
Oblivious RAM Revisited

Benny Pinkas1? and Tzachy Reinman2

1 Dept. of Computer Science, University of Haifa, Mount Carmel, Haifa 31905, Israel.
benny@pinkas.net

2 School of Computer Science and Engineering, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel. reinman@cs.huji.ac.il

Abstract. We reinvestigate the oblivious RAM concept introduced by
Goldreich and Ostrovsky, which enables a client, that can store locally
only a constant amount of data, to store remotely n data items, and
access them while hiding the identities of the items which are being
accessed. Oblivious RAM is often cited as a powerful tool, but is also
commonly considered to be impractical due to its overhead, which is
asymptotically efficient but is quite high. We redesign the oblivious RAM
protocol using modern tools, namely Cuckoo hashing and a new obliv-
ious sorting algorithm. The resulting protocol uses only O(n) external
memory, and replaces each data request by only O(log2 n) requests.

Keywords: Secure two-party computation, oblivious RAM.

1 Introduction

The need to enhance the security of data storage systems and to encrypt the
content they store is obvious. Various encryption algorithms are in common use
for many years, so content-encryption may be considered, for the most part, as
an already-solved issue. Apparently, encryption alone does not suffice. A server,
which maintains a data storage system, can gain information about its users’
habits and interests, and violate their privacy, even without being able to decrypt
the data that they store. The server can monitor the queries made by the clients
and perform different traffic analysis tasks. It can learn the usual pattern of
accessing the encrypted data, and try to relate it to other information it might
have about the clients. For example, if a sequence of queries q1, q2, q3 is always
followed by a stock-exchange action, a curious server can learn about the content
of these queries, even though they are encrypted, and predict the user action
when the same (or similar) sequence of queries appears again. Moreover, it is
possible to analyze the importance of different areas in the database, e.g., by
counting the frequency of the client accessing the same data items. If the server
is an adversary with significant but limited power, it can concentrate its resources
in trying to decrypt only data items which are often accessed by the target-user.
? This research was supported by the European Research Council as part of the ERC

project SFEROT, and by the Israel Science Foundation (grant No. 860/06).

Another ability of the server is to draw conclusions about relations between
queries, and so on.

In order to protect against this kind of privacy violation, one must hide
the access patterns of clients of the storage system. This problem is related to
the classic result of Pippenger and Fischer on oblivious simulation of Turing
machines [18]. In the context of RAM machines, this problem was investigated
by Goldreich [8] and Ostrovsky [14] as a software protection problem (the goal
there was to hide the pattern of access of a program to memory in order to
prevent reverse engineering of the software). The best results of Goldreich and
Ostrovsky appear in [9].

Hiding the access pattern, or making it oblivious, means that any equal-
length sequence of clients’ data requests to the server are equivalent from the
point of view of the eavesdropper (who might be the server itself). The server
must only know the number of queries in the sequence.

The cost of the best protocol of Goldreich-Ostrovsky was efficient asymp-
totically but clearly unfeasible for any reasonable application: Storing n data
items was replaced with storing O(n log n) items; furthermore, each access to
a data item was replaced by O(log3 n) data requests to the stored data (this
O(log3 n) overhead comes with a very large constant factor; it can be replaced
with O(log4 n) with a reasonable constant).

Due to the overwhelming overhead of the oblivious RAM protocol, it was
often cited as a “theoretical” solution which could in principal solve many prob-
lems (such as cache attacks, or search on encrypted data; see discussion below),
but is clearly impractical. Our goal was to design an improved protocol which
will be feasible in practice. We describe in this work a new construction with a
considerably improved overhead: it requires the client to store only O(n) items,
and replace each data request with O(log2 n) accesses to the stored data, where
the constants in the “O” notation are small. A detailed comparison with previous
schemes appears in Sect. 2.

Other applications of oblivious RAM We mentioned above that oblivious
RAM can be used to hide access patterns to data stored on a remote and un-
trusted server, or to enable a CPU to operate securely with an untrusted memory.
Another application of oblivious RAM is for the symmetric encryption variant
of “search on encrypted data”, where a client stores data (e.g. mail messages)
remotely, and wishes to use the data while protecting its privacy (see, e.g. [19]).
Oblivious RAM can also be used for protecting against cache attacks, which are
software side-channel attacks run by monitoring the state of the CPU’s memory
cache. These attacks have been demonstrated to reveal AES keys in real sys-
tems [15]. As noted in [15], an oblivious RAM can hide these access patterns,
but at a cost which is definitely unacceptable for basic CPU operations.

The basic ideas behind our new construction We base our solution on
the Goldreich-Ostrovsky hierarchical solution, which is described in [9] (and in
the full version of our paper). We improve its overhead by using the following
primitives instead of the original components of the construction.

– Cuckoo Hashing. In the Goldreich-Ostrovsky construction the client maps
data items into bins using a random hash function that is kept secret from
the server. The number of items mapped into each bin must be hidden from
the server. It is well known that when n items are randomly mapped to n
bins then (with high probability) the most populated bin contains O(log n)
items. Therefore in the original construction the client sets each bin to have
sufficient room for O(log n) items, and stores in a bin fake items if less than
this number of items are mapped to it. This increases the overall storage
required by the construction to O(n log n).
In comparison, our construction uses Cuckoo hashing [16,17], which is a
hashing scheme mapping n items to 2(1 + ε)n bins with the guarantee that
at most a single item is mapped into a bin. Consequently, the construction
uses a total of only O(n) server storage.

