′j), and (xi, ri) for all
i ∈ H, i 6= j to the adversary.

Input: To simulate the call for Pi, with i ∈ C simulate the call to Frand as described
above, and perform [x] = Shift(Pi, x, [a]) as the honest parties would do (check
for the abort condition in Open as described before). Internally update all the
parties shares. Given ∆ and a, compute x′ = ∆+ a mod p and input it in the
ideal functionality FAMPC.
To simulate the call for Pi, with i ∈ H simulate the call to Frand as described
above, and perform [x] = Shift(Pi, 0, [a]) (check for the abort condition in Open
as described before). Internally update all the parties shares.

Add: Run the protocol honestly and update all the internal shares and call add
on the ideal functionality FAMPC.

Multiply: Run the protocol honestly, updating all the internal shares (check for
the abort condition in Open as described before). Call multiply on the ideal
functionality FAMPC.

Figure 8. The simulator SAMPC

On-line security: Define an hybrid game where the adversary is restricted to
following the protocol during the preprocessing phase Πpre, and then behaves
arbitrarily during the on-line phase. The view of the protocol (excluding the
preprocessing) contains statistically no information about the actual values of
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the computation: every value that is opened in Input, Multiply is masked with
fresh randomness, and the commitments are statistically hiding.

Then the only way that the environment can distinguish between the real
and the ideal execution is by forcing an output towards an honest party (or an
input of a dishonest party) to be incorrect.

To do that, the adversary needs to send a set of shares (x′i, r
′
i) with i ∈ C

with
∑
xi 6=

∑
x′i and such that Comm(

∑
xi;
∑
ri) = Comm(

∑
x′i;
∑
r′i), where

(xi, ri) are the simulator’s internal shares for the corrupted parties. Using E in
Definition 1 we can extract a trapdoor τb∗ from these values. Given that the
view of the simulated protocol is statistically independent of the trapdoor used
by the simulator τb, then Pr[b = b∗] = 1/2 and we can turn an adversary that
distinguish the the real and the ideal world with probability 1/2 + q, q non
negligible, into an adversary that break the security of the commitment scheme
with non-negligible probability q/2, and we reach a contradiction.

Preprocessing security: For the sake of simplicity, let’s assume n = 2, P1 honest
and P2 corrupted4. The UC simulator runs the preprocessing protocol as the
honest party would. If the corrupted party send values that would make a honest
party abort, the simulator inputs abort to FAMPC on behalf of the corrupted
party. If the simulator does not input abort to FAMPC, the simulator stores the
corrupted party’s shares of [a], [b], [c], namely (a2, r2, b2, s2, c2, t2) that he learns
during Proof of Knowledge (by simulating Frand) and proceed to the on-line
phase. The simulation of the preprocessing phase is perfect, as the simulator
behaves exactly as an honest party. What remains to argue is that if the protocol
did not abort at the end of the preprocessing phase, then the triplets are correct
and the honest parties’ shares are uniformly random in the adversary’s view,
even if the adversary is corrupted.

Note that Πtri securely produces random multiplicative triplets against a
strong semi-honest adversary. In fact: c =

∑
i ci =

∑
i aibi

∑
i 6=j dij+

∑
i 6=j eij =∑

i aibi +
∑
i 6=j aibj = ab mod p. If A can cheat during Πtri and then pretend

he didn’t during Test it can be used to break either the strong semi-honest
security of πmul or the binding property of Comm.

The step Test doesn’t leak any information as it can be simulated as detailed
in Lemma 2. We can use Lemma 1 to define a good triplet to be one where the
adversary could open the triplet during Test and make an honest party accept,
and a bad triplet otherwise. Note that the lemma uses rewinding techniques:
this is fine, as we do not use the lemma to extract the adversary shares — we
do this in Proof of Knowledge — but to prove that the simulation is correct.
From the properties of πmul we know that for a good triplet c = a · b and a, b
are random in the adversary’s view except with negligible probability. Therefore
after Test we know that (except with negligible probability) the number of bad
triplets is bounded by some constant B except with probability (1 + λ)−B .

