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Abstract. Following Gennaro, Gentry, and Parno (Cryptology ePrint
Archive 2009/547), we use fully homomorphic encryption to design im-
proved schemes for delegating computation. In such schemes, a delegator
outsources the computation of a function F on many, dynamically chosen
inputs xi to a worker in such a way that it is infeasible for the worker to
make the delegator accept a result other than F (xi). The “online stage”
of the Gennaro et al. scheme is very efficient: the parties exchange two
messages, the delegator runs in time poly(log T ), and the worker runs in
time poly(T ), where T is the time complexity of F . However, the “offline
stage” (which depends on the function F but not the inputs to be del-
egated) is inefficient: the delegator runs in time poly(T ) and generates
a public key of length poly(T ) that needs to be accessed by the worker
during the online stage.
Our first construction eliminates the large public key from the Gen-
naro et al. scheme. The delegator still invests poly(T ) time in the offline
stage, but does not need to communicate or publish anything. Our sec-
ond construction reduces the work of the delegator in the offline stage
to poly(log T ) at the price of a 4-message (offline) interaction with a
poly(T )-time worker (which need not be the same as the workers used
in the online stage). Finally, we describe a “pipelined” implementation
of the second construction that avoids the need to re-run the offline con-
struction after errors are detected (assuming errors are not too frequent).

Keywords: verifiable computation, outsourcing computation, worst-case/average-
case reductions, computationally sound proofs, universal argument systems

1 Introduction

The problem of delegating computation considers a scenario where one party,
the delegator, wishes to delegate the computation of a function f to another
party, the worker. The challenge is that the delegator may not trust the worker,
and thus it is desirable to have the worker “prove” that the computation was
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done correctly. Obviously, we want verifying this proof to be easier than doing
the computation.

This concept of “outsourcing” computation is relevant in several real world
scenarios, as illustrated by the following three examples (taken from [GGP09,GKR08]):

1. Volunteer computing. The idea of volunteer computing is for a server to
split large computations into small units, send these units to volunteers for
processing, and reassemble the results (via a much easier computation). The
Berkeley Open Infrastructure for Network Computing (BOINC) [And03,And04]
is an example of such a platform. Some famous projects using the BOINC
platform are SETI@home, and the Great Internet Mersenne Prime Search [Mer07].
We refer the reader to [GKR08] for more details on these projects.

2. Cloud computing. In the setting of cloud computing, businesses buy com-
puting time from a service, rather than purchasing their own computing
resources.

3. Weak mobile devices. Mobile devices, such as cell-phones, security access-
cards, music players, and sensors, are typically very weak computationally,
and thus need the help of remote computers to run costly computations.

A natural question about such settings is: what if the workers are dishonest?
For example, in the volunteer computing setting, an adversarial volunteer may
introduce errors into the computation. In the cloud computing example, the
cloud (i.e., the business providing the computing services) may have a financial
incentive to return incorrect answers, if such answers require less work and are
unlikely to be detected by the client. Moreover, in some cases, the applications
outsourced to the cloud may be so critical that the delegator wishes to rule
out accidental errors during the computation. As for weak mobile devices, the
communication channel between the device and the remote computer may be
corrupted by an adversary.

In practice, many projects cope with such fraud by redundancy; the same
work unit is sent to several workers and the results are compared for consistency.
However, this requires the use of several workers and provides little defense
against colluding workers.

Instead, we would like the worker to prove to the delegator that the compu-
tation was performed correctly. Of course, it is essential that the time it takes
to verify the proof is significantly smaller than the time needed to actually run
the computation. At the same time, the running time of the worker carrying out
the proof should also be reasonable — comparable to the time it takes to do
the computation. For example, when delegating the computation of a function
f that takes time T and has inputs and outputs of length n, we would like the
delegator to run in time poly(n, log T ) and the worker to run in time poly(T ).

