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Abstract. The Virtual Black Box (VBB) property for program obfus-
cators provides a strong guarantee: Anything computable by an efficient
adversary given the obfuscated program can also be computed by an effi-
cient simulator with only oracle access to the program. However, we know
how to achieve this notion only for very restricted classes of programs.
This work studies a simple relaxation of VBB: Allow the simulator un-
bounded computation time, while still allowing only polynomially many
queries to the oracle. We then demonstrate the viability of this relaxed
notion, which we call Virtual Grey Box (VGB), in the context of fully
composable obfuscators for point programs: It is known that, w.r.t. VBB,
if such obfuscators exist then there exist multi-bit point obfuscators (aka
“digital lockers”) and subsequently also very strong variants of encryp-
tion that are resilient to various attacks, such as key leakage and key-
dependent-messages. However, no composable VBB-obfuscators for point
programs have been shown. We show fully composable VGB-obfuscators
for point programs under a strong variant of the Decision Diffie Hellman
assumption. We show they suffice for the above applications and even
for extensions to the public key setting as well as for encryption schemes
with resistance to certain related key attacks (RKA).

1 Introduction

Informally, an obfuscator is an algorithm which gets as input a program (e.g.
a Turing machine or circuit) and outputs a new program which has the same
functionality as the original one, but is otherwise “unintelligible”. The rigorous
study of obfuscation was initiated in the work of [3], who introduced the concept
of virtual black box security (VBB in short). This concept requires the obfuscated
program to behave like a “black box”, in the sense that it should not leak any
information about the program except its input-output behavior. More precisely,
any efficient adversary with access to an obfuscated program can be simulated
by an efficient simulator with only oracle access to the program. The same work
presented the impossibility of “universal VBB obfuscation”, showing a family of
programs which can not be VBB obfuscated.

In light of this negative result, subsequent work has included several research
directions. One line of work extends the result of [3], ruling out obfuscation in
various settings [16, 26]. Another line of work is aimed at constructing obfus-
cators for specific program families, which are not ruled out by the universal



impossibility result. Here, if we stick to VBB obfuscators, our knowledge is lim-
ited essentially to obfuscating point programs and their extensions [8, 11, 23, 14,
26, 9, 13, 12]. A point program Pv : Dn → {0, 1} holds a value v ∈ Dn in its
code, and accepts its input x iff x = v. We only know how to obfuscate point
programs in which the point v is explicitly obtainable from the code. Moreover,
the known constructions depend on rather strong hardness assumptions, and
somewhat inherently so [26].

A third line of work focuses on relaxations of VBB. In this context, [3] sug-
gested the notion of indistinguishability obfuscators (INDO) , according to which
obfuscations of two related size programs implementing the same functionality
should be indistinguishable to any efficient adversary. Another relaxation, called
best possible obfuscation (BPO) [17], requires that any information which the
obfuscation leaks is efficiently learnable from any other program with the same
functionality and related size (hence “best possible”). These two notions turn
out to be equivalent, when restricted to efficient obfuscators.

Both notions are easier to satisfy than VBB. However, the security guarantee
they provide is less clear. Unlike VBB, both seem to lose their meaning for a
relatively wide range of program classes which are natural candidates for obfus-
cation. For instance, these notions become meaningless if we allow the obfuscator
to work only when the program is given in some “canonical” representation in
which case, no two programs have the same functionality. Another relaxation
requires the obfuscation to be secure only when the program is sampled from
some adequate distribution (rather than requiring security for any program in
the family). This was done in the context of perfect one-way hashing [11] , point
proximity testing [14], re-encryption [22] and more [1, 21, 18]. However, in some
scenarios such a relaxation does not capture the security properties we would
expect from an obfuscation.

A natural goal is thus to come up with a notion of secure obfuscation that is
both meaningful and achievable. Here there is room to consider notions which
might be meaningful only for certain program families but not for all.

1.1 This Work

We study a new relaxation of VBB security notion for obfuscators. The require-
ment is that an obfuscation leaks no information about the program, rather than
what can also be learned by an all-powerful learner that witnesses only a limited
number of input-output pairs (at his choice).

More formally, any efficient adversary with access to an obfuscated program
can be simulated by an all-powerful simulator with poly many oracle queries to
the program (in contrast to poly-time simulation which VBB requires). For lack
of better name, we call this notion virtual grey box (or VGB in short). The
extra power given to the simulator is intended to allow it to “reverse engineer”
the adversary while avoiding technical difficulties that might be irrelevant to the
overall goal. In certain cases (such as ”highly unlearnable” programs), this could
be done without losing too much of the meaningfulness of the guarantee.



Relationship with existing notions. VGB obfuscation is clearly weaker than VBB
obfuscation. In particular, a VGB obfuscation is allowed to leak information
which a VBB obfuscation can not. Formally, we show that VGB is strictly weaker,
demonstrating a family of programs which can not be VBB obfuscated but is
(trivially) VGB obfuscatable. On the other hand, we show that VGB is stronger
than the INDO and BPO notions mentioned above. To do so, we observe that
even if we further weaken the VGB security requirement by allowing the simu-
lator an unlimited number of oracle queries, it still implies INDO.

For Turing machine obfuscators, the impossibility result of [3] extends to
rule out “universal VGB obfuscation”. However, we could not rule out universal
VGB circuit obfuscators (see more details within regarding this difference). We
note that [17] show impossibility of strong universal BPO obfuscation that can
handle even circuits that use random oracle gates. This impossibility applies to
the stronger VGB notion.