– Pseudo-random permutation. The server observes where items are inserted to
the Cuckoo hash table, and might use this information to identify “dummy”
items (a discussion of the usage of dummy items is given in Sect. 4). In order
to prevent that, the client needs to apply a pseudo-random permutation to
the order of the items before inserting them to the hash table.

– Randomized Shell sort. The storage system is built of hierarchical levels. Pe-
riodically, the items of two adjacent levels are reshuffled. The reshuffling pro-
cess uses sorting, which is composed of many steps where the client retrieves
a pair of encrypted items from the server, decrypts them and compares the
results, and stores a re-encrypted version of the sorted pair. The sorting
must be oblivious in the sense that the indices of the pair of items that
are compared must not leak any information about the results of previous
comparisons. The original Goldreich-Ostrovsky construction uses a sorting
network for this purpose, but this solution has an overhead of O(n log2 n)
comparisons, with a very small constant, using Batcher’s network [5], or
O(n log n) comparisons, with a constant of about 6100, using the AKS net-
work [2]. We perform sorting using the new randomized Shell sort algorithm
of Goodrich [10]. This algorithm is oblivious, sorts with very high probabil-
ity, and works in O(n log n) comparisons; where the “O” notation hides only
a very small constant.

We stress that even given these improved primitive building blocks, a lot of care
had to be taken in order to compose them to a secure, and efficient, oblivious
RAM protocol. Additional effort was needed in order to reduce the constant
factors of the overhead.

1.1 Basics of Oblivious RAMs

The problem of hiding access patterns is modeled in the following way: The
setting includes a client which has a small secure memory, and a server with a
large insecure storage. The client can use the server’s storage to store and retrieve
its data. The client stores internally a secret key of a symmetric encryption
scheme, and uses it to encrypt the data before storing it, and decrypt it after
retrieving it.

We assume here and throughout the paper that encryption is done with a
semantically secure probabilistic encryption scheme and therefore two encrypted
copies of the same data look different. The server cannot identify whether these
two copies correspond to the same data of the client.

The client has n data items denoted as (vi, xi), where i = 1, . . . , n is an index,
vi is the data identifier or location-index (e.g., a serial number), different for each
data item, and xi is the data payload. It is assumed that all xi values are of the
same length. To simplify the description we assume that the storage service of
the server has slots of a size which is equal to the size of an encryption of a data
item used by the client. Therefore each slot can be used to store a data item,
where the client can ask to store a specific data item in a specific slot location
j. All requests to the server are therefore of the form “GET j”, which provides
the client with the (encrypted) content of slot j, or “PUT data j”, which stores
at slot j the encrypted data provided by the client.

The client has a small amount of secure internal memory. It includes space for
O(1) data items, for O(1) secret keys for symmetric key cryptographic functions,
and for a constant number of counters which count up to n and therefore are of
length O(log n) bits.

We assume that the server does not tamper and modify the stored data,
because this issue can be easily solved by the client authenticating the stored
data using a message authentication code (MAC) and a secret key known only
to the client. However, the server does learn which location in its storage is being
accessed by the client in each operation.

By default, the client cannot hide the fact that it accesses a specific location
in the server’s storage. The server can examine the contents of its storage and of
the requests from the client, but the server obviously cannot learn the contents
of the stored data, since it is encrypted. The goal of the client is to hide its access
pattern to the stored data. This is expressed in the following definition.

Definition 1. The input y of the client is a sequence of data items, denoted
by y = ((v1, x1), . . . , (vn, xn)) and a corresponding sequence of operations, de-
noted by (op1, . . . , opm), where each operation is either a read operation, denoted
read(v), which retrieves the data of the item indexed by v, or a write operation,
denoted write(v, x), which sets the value of item v to be equal to x.

The access pattern A(y) is the sequence of accesses to the remote storage
system, which contain both the indices accessed in the system and the data items
read or written. An oblivious RAM system is considered secure if for any two
inputs y, y′ of the client, of equal length, the access patterns A(y) and A(y′) are
computationally indistinguishable for anyone but the client.

Hiding the access patterns, or “unifying” them, must have a cost – each
access is simulated by more than one access. First, we would like to make the
different types of accesses look the same. For example, if we want that read and
write would be indistinguishable, we would have each of them both implement
read and write, i.e., read the value in the accessed location, decrypt it and then
rewrite it with an encryption of the same value or a different one. Note that since

we use a semantically secure probabilistic encryption, the server cannot identify
whether the data was changed before it was written back. We note that this
element of making different types of data access look the same, by always using
a read-and-then-write operation, is common for all the following solutions. From
here on, we treat all read, write, or other access-operation, as equal. Adding
a write operation to each read operation already multiplies the computational
overhead by a factor of two. In addition, we would like to prevent the adversary
from distinguishing between accesses to locations {v1, v2, v3} and {v2, v1, v2},
etc. A trivial solution is to read and rewrite the entire set of stored data for
each access. Applying this solution is usually infeasible, since it multiplies the
computational overhead by a factor equal to the number of stored items, which is
normally huge. On the other hand, it is easy to see that this is the best possible
deterministic scheme. A probabilistic scheme, where the operation of the client
depends on a random bits, can do much better.