1.1 Previous Work

The large body of work on probabilistic proof systems, starting with [Bab85,GMR89],
is very relevant to secure delegation. Indeed, after computing the delegated func-
tion f on input x and sending the result y, the worker can use various types of
proof systems to convince the delegator of the statement “f(x) = y”.
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Interactive Proofs. The IP=PSPACE Theorem [LFKN92,Sha92] yields interac-
tive proofs for any function f computable in polynomial space, with a verifier
(delegator) running in polynomial time. However, the complexity of the prover
(worker) is also only bounded by polynomial space (and hence exponential time).
This theorem was refined and scaled down in [FL93] to give verifier complex-
ity poly(n, s) and prover complexity 2poly(s) for functions f computable in time
T and space s, on inputs of length n. Note that the prover complexity is still
superpolynomial in T , even for computations that run in the smallest possi-
ble space, namely s = O(log T ). However, the prover complexity was recently
improved by Goldwasser et al. [GKR08] to poly(T, 2s), which is poly(T ) when
s = O(log T ). More generally, Goldwasser et al. [GKR08] give interactive proofs
for computations of small depth d (i.e. parallel time). For these, they achieve
prover complexity poly(T ) and verifier complexity poly(n, d, log T ). (This im-
plies the result for space-bounded computation because an algorithm that runs
in time T and space s can be converted into one that runs in time poly(T, 2s)
and depth d = O(s2).) However, if we do not restrict to computations of small
space or depth, then we cannot use interactive proofs. Indeed, any language that
has an interactive proof with verifier running time (and hence communication)
TV can be decided in space poly(n, TV ).

PCPs and MIPs. The MIP=NEXP Theorem [BFL91] and its scaled-down ver-
sion by Babai et al. [BFLS91] yield multiprover interactive proofs and proba-
bilistically checkable proofs for time T computations with a prover running in
time poly(T ) and a verifier running in time poly(n, log T ), exactly as we want.
However, using these for delegation require specialized communication models
— either 2 noncommunicating provers, or a mechanism for the prover to give
the verifier random access to a long PCP (of length poly(T )) that cannot be
changed by the prover during the verification.

Interactive Arguments. Instead of changing the communication model, interac-
tive arguments [BCC88] (aka computationally sound proofs [Mic94]) relax the
soundness condition to be computational. That is, instead of requiring that no
prover strategy whatsoever can convince the verifier of a false statement, we
instead require that no computationally feasible prover strategy can convince
the verifier of a false statement. In this model, Kilian [Kil92] and Micali [Mic94]
gave constant-round protocols with prover complexity poly(T, k) and verifier
complexity poly(n, k, log T ) (where k is the security parameter), assuming the
existence of collision-resistant functions. Under a subexponential hardness as-
sumption, the security parameter can be taken as small as polylog(T ); this also
holds for the schemes described below.

Towards Non-interactive Solutions. In this work, we are interested in getting
closer to non-interactive solutions (with computational soundness). Ideally, the
worker/prover should be able to send a proof to the delegator/verifier in the
same message that it sends the result of the computation.
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This possibility of efficient non-interactive arguments was suggested by Mi-
cali [Mic94], who showed that non-interactive arguments with prover complexity
poly(T, k) and verifier complexity poly(n, k, log T ) are possible in the Random
Oracle Model (the oracle is used to eliminate interaction a la Fiat–Shamir [FS86]).
Heuristically, one might hope that by instantiating the random oracle with an
appropriate family of hash functions, we could obtain a non-interactive solu-
tion to delegating computation: in an offline stage, the verifier/delegator (or a
trusted third party) chooses and publishes a random hash function from the fam-
ily, and in the online stage, the proofs are completely non-interactive (just one
message from the prover to the verifier). However, the Random Oracle Heuristic
is known to be unsound in general [CGH04] and even in the context of Fiat–
Shamir [Bar01,GK03]. Thus, despite extensive effort, the existence of efficient
non-interactive arguments remains a significant open problem in complexity and
cryptography.

There has been some recent progress in reducing the amount of interaction
needed. Using a transformation of Kalai and Raz [KR09], Goldwasser, Kalai,
and Rothblum [GKR08] showed how to convert their interactive proofs for small-
depth computations into non-interactive arguments in a “public key” model (as-
suming the existence of single-server private-information retrieval (PIR) schemes):
in an offline stage, the verifier/delegator generates a public/secret key pair,
publishes the public key and stores the secret key. Then, in the online stage,
the prover/worker retrieves the public key and can construct a proof to send
along with the result of the computation. However, like the interactive proofs of
[GKR08], this solution applies only to small-depth computations, as the verifier’s
complexity grows linearly with the depth.