A setting where VGB is both meaningful and achievable. Like INDO and BPO,
VGB is not strong enough for some desirable obfuscation tasks. For example, its
weakness might be revealed whenever the obfuscated program computes some
kind of cryptographic functionality; indeed, in such cases an all-powerful simula-
tor, even with limited oracle access to the program has a clear advantage over a
bounded simulator. In general, it seems that VGB is mostly meaningful for pro-
gram classes which are unlearnable with only poly many queries even for learners
with unbounded computation time. We demonstrate concrete obfuscation tasks
where VGB obfuscation is both meaningful and achievable (under appropriate
hardness assumptions) while VBB is not known to be achievable. We hope that
this notion will prove instrumental in other obfuscation settings as well.

The main task we consider is that of composable obfuscation of point pro-
grams. A point program obfuscator is t-composable if having access to t obfus-
cated point programs, where the values hidden in the programs are related to
each other in arbitrary ways, has the “expected effect”. In other words, any ad-
versary that has access to the obfuscated programs can be simulated given only
oracle access to the programs. Ideally, t could be any polynomial.

In the context of VBB obfuscation, composable point obfuscators were shown
to suffice for obfuscating multi-bit point programs (MBPP). A MBPP has two
hidden values k,m in its code. It returns m on input k, and ⊥ on any other input.
MBPP obfuscators (MBPO’s) were in turn shown to imply strong symmetric
encryption schemes that are simultaneously secure against weakly random keys
(i.e., keys with any super-log entropy) and key dependent messages (KDM) [10].
However, as natural and fruitful as the composability property may seem, none
of the known point program obfuscators were shown to be composable (w.r.t.
VBB). In particular, existing MBPO’s were only shown to be secure for the
restricted case that the message m is independent of the key k [9, 10].

We show that, with respect to VGB obfuscation, composable point obfus-
cators do exist, under appropriate hardness assumptions. Specifically, we show
that the point program obfuscator from [8] is VGB-composable for any polyno-
mial number of instances. This is done under a strong variant of the Decision



Diffie Hellman assumption, which naturally extends the assumption used in [8]
to demonstrate that this construction yields a VBB point obfuscator.

We then show that VGB composable point obfuscators suffice for construct-
ing MBPO’s which are VGB composable on their own. This yields very strong
encryption schemes which are resilient to a variety of attacks. This includes the
aforementioned KDM and weak keys resilience as well as resistance to certain re-
lated key attacks (RKA) [2]. The encryption schemes can also be extended to the
public key setting (given an extra re-randomiztion property that the [8] obfus-
cator has). We remark that the result for KDM encryption should be contrasted
with the fact that fully KDM-secure encryption schemes can not be proven se-
cure using fully black box reductions to standard cryptographic game [19]. Our
proof of security does not fit this characterization.

1.2 Our Techniques

Proving composability for point obfuscators encounters several difficulties. We
sketch these difficulties as well as the ideas and techniques we use to overcome
them. We also exhibit how the VGB relaxation comes to our aid.

Simulation and distributional indistinguishability. Ideally, we might try to re-
quire that for fixed sequence of points, the resulting obfuscated point programs
would appear to an efficient adversary as a sequence of obfuscated random
point programs (similarly to the semantic security requirement for encryption
schemes). This would allow simple simulation, by running the adversary on ob-
fuscations of random hidden values. However, in the context of obfuscation such
a requirement is unachievable, since the adversary is able to run the program
and verify any guesses it might have; in particular it can have some hardwired
values which it can always recognize. Instead, we consider a weaker requirement
which we call Distributional Indistinguishability (DI in short). We show that:
(a) DI is necessary and sufficient for constructing VGB simulators, and (b) It is
achievable under appropriate hardness assumptions.

DI is an extension of a notion used in [8] in the context of plain point ob-
fuscators. The requirement refers to a specific type of distributions over tu-
ples of points which we call coordinatewise well spread (CWS in short). X ={

(X
(1)
n . . . X

(t)
n )
}

is a CWS distribution ensemble on {Dtn} if for any a ∈ Dn and

i ∈ [t], Xi 6= a except with negligible probability.
Essentially, O is a t-DI obfuscator if for any CWS distribution, X , over t-

tuples of elements in Dn, no efficient adversary can distinguish obfuscations of t
uniform values from obfuscations of a tuple of values sampled from X . We show:

Theorem 1.1 (informal). If O is a t-DI point obfuscator then it is a t-composable
VGB point obfuscator. Moreover, if O is t-DI for any polynomial t, then it is a
composable VGB obfuscator for any polynomial number of point programs.

The main technical difficulty in this work is in proving Theorem 1.1. We
sketch the ideas used in the proof. Our starting point is a result of [8] showing



that for point obfuscators (i.e. t = 1) the notions of DI and VBB obfuscation are
equivalent and that DI obfuscation is achievable under certain number theoretic
assumptions.

First we ask whether t-DI obfuscators imply t-composable VBB obfuscators
for t > 1. We show that this is the case as long as t = O(1). However, when
t = ω(1), major (and seemingly inherent) difficulties rise. Specifically, recall that
when constructing a simulator, we should deal with the fact that the adversary
can run the obfuscated programs and might have some hardwired values which
it can always recognize. When the adversary has access only to a single obfus-
cated point program, [8, 26, 10] show that in fact it cannot do much more than
have a polynomial number of such hardwired test elements. We call these the
distinguishing elements. This allows the simulator to check its oracle only on the
polynomially many distinguishing elements.

However, in the case of multiple obfuscated points, this plan does not go
through. The main difficulty is adaptivity. More specifically, while in the case of
a single hidden point there is only a single secret, in the case of composable point
obfuscators the adversary might first discover only some of the points, and then
use this partial information to make his next choices. Fortunately, we can show
that for any partial information already learnt there is a corresponding poly set
of distinguishing elements. However, there still remains the question of how to
compute these elements ahead of time.

We show that the total number of potentially queried elements is nΘ(t). Here
VGB comes to our aid when t = ω(1). That is, having limited oracle access to
the point programs and sufficient power to compute the distinguishing elements
allows performing the required simulation.