2 Related Work

Most oblivious RAM constructions are based on the client having access to a
secret (pseudo-)random function, which is implemented using symmetric cryp-
tographic functionalities, such as encryption, and can therefore be constructed
assuming the existence of one-way functions. Very recent results of Ajtai [1] and
of Damg̊ard et al. [7] construct an oblivious RAM based on no cryptographic as-
sumption (but rather, letting the client use the oblivious RAM itself for storing
random coin tosses and accessing them obliviously). The client needs to store
remotely (for each of its data items) an equivalent to a poly-logarithmic amount
of items, rather than O(1) items in our scheme, and each data request is re-
placed with a poly-logarithmic number of requests to the server. It is not clear
how high is the exponent of this poly-logarithmic overhead. We therefore focus
our description of related work on cryptographic oblivious RAM schemes.

The investigation of oblivious RAM techniques was initiated by Goldreich
and Ostrovsky [9]. A major tool used in their constructions is a primitive which
performs an oblivious sorting of the stored data. That is, it sorts the stored
data items according to some index, while hiding from the server all informa-
tion about the permutation that orders the input set of data items. Specifically,
this primitive was implemented in [9] using a sorting network: either the sorting
network of Batcher [5] which performs O(n log2 n) read operations with a very
small constant (approximately 1/2), or the sorting network of AKS [2] which per-
forms only O(n log n) read operations, but whose complexity has a much larger
constant. (The actual overhead of the AKS sorting network is about 6100n log n
comparisons, and therefore it is clear that for any feasible input, the performance
of the Batcher network is preferable.)

Goldreich and Ostrovsky presented a basic “square-root” algorithm, whose
overhead is O(

√
n) read/write operations for each original access to a data item.

They also designed a more complex hierarchical solution, using a data struc-
ture composed of levels, where each level is twice the size of the former level,

and whose overhead is O(log4 n) (using Batcher sorting network). A detailed
description of these solutions can be found in [9] or in the full version of our
paper.

Williams and Sion [20] modified the hierarchical solution of Goldreich and
Ostrovsky, assuming that the client can locally store O(

√
n) data items, rather

than O(1) items. This extended local storage enables to run an oblivious merge
sort and improve the run time overhead to O(log2 n). A solution based on Bloom
filters [6] was presented in [21]. In that solution the client stores at the server,
for every level, an encrypted Bloom filter and uses it to check whether an item
appears in the level. The work in [21] claims to reduce the storage overhead
at the server to O(n), and to reduce the number of actual data requests per
item requested by the client to only O(log n log log n). That analysis is based
on the assumption that the size of the Bloom filter encoding m items is O(m).
The overhead is actually larger, since the size of the Bloom filter must also be
a function of the number of the hash functions used and of the allowed error
probability (which in inevitable when a Bloom filter is used). As a result, the
overhead of the Bloom filter based scheme is worse than that of our scheme for
any reasonable choice of the number of items n and of the error probability of
the filter.

Table 1. A comparison of the different access hiding schemes. (For the scheme of [21],
we note that the original analysis is inaccurate. The second line is for an invocation us-
ing an optimal number of hash functions, with specific numbers for an error probability
of 2−64.)

computational overhead client memory server storage
(data items) (data items)

Goldreich-Ostrovsky [9]
√

n O(
√

n log n) O(1) O(n +
√

n)

Goldreich-Ostrovsky [9] Batcher O(log4 n) O(1) O(n log n)

Goldreich-Ostrovsky [9] AKS O(log3 n), const ≥ 6100 O(1) O(n log n)

Merge sort [20] O(log2 n) O(
√

n) O(n log n)

Bloom filter [21]

original analysis (inaccurate) O(log n log log n) O(
√

n) O(n)

optimal # of hash functions O(1.44c log n log log n) O(
√

n) O(n)
for c = 64: const > 92 +1.44cn bits

This paper O(log2 n) O(1) O(n)

Table 1 compares the performance of all schemes described in this section.3

The performance comparison can be summarized as follows: (1) The construc-
tions of Goldreich-Ostrovsky and of our work are the only ones using local storage
of only O(1) data items; (2) The computational overhead of our construction is
better or equal to that of all other constructions (except for the asymptotic over-
head of the Bloom filter construction for unreasonably high values of n); (3) The
amount of server storage in our construction is better than that of all other con-
structions (except for the Bloom filer construction, which stores a comparable
number of data items and in addition 1.44cn bits, which are more than 92n bits
for c = 64).

3 Building Blocks

3.1 Randomized Shell Sort (Oblivious Sorting Algorithm)

Goodrich’s recent randomized Shell sort algorithm [10] is an efficient sorting
algorithm, using only O(n log n) comparisons with a relatively small constant
factor. Equally important is the fact that this algorithm is also data oblivious.
This property means that if we assume that the operation of comparing two items
and reordering them according to their value is a black-box (i.e., the result of the
comparison is hidden from an external observer, which is the server in our case),
then the algorithm performs no operations which depend on the relative order
of the elements in the input array. In other words, an external observer who can
only observe the items which the algorithm compares, but not the results of the
comparisons, sees a list of pairs of items which are compared, where the choice
of items for these pairs is independent of the results of previous comparisons.

We note that other sorting algorithms are not known to be both oblivious
and efficient. For example, bubble sort is oblivious, but is not efficient; quick
sort is efficient (in the average case) but is not oblivious; sorting networks are
oblivious, but, as noted in Sect. 1, the only sorting network constructions of
size O(n log n) are not efficient in the practical sense, due to large constants.
See [2,10] for details.