4 If more malicious parties are present, one can just think of all of them as a new party
whose shares are the sum of their shares. Clearly introducing more honest parties
will not help the adversary.
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After the Correctness step, if the protocol doesn’t abort the triplets are
correct except with probability 1/p: let z = x · y+∆z mod p and c = a · b+∆c,
then c′− c = r2∆z −∆c that is 6= 0 if (∆c, ∆z) 6= (0, 0) with probability 1− 1/p
over the choice of r. Then if the adversary doesn’t break the binding property
of Comm and c′ − c 6= 0 for any pair of triplets the protocol aborts.

In Privacy after the triplets are randomly partitioned, we know that the
probability that there are more than B bad triplets left is less than (1 + λ)−B .
Therefore the adversary knows less than B points on the polynomials F,G of
degree d, so from Lagrange interpolation theory those polynomials have still M+
1 degrees of freedom in the adversary’s view. So the adversary gains statistically
no information about the newly generated M triplets [a′], [b′], [c′] and, even after
M − 1 of those will be opened during the protocol, the last unopened triplet is
still random in his view. �

4 UC Commitment Scheme

In this section we show how to implement Frand. For the sake of simplicity,
we present a two party protocol for UC commitments5. In order to produce a
random commitment between n parties as required by Frand it will suffice to
let every party publish a commitment and, using the homomorphic properties
of the commitment, sum them up.

The protocol generates many commitments at once in a preprocessing flavor
and it is efficient in the sense that to constructM UC commitments with security
s, one needs O(M + s) call to the primitives — the efficiency of the protocol is
roughly the efficiency of the primitives used.

Protocol idea: To let a semi-honest party UC commit to a message m one can use
the following protocol: the committer sends the pair Comm(m, r),Enc(m||r, s) to
the receiver, where the encryption and the commitments are relative two public
keys in the CRS. To open, the committer sends m, r. The commitment scheme
is UC secure as, intuitively, the simulator can choose the CRS together with
the secret key for Enc and the trapdoor for Comm. So if the sender is corrupted
the simulator can extract the message from Enc and if the receiver is corrupted
the simulator can open Comm to any value using the trapdoor. Clearly if the
committer is corrupted by an active adversary, he can send an inconsistent pair
and break the security of the protocol. We solve this by using the cut-and-choose
approach to force honest behavior.

First the committer selects at random two polynomials f and g of degree
d = 2M + s−1 over Zp. Then the committer sends to the receiver commitments
to 2M + 2s points on both polynomials using the semi-honest protocol. Now a
random challenge is coin-flipped, in order to determine a subset of M + s com-
mitments to be checked. The committer reveals the points and the randomness
used in the semi-honest protocol to the receiver, who aborts if any opening is in-
consistent. If the protocol doesn’t abort we know that, with probability 1− 2−s,

5 We refer to [CF01] for the definition of the ideal functionality Fmcomm.
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at least M out of the M + s unopened commitments are well-formed. Therefore
the simulator learns the required 2M + s points that uniquely determine f : the
first M + s are disclosed during the cut-and-choose, while the last M are ex-
tracted from the unopened (but well-formed) commitments. Also note that any
M out of the M + s unopened points are still uniformly random in the view of
the receiver.

In order for this to work, we need to ensure that f is of the right degree
d (or the simulator will not have enough points to determine f): to do so the
receiver will send a random challenge w ∈ Zp and the committer will reveal
h(i) = w · f(i) + g(i) for all i’s. Thanks to the homomorphic properties of
the commitment Comm the receiver can verify that the committer is not lying
about these points, and he can check that h has degree most d. This implies,
with probability 1 − 1/p, that f and g have degree at most d. In the test g is
used to mask f , so that the points on f are still random to the receiver.

The protocol actually implements a random commitment functionality. If one
wants to commit to specific messages it is always possible to derandomize the
commitments (the committer simply sends the difference between the random
committed value and the actual messages).

4.1 UC Commitments with Preprocessing

In Figure 9 the protocol for UC commitments with preprocessing is presented.
We write (Gen,Enc,Dec) for a semantically secure encryption scheme where

(ek, dk) ← Gen(1κ) is the key generation algorithm, C = Encek(x, r) is an en-
cryption of x using randomness r and given the decryption key dk is possible to
recover the message x = Decdk(C). Security is defined in the standard way.