We remark that a converse statement is also true. That is, DI is necessary
for VGB composable obfuscation (and thus also for the stronger VBB notion).

A t-DI point obfuscator. Finally, we reconsider the point program obfuscator
constructed in [8]. Under a strong Decision Diffie Hellman (DDH) assumption,
we show that this obfuscator is t-DI for any polynomial t and hence is a t-
composable VGB obfuscator. As evidence of plausibility, we show that our as-
sumption holds in the Generic Group Model [25], where algorithms are only
allowed to perform generic group operations and can not exploit the represen-
tation of group elements. We note that there exist well studied group ensembles
(e.g. Quadratic Residues modulo a prime, and Elliptic Curves groups) where the
best cryptanalytic techniques are in fact generic ones [6].

In addition to the above construction, Theorem 1.1 enables construction
of composable point obfuscators, based on other hardness assumptions. One
natural candidate is the decisional learning with errors assumption (LWE) [24]
when considered with weak (non uniform) secrets. Indeed, under appropriate
parameter settings, LWE with weak secrets can be reduced to LWE with uniform
secrets [15]. This implies point obfuscators which are secure as long as the secret
point is taken from a distribution with some poly-logarithmic entropy.



Organization. Section 2 is devoted to the definition and discussion of VGB obfus-
cation and its relations with the VBB notion and previous relaxations. Section 3
shows how to construct composable VGB obfuscators for point programs. Sec-
tion 4 discusses the nature and plausibility of our hardness assumption. Section 5
demonstrates the applications of composable point obfuscators to multi-bit point
programs, to set programs, and to strong encryption schemes. Most proofs and
some of the secondary results appear in the full version [4].

2 Definitions

We formalize the notion of virtual black box obfuscation with strong simulators,
and explore its relation to existing notions. In all following definitions, we con-
sider the task of obfuscating an ensemble C = {Cn}, where each Cn is a collection
of circuits with input length n and poly(n) size.

2.1 VBB, IND and BP Obfuscation

We first recall the virtual black box definition and two of its previous relaxations.

Definition 2.1 (obfuscator [3] ). A PPT O is a VBB obfuscator for C, if it
satisfies:

– ( Functionality) For any n ∈ N, C ∈ Cn, O(C) is a circuit which computes
the same function as C.

– ( Polynomial Slowdown) There is a polynomial q such that for any n ∈ N,
C ∈ Cn, |O(C) ≤ q(|C|).

– ( Virtual Black Box)1 For any PPT adversary A and polynomial p there is
a PPT simulator S such that for all sufficiently large n ∈ N and C ∈ Cn:∣∣∣∣ Pr

A,O
[A(O(C)) = 1]− Pr

S
[SC(1|C|) = 1]

∣∣∣∣ ≤ 1/p(n)

Definition 2.2 (Indistinguishability Obfuscation [3]). O is said to be an
indistinguishability obfuscator (INDO in short) for C, if it satisfies the function-
ality and polynomial slowdown and for any ensemble of circuit pairs C(1)×C(2) =

{(C(1)
n , C

(2)
n ) ∈ Cn×Cn}, where the two circuits in each pair are of the same size

and functionality, it holds that: O(C(1)) ≈c O(C(2)).

Another relaxation of VBB is Best Possible Obfuscation (BPO in short)
[17]. Here the requirement is that any information which the obfuscation leaks
is efficiently learnable from any other circuit with the same functionality and

1 As noted by [3] the above can be replaced with the equivalent requirement that∣∣∣Pr[A(O(C) = π(C)]− Pr[SC(1|C|) = π(C)]
∣∣∣ ≤ 1

p(n)
for any predicate π : Cn →

{0, 1}. Also the size of the simulator can depend on p(n), namely the required sim-
ulation quality.



related size (hence it is “best possible”). The two definitions are equivalent when
the obfuscator is required to be a PPT [17].

Before presenting our definition we make the following preliminary observa-
tion regarding the nature of the above relaxations. The INDO (BPO) definition
is in fact equivalent to a weak black-box definition, which allows an unbounded
simulator with unlimited number of oracle queries (proof in [4]).

Proposition 2.1. O is an indistinguishability obfuscator for an ensemble of
circuits C = {Cn} iff for any efficient distinguisher A and polynomial p, there is
a (possibly inefficient) simulator S, such that for all large enough n and C ∈ Cn:∣∣∣∣ Pr

A,O
[A(O(C)) = 1]− Pr

S
[SC(1|C|) = 1]

∣∣∣∣ ≤ 1/p(n)

2.2 VGB Obfuscation

The new definition relaxes the VBB security requirement by allowing the simu-
lator to have more computational power. However, we still restrict the number of
oracle queries it is allowed to make. The functionality and polynomial slowdown
requirements should be satisfied as in Definition 2.1. The VBB requirement is
replaced by the following. Denote by C[q] an oracle to the circuit (function) C
which allows at most q queries.

Definition 2.3 (Virtual Grey Box - obfuscation with a strong simula-
tor). A PPT O has the VGB property if for any PPT adversary A and polyno-
mial p there is a (possibly inefficient) simulator S and a polynomial q such that
for all sufficiently large n ∈ N and any C ∈ Cn:∣∣∣∣ Pr

A,O
[A(O(C)) = 1]− Pr

S
[SC[q(n)](1|C|) = 1]

∣∣∣∣ ≤ 1/p(n)

Remark 2.1. The definitions above concern obfuscators for circuits. That is, both
the input program and the output of the obfuscator are given by circuits. One can
naturally adjust these definitions to fit the case of Turing Machine obfuscators
(both input and output are given by a description of a TM). In this work we
shall focus on circuit obfuscators (see[4] for corresponding TM definition).