We use randomized Shell sort in our scheme in order to reorder items in the
server database, according to a new permutation, in a way that prevents the
server from tracking the new ordering. The details of the randomized Shell sort
construction appear in [10] or in the full version of our paper.
3 Note that for the Bloom filter based scheme [21] the first line of the table lists

the performance according to the original analysis in [21], which is inaccurate. The
second line lists the performance according to a more careful analysis (detailed in
the full version of our paper), assuming an allowed error probability of 2−c. The
O(log n log log n) overhead in the second line has a constant factor of at least 1.44c
(greater than 92 for c = 64), in addition to other constant factors which are similar
to those incurred by all schemes. Given this finer analysis, the performance of [21]
is worse than the performance of our scheme when log n < 1.44c log log n, which is
clearly the case for any reasonable choices of n and c. For example, for n < 280 this
holds for any error parameter c ≥ 9.

3.2 Cuckoo Hashing

Cuckoo hashing [16,17] is a relatively new hashing algorithm, which in its basic
form maps each item to one of two potential entries of a hash table, while
ensuring constant lookup and deletion time in the worst case, and amortized
constant time for insertions.

The basic idea of Cuckoo hashing is to use two hash functions denoted h0 and
h1 (or multiple hash functions in the general case). The size of a hash table used
for storing n items must be slightly larger than 2n (to simplify the discussion, we
consider the size of the table to be exactly 2n). When a new item x is inserted to
the hash table, it is inserted to location h0(x). If this location is already occupied
by another item y, then that item is “kicked out” of its current location and is
re-located to its other possible location. Namely, if hb(y) = hb(x) (for b ∈ {0, 1},
and initially b = 0) then item y is moved to location h1−b(y). If location h1−b(y)
is already occupied by another item z (i.e., h1−b(z) = h1−b(y)), this item (z)
is re-located to location hb(z), and so on. If this chain of relocations continues
for too long, then the table is rehashed using two new hash functions h′0, h

′
1. In

this case the insertion time is longer, but analysis shows that this event is rare,
and therefore the amortized insertion time is constant. Lookup and deletion are
natural – one just has to check the two possible locations of the given item.

Most recent works (e.g., [11,12,13,3,4]) present variants of Cuckoo hashing
with guaranteed constant worst-case performance for insertion (this is also re-
ferred to as de-amortizing the insertion time of Cuckoo hashing).

4 Our Scheme

We first describe the basic form of our oblivious RAM scheme, which has the
desired asymptotic overhead. Appendix A then describes how to improve the
constant factors of the overhead of the scheme.

The construction is based on combining a modified version of the hierarchical
solution of Goldreich and Ostrovsky with Cuckoo hashing and randomized Shell
sort. The server stores the data, which can potentially consist of n items, in a
hierarchical data structure of N = dlog2 ne + 1 levels, each of which is twice
larger than its previous. Additional levels may be allocated, as necessary (when
a new level is allocated, its size is twice the size of the last allocated level).

In the original scheme of Goldreich-Ostrovsky, level i consists of 2i buckets,
where each bucket contains O(log n) entries. In our scheme level i consists of a
table of 4 · 2i single item entries, which will be used to store up to 2i data items
of the client. Storing the items is done in the following way: Along with the 2i

items of the client, up to 2i “dummy” items might be stored in the level, where
the client might access a dummy item in order to hide the fact that it does not
need to search for a real item in this level (since the real item was already found
in a previous level). All 2 · 2i items of the level are stored in a Cuckoo hashing
table of size 4 · 2i. (We note that according to this description the first level is
used to store only two items. Any actual implementation would probably set

the first level to be much larger, say, to contain 128 data items. To simplify the
analysis we assume, however, that the first level stores only two items.)

For each level we associate an epoch, which is defined for level i as 2i−1

requests (the epoch ends when a reshuffle from level i− 1 to level i occurs). For
each level i and its `th epoch, the client randomly chooses two hash functions
whose ranges are {1 . . . 2i+2}: hi,`

k,0 and hi,`
k,1, where k is a secret key known to the

client and used to define these functions. At the end of every epoch each level
is re-hashed obliviously, using a new pair of hash functions. The following table
summarizes the properties of level i.

real items dummy items size epoch-length “moved down”

level i 2i 2i 4 · 2i 2i−1 every 2i requests

Each data request includes both reading and writing to the data structure,
such that the server cannot distinguish which operation occurred. In addition, for
any request, the accessed item is re-encrypted by the client, using a probabilistic
encryption scheme.
Data requests Initially, the data structure is empty. For each request (of any
type) of a location-index (virtual address) v, the following operations are per-
formed.4

1. Scan through the entire first level in a sequential order to find the item whose
location-index is v. This step includes reading all the items in the first level.
If the requested item is found, it is stored in the client’s secure memory, and
the process continues as usual.

2. Go through all other levels, and for each level i = 2 . . . N , do:
– If v has not been found yet, examine its two possible locations in the

Cuckoo hashing table of the current level (i): hi,`
k,0(v) and hi,`

k,1(v). If the
requested item is found in one of the two locations, it is stored in the
client’s secure memory, and the process continues as usual.

– If v has been found, examine two random locations hi,`
k,0(“dummy′′ ◦ t)

and hi,`
k,1(“dummy′′◦t), where t is a counter which is increased with every

data request. (These are locations allocated by the Cuckoo hashing for
two fresh dummy items which were not searched for before.)

3. Scan again through the entire first level in a sequential order, and write
back the updated (and re-encrypted) item of location-index v in the next
available location. If v is already in the first level, overwrite it. This step
includes reading and writing all items of the first level.