Very recently, Gennaro, Gentry, and Parno [GGP09] showed how to dele-
gate arbitrary computations by increasing the verifier’s offline complexity and
public-key size, and using a fully homomorphic encryption (FHE) scheme (as
recently constructed by Gentry [Gen09]). In their construction, the delegator
invests poly(T, k) work in the offline stage to construct a public key of size
poly(T, k) and a secret key of size poly(k) (for delegating a function f that is
computable in time T ). In the online stage, the delegator’s running time is re-
duced to poly(n, k, log T ) for an input of length n, and the worker’s complexity
is poly(T, k). Thus, the delegator’s large investment in the offline stage can be
amortized over many executions of the online stage to delegate the computation
of f on many inputs. Their online stage is not completely non-interactive, but
consists of two messages. However, in many applications, two messages will be
necessary anyway, as the delegator may need to communicate the input x to the
worker.

We remark that in the schemes where the delegator has a secret key (namely
[GKR08] and [GGP09], as well as two of our constructions below), soundness
is only guaranteed as long as the adversarial worker does not learn that the
delegator has rejected a proof. Thus, either the accept/reject decision should
be kept secret, or the (possibly expensive) offline stage should be re-run after
rejection.
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1.2 Our Results

In this work, we provide the following protocols that improve over the work of
Gennaro et al. [GGP09]:

– Our first protocol eliminates the large public key of the Gennaro et al.
scheme. That is, the delegator still performs poly(T, k) work in the of-
fline stage, but the result of this computation is just a secret key of length
poly(n, k, log T ); there is no need for any interaction with the worker(s) in
advance of the online stage (not even to transmit a public key).

– Our second protocol reduces the work of the delegator in the offline stage to
poly(n, k, log T ), at the price of a constant-round interaction with a worker
that runs in time poly(T, k). With this protocol, re-running the offline stage
after a rejected proof becomes more reasonable, and thus there is no reason
to keep the accept/reject decisions secret.

– Finally, we describe a “pipelined” implementation of our second protocol
that avoids the latency of re-running the offline stage, while maintaining
soundness even if the accept/reject decisions are revealed. This solution re-
quires both parties to maintain state, and completeness holds provided that
faults do not occur too often. Thus, this solution is most suitable for cases
where the delegator is using a single worker many times and there are ran-
dom faults (in communication or computation) that may cause the delegator
to reject occasionally.

Like [GGP09], all of our protocols require the use of a fully homomorphic en-
cryption scheme, and have a 2-message online stage. A full comparison of our
model and results with previous work is given in Table 1.

Organization. Brief preliminaries on fully homomorphic encryption schemes are
presented in Section 2. Then we present a formal definition of our model in
Section 3. In Section 4 – 8, we start with a simple scheme Del1 that achieves
rather weak properties, and strengthen it through a series of steps leading to our
main delegation schemes Del4 and Del5.

Due to space constraints, we skip all the proofs. Please refer to the full version
of this paper [CKV10] for details.

2 Preliminaries on Fully Homomorphic Encryption

Inspired by the recent work of Gennaro, Gentry, and Parno [GGP09] on secure
delegation, our constructions rely on the use of a fully homomorphic encryption
scheme.

Fully Homomorphic Encryption. A public-key encryption scheme E = (KeyGen,Enc,Dec)
is said to be fully homomorphic if it is associated with an additional polynomial-
time algorithm Eval, that takes as input a public key pk, a ciphertext x̂ = Enc(x)
and a circuit C, and outputs, a new ciphertext c = Evalpk(x̂, C), such that



6

o
ffl

in
e

k
ey

s
o
n
lin

e

R
ef

A
ssu

m
p
tio

n
S
o
u
n
d
n
ess

#
m

sg
s

D
co

m
p
lex

ity
|P

K
|

|S
K
|

#
m

sg
s

D
co

m
p
lex

ity
W

co
m

p
lex

ity

[G
K

R
0
8
]

n
o
n
e

sta
t

0
0

0
0

p
o
ly

(d
,lo

g
T

)
p

o
ly

(n
,d
,lo

g
T

)
p

o
ly

(T
)

[B
F

L
9
1
,B

F
L

S
9
1
]

n
o
n
e

M
IP

/
P

C
P

0
0

0
0

1
p

o
ly

(n
,lo

g
T

)
p

o
ly

(T
)

[K
il9

2
,M

ic0
0
]

C
R

H
co

m
p

0
0

0
0

4
p

o
ly

(k
,n

,lo
g
T

)
p

o
ly

(k
,T

)

[K
il9

2
,M

ic0
0
]

R
O

-H
eu

r
co

m
p

1
p

o
ly

(k
)

p
o
ly

(k
)

0
1

p
o
ly

(k
,n

,lo
g
T

)
p

o
ly

(k
,T

)