When Is VGB Meaningful? Like INDO and BPO, VGB obfuscation does not
seem strong enough for some desirable obfuscation tasks. Examples include:
transforming private key encryption schemes to public ones and constructing
homomorphic encryption schemes2. Informally, the problem in these scenarios
is that the obfuscated program computes some kind of cryptographic function-
ality, which does not remain secure in the presence of unbounded simulators.
In general, it seems that VGB is mostly meaningful for program classes which
are unlearnable with only poly many queries even for learners with unbounded
computation time. For families of programs that are not efficiently learnable,
but are learnable for unbounded algorithms with only polynomially many oracle
queries, VGB might not guarantee the required security .

2 See the section on applications in [3] for more details.



2.3 VGB Vs. VBB and INDO

VGB is strictly weaker than VBB. The VGB definition is clearly implied by the
VBB definition. We show that in fact it is strictly weaker. That is, we show
a family which can not be obfuscated according to the VBB definition but is
(trivially) obfuscatable under the weaker VGB definition. To do so, we use a
slight variation of the family constructed in the [3] impossibility result.

Proposition 2.2. Assuming the existence of one-way permutations, there exist
a family of programs which is not VBB obfuscatable but is VGB obfuscatable.

To prove the above we use the notion of TM obfuscation (in contrast to
circuit obfuscation used in most of this work). The corresponding definitions
and proof are given in in [4].

VGB implies INDO (BPO). The relation between VGB obfuscation and the
INDO (BPO) follows from Proposition 2.1. That is, even when VGB is further
weakened by allowing the (unbounded) simulator unlimited oracle access, it still
implies INDO and (for efficient obfuscators) BPO.

2.4 Impossibility Results

We consider the possibility of “universal VGB obfuscation”. That is, could there
exist a VGB obfuscator for the class of all programs? We observe that for TM’s
obfuscators the impossibility result of [3] extends and also applies for VGB ob-
fuscation. However, for circuits obfuscators the [3] separation no longer holds.
Essentially, the reason for this difference is that the VBB unobfuscatable circuit
family constructed by [3] include cryptographic functionalities (such as encryp-
tion schemes and pseudo random functions) which fail to remain secure in the
presence of unbounded simulators (even with limited oracle access). We could
not rule out universal VGB obfuscation in the circuit case.

We note that [17] show impossibility of universal BPO obfuscation for circuits
which are allowed to use random oracle gates. Their result also applies for the
stronger VGB notion; however, the meaning of an impossibility result in such
setup is somewhat less clear.

3 Composable Point Obfuscators

In this section we define and construct composable VGB point obfuscators. In
next sections we show that such obfuscators suffice for meaningful applications.

3.1 Composition of Obfuscators

One central question in the context of obfuscation is the question of composition,
which asks when and whether is it secure to obfuscate a sequence of programs by
obfuscating each program on its own and combining the obfuscated programs.
There are several forms of composition one could consider, in this work we con-
sider one specific form, namely composition by concatenation [23].



Definition 3.1 (t-composable obfuscation [23]). A PPT O is a t-composable
obfuscator for a circuit ensemble C = {Cn} if it satisfies the functionality and
poly slow-down as in Definition 2.1 and for any PPT binary adversary A and
polynomial p, there is a simulator S, such that for any sequence of circuits
C1, . . . , Ct ∈ Cn (where t = poly(n)) and any sufficiently large n:∣∣∣Pr[A(O(C1), . . . ,O(Ct)) = 1]− Pr[SC

1,...,Ct

(1|C
1|, . . . , 1|C

t|) = 1]
∣∣∣ ≤ 1/p(n)

Where C1, . . . , Ct gets as input (x, i) and returns Ci(x).

Originally [23] naturally refer to VBB obfuscation, i.e. the simulator S is a
polynomially bounded. We consider the definition also for VGB obfuscators, i.e.
we allow the simulator to be unbounded with poly many oracle queries.

3.2 Point Obfuscators

Point circuits. For a security parameter n ∈ N and a domain Dn, a point circuit
Cx : Dn → {0, 1} returns 1 on input x and 0 on all other inputs. The point
circuits we discuss are given in some “canonical” form where the point x is
explicit. As the size of the canonical circuits is determined by the parameter
n, we simplify our notation by letting the simulator take input 1n (instead of
the circuit size). The natural choice for the domain is Dn = {0, 1}n. However, to
avoid confusion when discussing tuples of points in Dtn, we shall stick to the more
general notation. We refer to obfuscators for point circuits as point obfuscators.

Is any point obfuscator composable? Point obfuscators have been constructed,
both in the plain model and in the random oracle model. A natural question is
whether any VBB secure point obfuscator is also guaranteed to be composable
(as in Definition 3.1). [23] conjectured that the answer is negative. To support
their conjecture they give a point obfuscator in the Random Oracle model which
is not even 2-composable. In the standard model, it can be shown that if point
obfuscators exist, then there are also point obfuscators which are not Ω(n)-
composable [9]. In general, none of the constructions of point obfuscators were
known to be composable.

3.3 Distributional Indistinguishability and Composable Point
Obfuscation

To overcome the difficulties in achieving composable point obfuscators, we ex-
plore in this section an additional property of point obfuscators, called Distri-
butional Indistinguishability (or DI in short)3. We will show that this additional
property is necessary for composable obfuscation even under the weaker VGB
notion. More importantly, we will show that in fact it suffices for VGB obfusca-
tion. The definition we present generalizes the DI definition presented in [8].

3 DI should not be confused with Indistinguishability Obfuscators of [3] which were
presented in Definition 2.2



Definition 3.2 (Coordinatewise Well Spread). Let X = {Xn} be an en-

semble, where each Xn is a distribution on Dt(n)
n for a domain ensemble {Dn}.