The first level functions as a cache, meaning that for any request, the updated
value is written to the first level. Since the capacity of the level is final, after a
4 We assume here, as was implicitly assumed by all previous constructions [9,20,21],

that the client does not perform a “read” operation for an item which does not exist
in the remote storage.

certain number of requests it becomes full. In order to avoid this, the content of
the first level is “moved down” to the second level before the first level becomes
potentially exhausted. Now the second level may become full, so the same process
is repeated. When the content of the last level has to be “moved down”, a new
level with twice the number of entries is allocated.5 “Moving down” the content
of level i is done every 2i requests. This makes sure that no level is overflowed,
and that the first level is emptied and has enough available slots at the beginning
of each epoch of any of the levels (since the beginning of an epoch of level i is
also a beginning of an epoch of all the levels j < i). In fact, this process makes
sure that at any time level i contains no more than 2i items, as is stated in
Lemma 1 below. Whenever level i is moved down to level i + 1, the latter level
is reshuffled.

When the client moves the content of level i to level i + 1, it obliviously
hashes the content of both levels to level i + 1. This reshuffling must fulfill the
following requirements: (1) If there is a duplicate item (the same location-index,
and possibly different data content) in level i and level i + 1, the newer item
(from level i) must be kept, and the older one must be deleted; (2) The resulting
buffer, namely level i + 1 after the reshuffling, must be ordered independently
of any of the levels before the reshuffling; (3) Level i must be cleaned, i.e., its
content must be deleted. As we continue, we see that all these requirements are
fulfilled.

Before describing the reshuffle process, we state Fact 1, which trivially follows
from the reshuffling algorithm, and Lemma 1, which is proved in the full version
of the paper.

Fact 1 When a reshuffle from level i to level i + 1 occurs, all levels j ≤ i − 1
are empty. At the end of the reshuffle, all levels j ≤ i are empty.

Lemma 1. When a reshuffle from level i to level i+1 occurs, each of these two
levels contains at most 2i real items. At the end of the reshuffle, level i is empty
and level i + 1 has at most 2i+1 real items.

4.1 Reshuffling Levels Using Cuckoo Hashing and Randomized
Shell Sort

The reshuffle of levels i and i+1 into level i +1 is a complex process, consisting
of the steps enumerated below and based on two basic primitives: (1) Scanning,
which is reading and (possibly) writing in a sequential order all the items in a
given buffer; (2) Oblivious Sorting (O-Sort), which is done by randomized Shell
sort (see Sect. 3.1). Note that whenever an item is written to a storage (whether
it is one of the levels or a temporary buffer), it is re-encrypted. The reshuffle
process is also depicted in Fig. 1.

5 In fact, if we are willing to disclose an upper bound on the number of items that are
stored, there is no need to allocate a new level when the last level has to be “moved
down”. The system may instead re-order the entire database.

2i
Level i+1Size: 4*2i+1Level iSize: 4*2i

C 77 ‘new’ 77 ‘old’#items in C = 2i+1

Cuckoo Hashing
C #items = 2i+2

Level i+1Size: 4*2i+1

Random Permutation ∏

2i

Level iSize: 4*2i Level i+1Size: 4*2i+1sort
Temporary buffer CSize: 2i+1

ba ...sort
CC

Sortingreal itemsfirst

SortingBy location-index,“new” before “old”
- Enlarge C to size 2i+2- And add 2i+1 dummies for the lookup, s.t.hi(“dummy” ◦ t)t=tprev+1...t2^{i+1}Random permutationis executed by tagging the items using a pseudo-random-function, and then re-order them using randomized Shell sort

A

B
C

D

Comments (by capital letters)A. All the real items of level i are in its first 2i items. Not necessarily all of these first 2i items are real. In any case, the real items are always first. The same is true for level i+1 (2i first items).B. In this step there is always writing of 2i items from level i.C. In this step there is always writing of 2i items from level i+1.D. Cuckoo Hashing input includes 2i+2 items. This is the reason for the 4*2i+1 size of level i+1 (50% utilization).

In case real items from both level is smaller than 2i+1, there are additional, non-real items at the middle of C
Step I Step II

Step III
Step IVStep V

Step VII

#items = 2i“new”a of them are real #items = 2i“old”b of them are real

C 77 ‘new’ 0rand Step VIdummies

2i
sort

Fig. 1. Reshuffle steps.

1. Allocate a temporary buffer C, whose size is 2i+1. (Recall that jointly, both
levels contain at most 2i+1 real items).

2. O-sort each of the levels (level i and level i + 1): The sorting is according
to an order which locates real items before dummy and empty items. At the
end of this step, all the real items of level i (at most 2i) are in its first loca-
tions, and all the real items of level i+1 (at most 2i) are in its first locations.

In the following two steps (3–4), 2i+1 items that include all the real items of
the two levels are copied into the temporary buffer.

3. Move the first 2i items from level i to the left side of C. Mark each item
as “new”. At the end of this step, all the real items of level i (and possibly
additional items) are in C. (This step is depicted in Step I of Fig. 1.)

4. Move the first 2i items from level i+1 to the right side of C. Mark each item
as “old”. At the end of this step there are 2i+1 items in C, that include all
the real items of both levels and possibly additional items (if both levels to-
gether contained less than 2i+1 real items). (This step is depicted in Step II
of Fig. 1.)

The goal of the following two steps (5–6) is to erase duplications of items
with the same location-indices.

5. O-sort C according to these criterions (ordered): (a) smaller location-indices
(virtual addresses) first, (b) items tagged “new” before items tagged “old”.
(This step is depicted in Step III of Fig. 1).