[G
K

R
0
8
,K

R
0
9
]

P
IR

co
m

p
1

p
o
ly

(k
)

p
o
ly

(k
,d
,lo

g
T

)
p

o
ly

(k
,d
,lo

g
T

)
1

p
o
ly

(k
,n

,d
,lo

g
T

)
p

o
ly

(k
,T

)

[G
G

P
0
9
]

F
H

E
co

m
p

1
p

o
ly

(k
,T

)
p

o
ly

(k
,T

)
p

o
ly

(k
,n

)
2

p
o
ly

(k
,n

,lo
g
T

)
p

o
ly

(k
,T

)

T
h
m

.
1

F
H

E
co

m
p

0
p

o
ly

(k
,T

)
0

p
o
ly

(k
,n

)
2

p
o
ly

(k
,n

,lo
g
T

)
p

o
ly

(k
,T

)

T
h
m

.
3

F
H

E
co

m
p

4
p

o
ly

(k
,n

,lo
g
T

)
0

p
o
ly

(k
,n

)
2

p
o
ly

(k
,n

,lo
g
T

)
p

o
ly

(k
,T

)

T
a
b
le

1
.

R
esu

lts
o
n

D
eleg

a
tin

g
C

o
m

p
u
ta

tio
n
.
D

=
d
eleg

a
to

r/
v
erifi

er,
W

=
w

o
rk

er/
p
rov

er,
P

K
=

D
’s

p
u
b
lic

k
ey,

S
K

=
D

’s
secret

k
ey,

k
=

secu
rity

p
a
ra

m
eter.

P
a
ra

m
eters

o
f

co
m

p
u
ta

tio
n
f

b
ein

g
d
eleg

a
ted

:
n

=
in

p
u
t

len
g
th

,
T

=
tim

e,
d

=
d
ep

th
/
p
a
ra

llel
tim

e
(w

e
a
ssu

m
e

n
≤

T
≤

2
d)



7

Decsk(c) = C(x), where sk is the secret key corresponding to the public key pk.
It is required that the size of c = Evalpk(Encpk(x), C) depends polynomially on
the security parameter and the length of C(x), but is otherwise independent
of the size of the circuit C. We also require that Eval is deterministic, and the
scheme has perfect correctness (i.e. it always holds that Decsk(Encpk(x)) = x and
that Decsk(Evalpk(Encpk(x), C)) = C(x)). For security, we simply require that E
is semantically secure.

In a recent breakthrough, Gentry [Gen09] proposed a fully homomorphic
encryption scheme based on ideal lattices. In his basic scheme, the complexity of
the algorithms (KeyGen,Enc,Dec) depends linearly on the depth of the circuit C,
where d is an upper bound on the depth of the circuit C that are allowed as inputs
to Eval. However, under the additional assumption that his scheme is circular
secure (i.e., it remains secure even given an encryption of the secret key), the
complexity of these algorithms are independent of C. Furthermore, Gentry’s
construction satisfies the perfect correctness and the Eval of his scheme can be
made deterministic. We refer the reader to [Gen09] for details.

An interesting aspect of the [GGP09] construction is how they use the secrecy
property of fully homomorphic encryption schemes in order to achieve a sound-
ness property in their delegation scheme; this phenomenon also recurs several
times in our work.

3 The Model

In this section, we formally define a model that captures the delegating compu-
tation scenario we are interested in.

Definition 1 (Delegation Scheme). A delegation scheme is an interactive
protocol Del = 〈D,W〉 between a delegator D and a worker W with the following
structure:

1. The scheme Del consists of two stages: an offline/preprocessing stage and
an online stage. The offline stage is executed once before the online stage,
whereas the online stage can be executed many times.

2. In the offline stage, both the delegator D and the worker W receive a secu-
rity parameter k and a function F : {0, 1}n → {0, 1}m, represented by a
Turing machine M and a time bound T for M . At the end of the interac-
tion, the delegator D decides whether to accept or reject. If D accepts, then
D outputs a secret key σD and a public key σW. We will denote this by
(σD, σW) = 〈D,W〉(F, 1k). We will use the notation M , n, m, and T as the
Turing machine and parameters associated with F throughout the paper, and
we will often omit the security parameter from the notation.