We say that X is CWS if: max
a∈Dn

Prx̄←Xn [∃i ∈ [t] : xi = a] = n−ω(1).

That is any element has only a negligible chance of being picked within a vector
sampled from the distribution. Equivalently, in a CWS ensemble the distribu-

tions X
(i)
n all have super-log min-entropy, i.e. mini∈[t]H∞(X

(i)
n ) = ω(log n).

Definition 3.3 (Distributional Indistinguishability). O is t-DI if for any

CWS distribution ensemble, X = {Xn = 〈X(1)
n , . . . , X

(t)
n 〉}, it holds that:

O(CX (1)), . . . ,O(CX (t)) ≈c O(CU(1)), . . . ,O(CU(t))

Where each O(CX (i)) is an ensemble of distributions on point obfuscations, and
the hidden point is drawn from X (i) and U (1), . . . ,U (t) are ensembles of indepen-
dent uniform distributions over {Dn}.

We note that for the case t = 1 Definition 3.3 is equivalent to the DI definition
in [8], where it is shown that for t = 1, DI and VBB are in fact equivalent. The
proof there does not follow through for larger t. Nevertheless, we show:

Theorem 3.1. Any t-DI point obfuscator is a t-composable VGB obfuscator.
Moreover, for t = O(1) it is VBB composable. Conversely, any t-composable
VGB point obfuscator is t-DI.

The proof of the second part of Theorem 3.1 (namely the necessity of DI for
composable VGB obfuscation) is rather simple and brought in [4]. We focus on
the first part of the theorem that is more involved. A high-level discussion of the
proof, techniques and main ideas is given in the introduction. The proof itself is
divided to several lemmas. We start with preliminary notations.

Notations. Given a vector of t points x̄ = 〈x1, . . . , xt〉 we abuse notation and
denote by Cx̄ the vector of point circuits 〈Cx1

, . . . , Cxt
〉. We also denote by

O(Cx̄) the composition O(Cx1), . . . ,O(Cxt). Speaking of vectors, we shall often
be interested in the (unordered) set of their elements. Whenever we use set
operators such as ∈,∩,∪ on vectors, it should be interpreted as operating on the
corresponding sets. For integers s ≤ t we denote by

(
[t]
s

)
the family of subsets of

[t] of size s. For vectors x̄, z̄ of dimensions s and t−s, and a set of indices I ⊆ [t]
of size |I| = s, we denote by cmbI(x̄, z̄) the t-vector with the elements of x̄ in
coordinates I and those of z̄ in coordinates [t]− I (the mapping is according to
ascending order of indices)4.

As explained in the introduction, we show that for any partial information the
adversary learns, there is a relevant polynomial set of distinguishing elements.
The first lemma deals with the case that no partial information is learnt, and
can be viewed as a generalization of a similar claim in [8] to multiple points.

4 For example cmb{2,5}((a, b), (c, d, e)) = (c, a, d, e, b).



Lemma 3.1. Assume O is t-DI, then for any binary PPT A and p = poly(n)
there is a poly-size family L = {Ln ⊆ Dn} such that any vector x̄ ∈ Dtn which
does not intersect Ln (i.e. x̄ ⊆ Dn \ Ln) satisfies:∣∣∣∣∣ Pr

A,O
[A(O(Cx̄)) = 1]− Pr

A,O,ūU←Dt
n

[A(O(Cū)) = 1]

∣∣∣∣∣ ≤ 1/p(n) (1)

Proof. Consider a binary PPT A and a polynomial p. We describe the corre-
sponding family L. Let Xn be the set of all vectors which do not satisfy Equa-
tion (1). That is, Xn = X+

n ∪X−n , where:

X+
n =

{
x̄ ∈ Dtn : Pr[A(O(Cx̄)) = 1]− Pr[A(O(Cū)) = 1] ≥ 1/p(n)

}
X−n =

{
x̄ ∈ Dtn : Pr[A(O(Cū)) = 1]− Pr[A(O(Cx̄)) = 1] ≥ 1/p(n)

}
First reduce X+

n to a subset of vectors Y +
n ⊆ X+

n in which any element a ∈ Dn
which appears in some vector x̄ ∈ X+

n appears in exactly one vector ȳ ∈ Y +
n .

Similarly reduce X−n to Y −n . Let Yn = Y +
n ∪ Y −n and define Ln = ∪

ȳ∈Yn

ȳ =

{a ∈ Dn : ∃ȳ ∈ Yn, a ∈ ȳ}. By the construction of Ln, any x̄ ⊆ Dn \ Ln satisfies
Equation (1). It remains to show that |Ln| = poly(n). As |Ln| ≤ t|Yn|, it suffices
to show that |Yn| = poly(n). Assume towards contradiction that the latter does
not hold. We shall construct a CWS distribution ensemble Z = {Zn} over Dtn,
such that A distinguishes O(CZ) from O(CU(Dt)) with advantage 1/p contra-
dicting the DI property. By the assumption on the size of |Ln| there exist a
function `(n) = nω(1) such that for infinitely many n’s either |Y +

n | ≥ `(n) or
|Y −n | ≥ `(n). We assume WLOG the first case holds (the proof is similar for the
second). For any n ∈ N such that |Ln| ≥ `(n), set Zn to be uniform on the set
Y +
n . For other n let Zn be uniform on some arbitrary set of size `(n) in which

any element appears in at most one vector (we can take ` = o(|Dn|) to assure
such a choice is possible). The resulting ensemble Z is CWS since any single
vector is drawn with probability at most 1/`, and any single element appears in
at most one vector. Moreover, for any n such that Zn , U(Y +

n ), it holds that:

Pr
z̄←Zn

[A(O(Cz̄)) = 1] − Pr
ū←U(Dt

n)
[A(O(Cū)) = 1] ≥

min
ȳ∈Y +

n

Pr[A(O(Cȳ)) = 1] − Pr
ū←U(Dt

n)
[A(O(Cū)) = 1] ≥ 1/p(n)

ut

While in [8] the above lemma suffices for constructing a simulator, in our
setup it does not, since it does not cover the possibility that the adversary
successfully learns only some of the points. The next lemma shows that for
any partial information learnt by the adversary there is still a corresponding
polynomial distinguishing set.