6. Removing duplicates: Sequentially scan C and erase each old item preceded
by a new item with the same location-index (the marks “old” and “new”
of the remaining items can be ignored from now on). Replace each erased
item and each dummy item with a random item (an item with a special
location-index and random content). At the end of this step there are 2i+1

real and random items in C, without duplications. We will refer to all these
items in the sequel as “real”. (This step is depicted in Step IV of Fig. 1.)

7. Create 2i+1 dummy items with indices “dummy” ◦(t+j), where t is a counter
of the number of requests so far and j = 1 . . . 2i+1.6 Add these items to
C (this requires increasing the size of C from 2i+1 to 2i+2). (This step is
depicted in Step V of Fig. 1.)
The client then obliviously reorders the items in a pseudo-random order.
This is done by (1) choosing a new keyed pseudo-random function Fk and
using it to tag each of the 2i+2 items with a new value which is the result
of Fk() applied to their location-index, and then (2) obliviously sorting the
items by their tags using randomized Shell sort. The new order of the items
is independent of their original order. (This step is depicted in Step VI of
Fig. 1.)

6 These dummies are necessary in order to hide whether a data request in level i + 1
in the next epoch searches for an item which was found in a level prior to level i+1.
If this event happens in the jth time slot of the epoch, then the client will look for
item “dummy′′ ◦ (t + j), which was inserted to the level in the reshuffle. As a result,
every search in this level will be to an item which is stored in the Cuckoo hashing
table and which was never searched before.

8. Sequentially scan the buffer and use Cuckoo hashing with two new random
hash functions that are kept secret from the server: hi+1,`+1

0,k and hi+1,`+1
1,k ,

to map the 2i+2 items to the 4 · 2i+1 entries of level i + 1 (` is the index
of the current epoch). The hash functions are applied to the location-index.
At the end of this step there are 2i+2 real and dummy items in level i + 1,
located according to the Cuckoo hashing functions. (This step is depicted in
Step VII of Fig. 1.)

9. If the Cuckoo hashing fails (due to cycles, see [17]), choose new random
secret hash functions hi+1,`+1

0,k and hi+1,`+1
1,k and repeat the previous step.

After step 4, all the real content of levels i and i + 1 is in C (possibly with
additional items), Steps 5 and 6 handle possible duplications (of items with the
same location-index in the two original buffers), Step 7 reorders the real and
dummy items (pseudo-) randomly, and Steps 8 and 9 insert the items to level
i + 1, according to the random secret Cuckoo hashing functions.

4.2 Analysis and Implementation

Overhead. The construction uses log n levels, where level i contains 4 · 2i =
O(2i) items, yielding a server storage of O(n) data items. The overall amortized
computational overhead is O(log2 n) data requests for each original request of the
client: First, observe that accessing an item requires scanning through the first
level (which is of constant size), and then accessing two locations in each other
level. The reshuffling process uses randomized Shell sort that sorts ` elements
in O(` log `) time, with a reasonable constant factor. Performing the oblivious
sorting is the main time-consuming element of the reshuffle process. The size
of the sorted array in level i is O(2i), giving a sorting time of O(2i log 2i) =
O(2i · i) for level i. Level i is sorted every 2i requests, giving an amortized cost
of O(2i·i)

2i = O(i). Summing this for all the levels gives
∑log n

i=1 O(i) = O(log2 n).
Examining the performance more carefully, we note that level i has room

for 4 · 2i items (Appendix A shows how to reduce the storage by about 50%).
The bulk of the computation overhead comes from the sorting operations. In
particular, Step 2 sorts level i + 1, which consists of 4 · 2i+1 items (the other
sorting operations are applied to smaller sets of items). However, we show in
Appendix A how the sort operations in Step 2 can be changed to sort half as
many items. This is estimated to reduce the overhead by 33%. Appendix A
discusses an additional optimization which reduces the constant factors of the
overhead of the construction by an additional 33%.

Security.

Theorem 1. The oblivious RAM protocol described above is secure according to
Definition 1.

Proof. The security of the construction holds under the assumption of the ex-
istence of pseudo-random functions, or assuming that the client has access to

random functions (e.g., an internal random number generator which always pro-
vides the same output when given the same input). The PRF assumption is
probably more reasonable for most applications. A crucial ingredient of the pro-
tocol is that the hash functions h0 and h1, used to map items during the Cuckoo
hashing, are randomly chosen by the client and are kept secret from the server.
(When a PRF is used, these functions are defined by some function Fk() where
the key k is chosen by the client and is unknown to the server.)

We will show that for any input sequence y of the client, the access pattern
A(y) to the storage server is indistinguishable, by a polynomial-time server, from
an access pattern A′ which can be simulated without any knowledge of y, except
for the length of y.

The contents of the requests in the access pattern are encrypted with a
semantically secure probabilistic encryption scheme, and therefore the server
cannot distinguish between the contents of the requests in A(y) and in A′. We
therefore only need to show that the locations accessed by the two access patterns
in the server’s memory are indistinguishable.