3. In the online stage, both parties receive F , 1k, and an input x ∈ {0, 1}n,
and execute a one round communication protocol. Namely, D sends q =
D(F, x, σD) to W, and then W sends a = W(F, x, σW, q) to D. Then the
delegator D either accepts or rejects. If D accepts, then D also generates a
private output y = D(F, x, σD, q, a) ∈ {0, 1}m, which is supposed to be F (x).
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For simplicity, we will omit the function F and the security parameter from
the input of the online stage.

We also define the following properties of delegation schemes.

– A delegation scheme Del has an efficient delegator in the online (resp., of-
fline) stage if the computational complexity of D in the online (resp., offline)
stage is poly(k, n,m, |M |, log T ).

– A delegation scheme Del has an efficient worker if the computational com-
plexity of W is poly(k, |M |, T ).

– A delegation scheme Del has a non-interactive offline stage if D and W
do not interact at all during the offline stage, and only D does some com-
putation. Note that if Del has a non-interactive offline stage, then we can
assume w.l.o.g. that D always accepts in the offline stage.

For a delegation scheme to be meaningful, it needs to have completeness
and soundness properties. Informally, the completeness property says that the
delegator D always learns the desired value F (x), assuming both parties fol-
low the prescribed protocol. The soundness property says that the delegator D
mistakenly accepts a wrong value y 6= F (x) from a malicious worker with only
negligible probability.

Definition 2 (Completeness). A delegation scheme Del = 〈D,W〉 has perfect
completeness if for all parameters n,m, T, k, for every function F and every
x ∈ {0, 1}n, the following holds with probability 1: When D and W run the
offline stage protocol with input F , and then run the online stage protocol with
input x, the delegator D accepts in both the offline and the online stage, and
outputs y = F (x) in the online stage.

In order to define the soundness, we introduce the following security game.

Definition 3 (Security Game for Delegation Schemes). Let Del = 〈D,W〉
be a delegation scheme and k ∈ N be the security parameter. The security game
G(k) for Del is the following game played by a worker strategy W∗.

– The game starts with the offline stage of Del, and is followed by many rounds
of the online stage.

– W∗(1k) first chooses the delegation function F and then D and W∗ interact
in the offline stage of Del with input F .

– At the beginning of each round of the online stage (indexed by `), W∗ can
either terminate the game or choose an input x` ∈ {0, 1}n. If the game is
not terminated, D and W∗ interact in the online stage of Del on input x`.

– Whenever the delegator D rejects, the game terminates.

W∗ succeeds in the game G(k) if there exists a round ` of the online stage such
that D accepts and outputs a wrong value y` 6= F (x`), where x` is the delegated
input chosen by W∗.
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Definition 4 (Soundness). Let ε : N → [0, 1] and t : N → N be efficiently
computable functions. A delegation scheme Del = 〈D,W〉 has soundness error
ε for delegation functions with runtime at most t if for every worker strategy
W∗, which runs in time t(k) and chooses a delegation function with runtime at
most t(k),

Pr[W∗ succeeds in G(k)] ≤ ε(k),

for sufficiently large k, where G(k) is the corresponding security game for Del. We
say that Del is sound if Del has soundness error 1/kc for delegation functions
with runtime at most kc for every constant c.

Note that the above definition does not guarantee soundness for delegating func-
tions of complexity superpolynomial in k. However, we have soundness for func-
tions of complexity that is an arbitrarily large polynomial in k, whereas an
efficient delegator would run in time that is a fixed polynomial in k; so the dele-
gation is still quite useful. This quantitative relationship stems from the standard
asymptotic formulation of security as being with respect to polynomial-time ad-
versaries. If we use a fully homomorphic encryption scheme that is secure against
adversaries running time subexponential in k, then we would obtain soundness
for delegating functions of subexponential complexity (while the delegator still
runs in fixed polynomial time).

In terms of concrete security, the security parameter k should be chosen
by the delegator so that breaking the encryption scheme requires an infeasible
amount R of resources for the worker, and thus the delegator should only be
delegating functions that require significantly less resources than R.

Note that in the security game G, the delegator D rejects and terminates
the game, whenever he catches the worker cheating. Thus, the soundness is only
guaranteed until the worker cheats. In other words, once the worker cheats,
the delegator D can catch this mistake with overwhelming probability, but the
delegation scheme no longer guarantees soundness for the next delegated inputs.
Therefore, D should restart the delegation scheme from the offline stage to ensure
the soundness of future delegated inputs.