Lemma 3.2. Assume O is t-DI. Let s = s(n) be any length function such that

s ≤ t and let T =
{

(x̄n, In) ∈ Dsn ×
(

[t]
s

)}
n∈N

be a family of vectors and index



sets5. Then for any binary PPT A and p = poly(n) there exists a poly-size family
LT = {Ln} such that for any ȳ ∈ Dt−sn that does not intersect Ln:

|Pr[A(cmbIn(O(Cx̄n
),O(Cȳ)) = 1]− Pr[A(cmbIn(O(Cx̄n

),O(Cū))) = 1]| ≤ 1

p(n)

Where ū
U← Dt−sn and the probabilities are over the coins of A,O and ū.

To prove the lemma, we shall need the following intuitively correct claim.

Claim. If O is t-DI then it is also s-DI for any s ≤ t. (proof in [4]).

Proof (of Lemma 3.2). Consider the function r = t− s, then by Claim 3.3 O is
r-DI. Consider an adversary A′ (for r-compositions) which has T hardwired, and
on input w̄ (here w̄ = O(Cȳ) for some y1 . . . yr), runs A on the valid obfuscation
cmbIn(O(Cx̄n),O(Cȳ)) . By Lemma 3.2 this A′ has a family LT which satisfies
the required property with respect to the original adversary A. ut

The next lemma shows there is a uniform polynomial bound on the size
of all distinguishing sets (corresponding to any partial information), and hence
there exists a distinguishing function family, which given any partial informa-
tion outputs a poly-size set of all distinguishing elements (with respect to this
information).

Lemma 3.3. Let O be a t-DI obfuscator. Then for any binary PPT A and
p = poly(n), there exists a family of functions F = {Fn} and a q = poly(n) such

that Fn :
⋃
s≤t

(
Dsn ×

(
[t]
s

))
−→

⋃
s≤q

(Dn

s

)
and satisfies for any (x̄, I) ∈ D|I|n ×

(
[t]
|I|
)

and any ȳ ∈ Dt−|I|n which does not intersect the set Fn(x̄, I):

|Pr[A(cmbIn(O(Cx̄),O(Cȳ))) = 1]− Pr[A(cmbIn(O(Cx̄),O(Cū))) = 1]| ≤ 1

p(n)

Where ū
U← Dt−|I|n and the probabilities are over the coins of A,O and ū.

Remark 3.1. The function Fn is defined for any “partial information”. In par-
ticular the set of indices I is allowed to be the empty set corresponding to no
partial information as in Lemma 3.1.

Proof. For any (x̄, I) ∈ D|I|n ×
(

[t]
|I|
)
, let Fn(x̄, I) ⊆ Dn be the minimal set which

satisfies the above condition (note that such a set always exists as Dn trivially
satisfies the requirement). We show that, there exists a q = poly(n), such that
|Fn| ≤ q(n) (i.e. q is a uniform bound on all images). Let (x̄∗n, I

∗
n) be the pair

which maximizes Fn(x̄, I), i.e. |Fn(x̄∗n, I
∗
n)| = max

I⊆[t],x̄∈D|I|
n

|Fn(x̄, I)|. By Lemma 3.2

there exists a q = poly(n) for which |Fn(x̄∗n, I
∗
n)| ≤ q(n) (just by considering the

family {(x̄∗n, I∗n)}n∈N). The result follows. ut
5 Any pair (x̄, I) should be thought of as partial information on a tuple of size t with

the elements of x̄ in the indices I.



To complete the proof of the theorem, we construct a simulator using the
family of distinguishing functions F . However, as it might not be computable by
a poly-size simulator, the result holds only for strong simulators as in the VGB
definition.

Proof (Any t-DI point obfuscator is also VGB t-composable (sketch)). Let A be
a binary PPT adversary and p a polynomial. Let F be the corresponding family
of functions given by Lemma 3.3 and let q be the polynomial bound on the
images of F . We construct an unbounded simulator S which performs at most
q · t oracle queries. Given oracle access to a tuple of circuits Cx̄ = Cx1 , . . . , Cxt ,
for some x̄ ∈ Dtn. S first runs Fn (on the empty set), retrieves a set L(0) of all
distinguishing elements with respect to no partial information, and queries its
oracle on all the elements in L(0). In case it did not reveal any elements (i.e.

x̄ ∩ L(0) = ∅), it chooses a uniform vector ū
U← Dtn, computes obfuscations of

the points in ū and runs A on their composition. Otherwise, it revealed some
elements given by a pair (z̄(0), I(0)). It then computes L(1) = Fn(z̄(0), I(0)), and
as in the first step, queries all the values in L(1). In case it did not reveal any new

values, it chooses a uniform vector ū
U← Dt−|I

(0)|
n and runs A on an obfuscation

cmbI(0)(O(Cz̄(0)),O(Cū))). Otherwise it has updated partial information given
by a pair (z̄(1), I(1)). It continues on in this manner. If at any point it revealed all
the points in x̄ it just runs A on a random composed obfuscation of the points in
x̄ performing a perfect simulation. Otherwise, it stops after at most t iterations,
performing a simulation of 1/p accuracy. This completes the main part of the
proof of Theorem 3.1. ut

A more careful analysis shows that we can somewhat “compress” the distin-
guishing function F to a set of distinguishing elements. This yields the following.