Consider the reshuffle operation from level i to level i + 1. The first steps of
the reshuffle perform an oblivious sorting or a serial scan of data items, and are
therefore independent of the actual data stored by the client and of the input
sequence y. As such they can be easily simulated. Namely, the simulated access
pattern A′ contains a serial scan in every step of the reshuffle where such a scan
in performed (namely, Steps 1, 3, 4 and 6). In addition, whenever the reshuffle
performs an oblivious sorting (in Steps 2, 5 and 7), A′ performs an oblivious
sorting assuming that the values to be sorted are 1, 2, 3,

Let M = 2i+1. In Step 7 of the protocol the client obliviously reorders in a
pseudo-random order M real values and M dummy values. Step 8 maps these
2M values to a Cuckoo hash table of size 4M , using two hash functions h0 and
h1 which are chosen at random by the client and are unknown to the server.
The client goes over the 2M items according to their new order, and attempts
to insert each of them to the table according to the Cuckoo hashing algorithm.
If x is a certain item in the list, then the client probes locations h0(x) and
h1(x) in the table and might perform some evictions of items to find a place
for x. In this process the server might learn the h0 and h1 values of each of the
2M items. However, since the server does not know the hash functions used,
these values are independent of the actual values of the items. Simulating this
process is performed in the following way: Define random functions h0, h1, and
apply the Cuckoo hashing algorithm to an arbitrary set of 2M values, say the
values 1 . . . 2M , using these functions. This process results in exactly the same
distribution, as in the real execution, for all the events observed by the server,
including the locations probed in the hash table and the occurrences of evictions
and cycles (which might cause a repeat of the Cuckoo hashing algorithm as
defined by Step 9). Note that our security analysis does not have to analyze
the exact probabilities with which evictions and cycles occur, but rather only
observe that these probabilities are independent of the data items being hashed.

At the end of the hashing process the server knows, for each of the 2M
items, the two locations to which this item is mapped by h0 and h1, and the
exact location in this pair to which this item was eventually mapped. Recall,
however, that the 2M items were randomly reordered, and that half of them are
dummy items. In the epoch that follows, the server can observe which locations
are probed in each request of this level. Namely, it might see that the jth request
probes locations 10 and 17 to which, say, the first of the 2M items is mapped.
However, the server does not know whether this is a real or a dummy item.
Also, each item hashed into this level is probed at most once during the epoch,
since each dummy value is probed at most once (due to the dummy counter
being increased), and a real value that is accessed is immediately moved to the
top level and is not accessed again in this level during the current epoch. Given
these observations, the probes to the level in this epoch can be simulated in the
following way: use the random functions h0, h1 that were used in the simulation
of the Cuckoo hashing into this level; let (a1, . . . , a2M) be a random permutation
of the numbers 1, . . . , 2M ; when performing the jth data request from level i+1
in the current epoch, probe the locations to which item aj is mapped by h0 and
h1.

We have described above how to simulate probes to a specific level during
data requests. The entire sequence of probes during data request can therefore
be simulated as follows: In Steps 1 and 3 the simulation scans the entire first
level. In Step 2 the simulation goes through all levels, starting with the second
one, and simulates a pair of probes to each level, as is described in the previous
paragraph. ut

Implementation. We implemented a basic prototype of our scheme, including
the hierarchical data structures, the randomized Shellsort algorithm and the
Cuckoo hashing algorithm. This allowed us to simulate the operation of the
oblivious RAM construction, and to measure and estimate its performance. We
chose Java as an initial platform and compiled using the Sun JDK 1.6.0 16.
The testing environment was a standard PC. In our measurements we ignored
network delays, and therefore we only provide measurements of the number of
operations per data request, rather than of the amount of time each request
takes.

We ran experiments on various databases, of sizes between n = 210 and
n = 220. For a database of n = 2i potential items, we ran k = 2i − 10 requests,
and counted the number of read/write operations handled by the server. The
results appear in Table 2. The constant of the O(k log2 k) overhead seems to
be about 160. We note that the two improvements described in Appendix A,
(minimizing the amount of sorted items – either by not sorting empty items, or
by using an advanced Cuckoo hashing algorithm; and reshuffling several levels
together) which have not yet been implemented by us, are estimated to reduce
the overhead by about 33% each. Applying both optimizations is likely to reduce
the overhead by about 55%, and obtain a constant of about 72 in the “O”
notation.

Table 2. Performance measurements.

log2 n n k = n− 10 k log2 k #operations ops per const of
(# of req.) request O(k log2 k)

10 1024 1014 101113 15445582 15232 152

11 2048 2038 246281 38081523 18685 154

12 4096 4086 588038 91975576 22509 156

13 8192 8182 1382383 218482493 26702 158

14 16384 16374 3208900 511882978 31261 159

15 32768 32758 7370117 1185355399 36185 160

16 65536 65526 16774194 2717439532 41471 162

17 131072 131062 37876427 6175479249 47118 163

18 262144 262134 84930896 13926487414 53127 163

19 524288 524278 189263809 31192732955 59496 164

20 1048576 1048566 419425822 69442426048 66226 165

5 Open Questions

The efficiency analysis of our construction, as well as that of all other known
constructions of oblivious RAM, is amortized. A data request which is followed
by a reshuffle of level i has a larger overhead than a request which requires a
reshuffle of a level j < i, or one that does not require any reshuffling. A major
open goal is, therefore, to reduce the worst case performance of oblivious RAM.
Note that the recent result on deamortizing Cuckoo hash [3] does not help here,
since it can be applied to the Cuckoo hashing part of the the reshuffling process,
but not to the fact that the worst case overhead of reshuffling is high.

Acknowledgements

The authors wish to thank Yuriy Arbitman for informing us of the randomized
Shell sort result.