Theorem 2. The protocol Πcomm securely (κ, s)-implements Fmcomm in the FCRS-
hybrid model.

Proof (sketch): To simulate against a corrupted receiver, just run the protocol
honestly but simulate the test as in Lemma 2 i.e. commit to random values. In
Degree check choose a random polynomial h consistent with the revealed values
and trapdoor open the remaining commitments. In Commit: send random ∆j ’s.
When opening, use the trapdoor to open the commitment to the value ∆j +mj

where mj is the message that the simulator receives from the ideal functionality.
If the environment can distinguish, then it can be turned into an adversary that
breaks semantic security of Enc using standard techniques.

In the more interesting case where the committer is corrupted, the proof
follows the one of Theorem 1: we use Lemma 1 to define which pairs are good and
which bad. After Cut-and-Choose the number of openings that the simulator
cannot extract is bounded by s with probability 2−s. Therefore the simulator can
reconstruct the unique polynomial f ′(x) defined by the M + s point seen during
Cut-and-Choose and the M points it can extract from the consistent pairs.
Once the simulator knows f ′ it can compute the aj ’s for all j’s. Therefore it can
extract the committed messages in Commit by just computing m′j = aj −∆j
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Parse the common reference string CRS as (ek, ck).

Generation:
1. Pr chooses two random polynomials f, g of degree at most d = 2M + s− 1;
2. For i = 1, . . . , 2(M + s), Pc computes and sends

Fi = Commck(f(i); ri), Ui = Encek(f(i)||ri;ui),
Gi = Commck(g(i); ti), Vi = Encek(g(i)||ti; vi);

Cut-and-Choose:
1. Pc computes and send Ec = Commck(ec, rc);
2. Pr sends a challenge er;
3. Pc opens Ec;
4. Let e = ec⊕er define a random subset T ⊂ {1, . . . , 2(M+s)} of size M+s;
5. For i ∈ T the committer Pc sends (f(i), ri, ui) and (g(i), ti, vi). The receiver

Pr checks for consistency and abort otherwise;
Degree Check:

1. Pr sends a random challenge w;
2. For i ∈ {1, . . . , 2(M + s)} \ T the committer Pc sends h(i) = w · f(i) + g(i)

and ti = w · ri + si;
3. The receiver Pr checks that (h(i), ti) is a valid opening of Fwi ·Gi, and that

h is a polynomial of degree at most d. If not abort;
4. We renumber sequentially the unopened commitments: Let Cj denote the

j-th unopened commitment Fi, and (aj , zj) its opening. The committer
outputs (Cj , aj , zj) and the sender outputs Cj for all j = 1, . . . ,M .

Commit: To commit to the j-th message mj , Pc sends ∆j = aj −mj mod p.
Open: To open a commitment Cj , Pc sends (mj , zi) to Pr that accepts if Cj =

Comm(mj +∆j , zj).

Figure 9. The Πcomm protocol

mod p. The only way for the environment can distinguish the real game from
the simulated one is by forcing an opening to a message mj different from the
one extracted by the simulator m′j . Such an environment can be turned into one
that break the binding property of Comm using standard techniques. �

Multi-party case: It is possible to extend the protocol to the case of multi re-
ceivers by replacing the random choices of the receiver with a coin flip protocol.
If one wants to allow multiple parties to play as committer, several modification
to the protocol can be considered:

– Use a longer CRS that contains n key pairs (ck1, ek1,. . .,ckn, ekn), and every
party commits using his own keys.

– If one wants to keep the CRS short, 1) Comm needs to be a double-trapdoor
commitment scheme and 2) either one uses semantic secure encryption scheme,
and require the preprocessing to run sequentially (at any given point just
one party is acting as Pc before Commit) or one can replace Enc with a
CCA secure encryption – in this case different parties can all encrypt using
the same public key and non-malleability is still guaranteed. The proof for
the multi party protocol is essentially the same as the two-party case.
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5 Cut-and-Choose Toolkit

In both the protocols presented in this paper we achieve security against a ma-
licious adversary by using a kind of cut-and-choose reminiscent of the one first
used in [NO09]. To make this paper self contained, we restate two useful lem-
mas: Let’s just define a component to be the output of a one-way function
f : X → Y: an image is good if the sender knows the preimage and bad if he
doesn’t. The structure of a cut-and-choose is shown in Figure 10: we will argue
the cut-and-choose can be efficiently simulated and if the adversary passes the
test then most of the images are good. The first observation is that if the test
goes through then there are at most B bad images between the unchecked ones,
except with probability (1 + λ)−B .