Proposition 3.1. If O is a t-DI obfuscator, then any binary adversary given
a sequence of t obfuscations can be simulated by a simulator of size nO(t) and
polynomially many queries. In particular, for t = O(1) this yields a polynomially
bounded simulator (VBB). (proof in [4])

On the possibility of bounded simulation (VBB). We note that our result does
not rule out the possibility of bounded simulation for any t = poly(n). It might
be that there always exists a function family F such as the one required in
Theorem 3.1 which is also efficiently computable, or even a “compressed” poly
set of distinguishing elements as in Proposition 3.1. Alternatively, there might
be other techniques which allow efficient simulation. In this context, we show an
example of an adversary whose distinguishing function can not be compressed
to a poly set. We also show that if bounded simulation exists then so does an
efficiently computable function family F (i.e. simulation can be proven using the
same technique we use above). The details are given in [4].

Remark 3.2. We note that the applications in Section 5.2 can be shown to hold
using the DI obfuscation definition, the equivalence given by Theorem 3.1 allows
considering a ”simulation” definition that holds for any input, and provides a
security guarantee even with keys (hidden points) from an arbitrary distribution.



3.4 A Composable Point Obfuscator

After establishing the proper framework in the previous, this section is devoted to
a concrete construction for composable VGB point obfuscators. We consider the
point obfuscator constructed in [8] and analyze its security under composition.

Construction 3.2 (The r, rx Point Obfuscator [8]). Let G = {Gn}n∈N be
a group ensemble, where each Gn is a group of prime order pn ∈ (2n−1, 2n). We

define an obfuscator, O, for points in the domain Z∗pn as follows: Cx
O7−→ C(r, rx)

Where r
U← G∗n is a random generator of Gn, and C(r, rx) is a circuit which on

input z, checks whether rx = rz.

In [8] Construction 3.2 is shown to be secure under a strong variant of the
Decision Diffie-Hellman assumption. We now present our assumption which is a
generalization of the [8] assumption to tuples of points.

Assumption 3.3 (t-Strong Vector Decision Diffie Hellman). Let t =
poly(n). There exist group ensemble G = {Gn : |Gn| = pn is prime} with effi-
cient representation and operations, such that for any CWS distribution ensem-
ble X = {Xn} over vectors in (Z∗pn)t the following holds:

g1, g
a1
1

...
gt, g

at
t

:
ḡ
U← (G∗n)t

ā
Xn← (Z∗pn)t


n∈N

≈c


g1, g

u1
1

...
gt, g

ut
t

:
ḡ
U← (G∗n)t

ū
U← (Z∗pn)t


n∈N

We observe that Assumption 3.3 implies that the r, rx point obfuscator is t-DI
with respect to the corresponding group ensemble G, given by the construction.
Hence, Theorem 3.1 yields:

Theorem 3.4. Under Assumption 3.3, the r, rx point obfuscator is a t-composable
VGB point obfuscator (w.r.t the group ensemble G given by the assumption).
Assuming the existence of a “universal” group ensemble which satisfy Assump-
tion 3.3 for any t = poly(n) implies fully composable VGB obfuscators (i.e.
t-composable for any t = poly(n)).

4 On the Assumption

In this section we discuss Assumption 3.3 and its relation to previous Decision
Diffie Hellman variants. We also show that it holds in the Generic Group Model.

Relation to Previous DDH Assumptions. We start by presenting another strong
variant of DDH for tuples of points, which is in a sense a natural generalization
to the standard and strong DDH assumptions [6, 8].



Assumption 4.1 (t-Strong Vector Decision Diffie Hellman II ). Let t =
poly(n). There exist group ensemble G = {Gn : |Gn| = pn is prime} with effi-
cient representation and operations, such that for any CWS distribution ensem-
ble X = {Xn} over vectors in (Z∗pn)t the following holds:
g1, g

a1
1 , gb11 , g

c1
1

...

gt, g
at
t , g

bt
t , g

ct
t

:

ḡ
U← (G∗n)t

ā
Xn← (Z∗pn)t

b̄, c̄
U← (Z∗pn)t


n∈N

≈c


g1, g

a1
1 , gb11 , g

a1b1
1

...

gt, g
at
t , g

bt
t , g

atbt
t

:

ḡ
U← (G∗n)t

ā
Xn← (Z∗pn)t

b̄
U← (Z∗pn)t


n∈N

Restricting the assumption to t = 1 results in the strong DDH (SDDH) as-
sumption in [8]. If in addition we restrict X to be the uniform distribution ensem-
ble, we get the standard DDH assumption. Assumption 4.1 appears as a more
familiar and natural generalization of SDDH and DDH than Assumption 3.3
does. However, 3.3 is somewhat simpler and is clearly weaker (the distributions
induced by the last two elements of each foursome in 4.1 are identical to those
in 3.3). It turns out that the assumptions are in fact equivalent (proof in [4]).

A natural question is whether assumptions 3.3 and 4.1 for t = 1 imply the
corresponding assumptions for general polynomial t (or even just larger constant
t). For the case that the distribution ensemble X is the uniform distribution this
is true (corresponds to showing DDH for any poly number of foursomes from
DDH for a single foursome by an hybrid argument). However, when allowing
any CWS distribution, such an argument fails to work for two main reasons: (a)
dependence among coordinates. (b) the distribution ensemble might not even be
efficiently samplable. In general we do not know whether SDDH implies SVDDH.

SVDDH Holds in the Generic Group Model. We show that Assumption 3.3 holds
for any t = poly(n) in the generic group model [25] where algorithms can not
exploit the representation of the group elements, other than the fact that each
element has a unique representation (formal model description and proof in [4]).

5 Applications

In this section, we show how composable VGB point obfuscators, can be used to
construct composable VGB obfuscators for MBPC’s. Then we discuss how these
can be used to obtain strong encryption schemes that are simultaneously resilient
to key dependent messages (KDM), leakage and related key attacks (RKA).