References

1. Ajtai, M.: Oblivious RAMs without cryptographic assumptions. STOC 2010 (2010)
2. Ajtai, M., Kolmós, J., Szemerédi, E.: An O(n log n) sorting network. In: STOC.

pp. 1–9 (1983)
3. Arbitman, Y., Naor, M., Segev, G.: De-amortized Cuckoo hashing: Provable worst-

case performance and experimental results. In: ICALP (1). pp. 107–118 (2009)
4. Arbitman, Y., Naor, M., Segev, G.: Backyard Cuckoo hashing: Constant worst-case

operations with a succinct representation. Manuscript (2010)
5. Batcher, K.: Sorting networks and their applications. In: AFIPS Spring Joint Com-

puting Conference. pp. 307–314 (32(1968))
6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM 13(7), 422–426 (1970)

7. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM
without random oracles. Cryptology ePrint Archive, Report 2010/108 (2010),
http://eprint.iacr.org/2010/108

8. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC. pp. 182–194. ACM (1987)

9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Journal of the ACM 43(3), 431–473 (1996)

10. Goodrich, M.T.: Randomized Shellsort: A simple oblivious sorting algorithm. In:
Proceedings 21st ACM-SIAM Symposium on Discrete Algorithms (SODA) (2010)

11. Kirsch, A., Mitzenmacher, M.: Using a queue to de-amortize Cuckoo hashing in
hardware. In: Proceedings of the 45th Annual Allerton Conference on Communi-
cation, Control, and Computing. pp. 751–758 (2007)

12. Kirsch, A., Mitzenmacher, M.: Simple summaries for hashing with choices.
IEEE/ACM Trans. Netw. 16(1), 218–231 (2008)

13. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing
with a stash. In: ESA. pp. 611–622 (2008)

14. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC ’90. pp. 514–
523. ACM (1990)

15. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case
of AES. In: Pointcheval, D. (ed.) CT-RSA. Lecture Notes in Computer Science,
vol. 3860, pp. 1–20. Springer (2006)

16. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: ESA ’01: Proceedings of the 9th Annual
European Symposium on Algorithms. pp. 121–133. Springer-Verlag, London, UK
(2001)

17. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)

18. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2),
361–381 (1979)

19. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, 2000. S&P 2000. Pro-
ceedings. pp. 44–55 (2000)

20. Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)

21. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical access
pattern privacy and correctness on untrusted storage. In: ACM Conference on
Computer and Communications Security. pp. 139–148 (2008)

A Optimizing the Construction

We present here several optimizations to the basic oblivious RAM construc-
tion presented in Sect. 4. The optimizations improve the constant factors of the
overhead, but not its asymptotic performance. Still, they are beneficial for any
implementation of the construction.

Not storing empty items Recall that each level i contains up to 2i real items
and 2i dummy items which must be indistinguishable, from the server’s point of
view, from the real items. The remaining 2i+1 locations in this level are empty,
and are needed for the Cuckoo hashing to succeed. The construction can be
optimized by not storing in these locations encrypted “empty” data items, but
rather using a flag signaling that the entry is empty. Since we can safely assume

that a data item is much larger than this flag, this optimization saves about 50%
of the storage required by the levels.

As for security, note that this change enables the server to identify empty
locations, but it does not enable it to distinguish between real items and dummy
items. Namely, this corresponds to revealing to the server the empty locations
in a Cuckoo hashing table, but since the hash functions used are kept secret, no
information is revealed about the items in the table.

Implication to sorting Step 2 of the reshuffle algorithm sorts levels i and i+1,
whose lengths are 4 ·2i and 8 ·2i, respectively. These sorting operations are done
in order to move the real items to the beginning of these buffers. If empty items
are flagged, as suggested above, then there is no need to sort the corresponding
entries in the level. Namely, the data to be sorted is half as long as in the basic
protocol, and the overhead of sorting is reduced by more than 50%.

Let us therefore estimate how much is saved by this optimization. Note that
Steps 5 and 7 sort 2 · 2i and 4 · 2i items, respectively. Assume that the overhead
of sorting is linear (this is roughly the case when comparing the overhead of
sorting adjacent levels, which are of similar sizes). Before the optimization, the
algorithm sorts buffers of sizes 4 · 2i, 8 · 2i, 2 · 2i and 4 · 2i, which are of total
length 18 ·2i. After the optimization, it sorts buffers of sizes 2 ·2i, 4 ·2i, 2 ·2i and
4 · 2i, which are of total length 12 · 2i. The overhead of sorting, which is the bulk
of the overhead of the entire construction, is therefore reduced by about 33%.

Using an advanced Cuckoo hashing scheme The basic Cuckoo hashing
scheme used in our construction utilizes approximately only 50% of its storage
to store real and dummy items, while the remaining storage is empty. The new
Backyard Cuckoo hashing [4] algorithm has a much better space utilization –
in order to store n items, it requires only (1 + ε)n storage. Using this scheme
has therefore the same effect as the optimization suggested above, of not storing
empty entries in the hash table: it saves about 50% of the storage required
by each level in the hierarchical structure. In addition, the overhead of each
sorting operation is reduced by more than 50%, and the overhead of the entire
construction is reduced by about 33%.

Reshuffling several levels together In time t, where t mod 2i = 0, and
t mod 2i+1 6= 0, the basic construction performs subsequent reshuffles of levels
1, 2, . . . , i. These reshuffles include many redundant steps. (For example, the first
reshuffle inserts dummy items into the second level. Then, the reshuffle of the
second level begins by (possibly) removing these items. Furthermore, the first
reshuffle fills the second level, while the second reshuffle empties it.) Instead, it
is possible to reshuffle together in a single step the contents of all these levels
into level i+1. According to our estimates this optimization saves an additional
33% of the total overhead.