Test: Let M = {1, . . . , (1 + λ)M}.
1. P1 computes yi = f(xi) for i ∈M for random xi and sends them to P2;
2. P2 sends P1 a random challenge r that defines a random T ⊂ M of size

λM ;
3. P1 sends {xi}i∈T to P2;
4. P2 accepts if yi = f(xi) for all i ∈ T ;

Figure 10. A simple cut-and-choose

Lemma 1 (Extraction). There exist a knowledge extractor E s.t. for any P ∗1
in Figure 10 the following holds: consider an augmented execution of Figure 10
where if P2 accepts we run E on P ∗1 . Then: 1) The augmented execution termi-
nates in expected poly-time and 2) The probability that we start the extractor E,
and the extractor outputs less than (1 + λ)M − B preimages xi is negligible in
B.

Proof: Let accept be the event of P2 accepting the test. Assume µ = Pr[accept] ≥
2(1 + λ)−B for some constant B. Then B, the set of bad components for which
P ∗1 doesn’t know an opening is small.

Formally let ri = 1 if i ∈ T and ri = 0 otherwise. Then B = {i|Pr[accept|ri =
1] < µ/2}, then |B| ≤ B. If not:

µ = Pr[∃i ∈ B : ri = 1] Pr[accept|∃i ∈ B : ri = 1] +

Pr[∀i ∈ B : ri = 0] Pr[accept|∀i ∈ B : ri = 0]

< 1 · µ/2 + (1 + λ)−|B| · 1

But then µ/2 < (1 + λ)−|B| and we have a contradiction.
Now consider the following extractor E that sets W = ∅ and while |W| <

(1 + λ)M − B, runs the test with P ∗1 and stores the new preimages he gets,
W = W ∪ {(i, xi)}i∈T . The extractor keeps also a counter j of the number of
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runs and if it didn’t stop before it stops when j > S = (1 + λ)B poly(s). When
it stops it outputs W.

For any i ∈ M \ B, consider the probability ν that (i, xi) /∈ W when E
terminates. Formally ν = Pr[(i, xi) /∈ W ← EP

∗
1 (1s)|i /∈ B]. Remember that

the challenges are uniformly random and independent. Then assuming µ/2 ≥
(1 + λ)−B :

ν =
∏
j

(
1− Pr[r

(j)
i = 1 ∧ accept(j)]

)
≤
(

1− µ

2

λ

1 + λ

)S
< e−

λ
1+λ poly(s)

The expected running time is given by the probability that we start rewinding
µ times the time that we spend doing the extraction. If µ < 2(1 + λ)−B , then
the running time is bounded by µ · S = poly(s). If µ ≥ 2(1 + λ)−B , then the
extractor stops with success after expected time S′ = 1+λ

λ
2
µM , and therefore

the total expected running is µ · S′ = O(M). �

Lemma 2 (Simulation). For any honest P2 there exist an expected poly-time
simulator S for the test in Figure 10 s.t. the view of P2 when interacting with
an honest P1 and the output of S are indistinguishable.

Proof: Consider the S that is given as input a set B of up to λM random
images yi. S chooses a random challenge r and orders the yi’s in such a way that
T ∩ B = ∅. Then S fills M with M random fresh images yi = f(xi) for random
xi. The produced view is distributed exactly as in the protocol. �

Remarks: It is possible to simulate against malicious P ∗2 , by replacing step 2 in
Figure 10 with a coin flip protocol, and in particular an UC coin flip protocol
leads to a UC simulator for the test. This means that running the test doesn’t
give P ∗2 any advantage when he tries to invert the one way function on yi, i /∈ T .
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