5.1 Obfuscation of Point Circuits with Multi-bit Output

A multibit point circuit (or MBPC in short), Cx→y : Dn → {0, 1}m, returns y on
input x and ⊥ on all other inputs (once again we assume Cx→y is given in some
canonical form where x, y are explicit). MBPC obfuscators were constructed by
[9] assuming the existence of a composable VBB point obfuscators. However, as
explained earlier no known obfuscator has been shown to be composable. We



show that applying the [9] construction to composable VGB point obfuscators
results in a strong VBB MBPC obfuscator which is also VGB composable. We
remark that existing MBPO’s were only shown to be secure for the restricted case
that the message m is independent of the key k [9, 10]. Moreover, they were not
shown to be composable. Both properties are essential for the encryption schemes
discussed in the next subsection, in order to get resilience to key-dependent-
messages and related key attacks.

Construction 5.1 (Multibit-bit Output Point Obfuscator [9]). Let O be
a point obfuscator. Define a PPT O(m) for point circuits with m-bit output as
follows. For a point x ∈ Dn and output y = y1y2 . . . ym ∈ {0, 1}m, choose a
random s ∈ Dn−{x} and define ā = 〈a0, a1, . . . , am〉 as follows. a0 = x, and for
any i ∈ [m] ai = x if yi = 1 and ai = s otherwise. The output of the obfuscator is:
O(m)(Cx→y) = C(O(Ca0), . . . ,O(Cam)). Where C is a circuit which performs as
follows. On input z, it first checks whether a0 = z (using the first point circuit).
If it does not, it returns ⊥. Otherwise, it finds all other coordinates such that
ai = z and outputs y1 . . . ym, where yi = 1 if ai = z and 0 otherwise.

Proposition 5.1. if O is an (m + 1)-composable VGB point obfuscator then
O(m) (given by Construction 5.1) is a VBB obfuscator for m-bit point circuits.
Moreover, for any decomposition m + 1 = t × (m′ + 1) O(m′) is a VGB t-
composable MBPC obfuscator (proof in [4]).

5.2 Strong Encryption Schemes

As noted in [9], obfuscation of MBPC’s implies a very strong type of symmetric
encryption (which they call a digital locker). This usage was further explored
lately by [10] who showed tight relations between MBPC (VBB) obfuscation
and the notions of weak key encryption and key dependent messages encryp-
tion. Informally, they show that the existence of MBPC VBB obfuscators imply
the existence of strong symmetric encryption schemes which are secure for key
dependent messages even with weak random keys. We extend their results by
showing that using composable VGB MBPC obfuscators (as the ones described
above), similar implications still hold, even for the scenario of multiple messages
and keys which are correlated (KDM, RKA). We note that the implications
of composable MBPC obfuscation to RKA encryption was not discussed prior
to this work. We start by presenting the basic natural transformation between
MBPC obfuscators and symmetric encryption schemes.

Construction 5.2 (MBPCO to Symmetric Encryption). Let O be an
MBPC obfuscator, define (probabilistic) encryption and decryption algorithms:
EOk (m) , O(Ck→m) and DOk (C) = C(k), where C is interpreted as an MBPC
and k is a key taken from a domain of keys Dn (key sampling is addressed below).

There are several definitions regarding KDM, RKA and leakage [5, 20, 7, 2].
We use a variant of the definition in [10] extended to the setup of multiple related
keys. In this definition, t keys are generated from a distribution X = {Xn} on



key vectors in Dtn and the adversary witnesses t encryptions of predetermined
functions of the keys. Any message might depend on any key, and the keys
themselves might also be dependent, according to the joint distribution Xn.
The definition considers the case where the distributions Xn are not necessarily
uniform but only have certain entropy guarantee.

Definition 5.1 (encryption with multi keys-messages dependence). An
encryption scheme (E,D) is (m, t)-MKM secure if for any CWS distribution
ensemble X = {Xn} on key vectors in Dtn, any PPT A, and (predetermined)
functions f1, . . . , ft : Dtn → {0, 1}m and all large enough n, the following differ-
ence is negligible.∣∣∣∣∣∣∣ Pr
k̄←Xn
E,A

[A(Ek1(f1(k̄)), . . . , Ekt(ft(k̄))) = 1]− Pr
k̄

U←Dt
n

E,A

[A(Ek1(0̄), . . . , Ekt(0̄)) = 1]

∣∣∣∣∣∣∣
Where m(n), t(n) are polynomially bounded length functions and 0̄ = 0m.

Theorem 5.3. Let O be a t-composable VGB obfuscator for m-bit point circuits,
then the encryption scheme (EO, DO) is (m, t)-MKM secure (proof in [4]).

Extension to asymmetric encryption. In case the underlying point obfuscator
used in Constructions 5.1,5.2 can be re-randomized, we can in fact get a CPA-
secure public key encryption scheme6 with essentially the same strong proper-
ties described above. In particular, one can consider a CPA adaptive definition
instead of the one given above. We note that the point obfuscator given by
Construction 3.2 is indeed re-randomizable as required.

Other extensions and remarks. We note that the RKA resilience described above
does not deal in general with adversaries which adaptively choose the key de-
pendence. However, considering the instantiation of the scheme with the Con-
struction 3.2 obfuscator, one gets RKA security for the family of affine functions
of the key even against adaptive adversaries (this follows simply because the
construction allows affine homomorphisms of the key). Another remark is that
the KDM resilience the scheme is also restricted to a non-adaptive model in
which the adversary has to choose in advance the functions of the key which
it is interested in, this can be equivalently formulated as an adaptive definition
where the family of correlation functions is polynomially bounded, nevertheless
this is a meaningful setting which captures common KDM resilience such as the
classical circular dependence.
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