The model of [GGP09] takes a different approach. Rather than halting the
game after a rejection, they instead consider a game where the delegator’s ac-
cept/reject decisions are kept secret from the worker. Our protocols also satisfy
their definition; indeed, the two definitions are equivalent for schemes where the
delegator has no state (other than the secret key).

4 Del1 = 〈D1,W1〉: One-time, Random-Input Delegation
Scheme

In this section, we present our first warmup delegation scheme Del1 = 〈D1,W1〉
for the following one-time and random-input scenario.
Scenario: Suppose the delegator D knows that at some point in the future,
he will receive a random input x ∈ {0, 1}n drawn from a certain (samplable)
distribution D and he will want to learn the value F (x) quickly. Thus, D decides
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to delegate the computation of F (x) to an untrusted worker W (who does not
know the random x), and D wants to be able to verify the answer from W very
efficiently.

The idea is simple and similar to the idea underlying reCAPTCHAs [vAMM+08]:
In the offline stage, the delegator D1 samples a random input r ← D and pre-
computes F (r). In the online stage, D1 sends both x and r to W1 in a random
order, and asks W1 to compute both F (x) and F (r). Upon receiving the an-
swers from W1, the delegator D1 checks the correctness of the returned value
F (r); if it is correct then he accepts the returned F (x), and otherwise he reject.
Thus, a malicious worker W∗ can convince D1 with a wrong answer iff W∗ can
guess which input is the delegator’s real input. Since x and r are independent
and identically distributed, no malicious prover can guess the real input x and
cheat successfully with probability greater than 1/2. A formal description of our
random-input delegation scheme Del1 = 〈D1,W1〉 can be found in Figure 1. A
formal analysis of Del1 can be found in the full version of this paper [CKV10].

– Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M , and a time bound T .

– Offline Stage. Both D1 and W1 receive input (F,D)
1. D1 samples a random input r ← D, computes w = F (r), and stores the pair (r, w) as his

secret state.
– Online Stage. D1 receives x ∈ {0, 1}n (where x is expected to distribute according to D),

and W1 does not receive any input.
1. D1 sets r0 = r and r1 = x. It then samples a random bit b ∈R {0, 1}, and sends

(z0, z1) = (rb, r1−b) to W1.
2. W1 computes and sends (y0, y1) = (F (z0), F (z1)) to D1.
3. D1 accepts and outputs the answer y1−b iff w = yb.

Fig. 1. Delegation Scheme Del1 = 〈D1,W1〉

5 Del2 = 〈D2,W2〉: One-time, Arbitrary-input Delegation
Scheme

Recall that in the random-input delegation scheme Del1 = 〈D1,W1〉, it was es-
sential that the input x is hidden from the worker in the online stage to guarantee
the soundness. If the worker knew x, he could discriminate between r and x, and
cheat by answering correctly on r and incorrectly on x.

We eliminate this strong limitation by using a fully-homomorphic encryption
scheme to “computationally randomize” the input: Instead of sending x in the

clear, the delegator will encrypt the input x to obtain x̂
def
= Encpk(x). Then

the delegator will ask the worker to compute the deterministic homomorphic

evaluation F̂ (x̂)
def
= Evalpk(x̂, F ) of F on the encrypted value x̂, from which he

can decrypt to obtain the desired answer F (x).3 Notice that even if x is fixed,

3 We note that in order to compute Evalpk(x̂, F ), the Turing machine F needs to be
turned into a circuit. This can be done via a standard simulation of Turing machines
by circuits.
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the distribution of x̂ = Encpk(x) is computationally indistinguishable from the
distribution of Encpk(0̄), which is efficiently samplable and independent of x.
Thus, the delegator can precompute an encryption r̂ = Encpk(0̄) together with

F̂ (r̂) = Evalpk(r̂, F ), and use the pair (r̂, F̂ (r̂)) to verify the worker’s answer as
before.

We emphasize that the delegator checks the correctness of the ciphertext
F̂ (r̂) = Evalpk(r̂, F ) obtained from homomorphic evaluation of F on r̂ = Encpk(0̄),
as opposed to the value f(0̄) underlying the ciphertext. Indeed, it is insufficient
for the delegator to only check the correctness of the value f(0̄), since an ad-
versarial worker W∗, who knows the input x, could easily cheat by applying
Ĝ(r̂) = Evalpk(r̂, G), where G(y) equals F (y) iff y 6= x.

The above computational randomization technique extends the random-input
delegation scheme Del1 to a (standard) delegation scheme Del2 with one-time
soundness error 1/2. We formally describe the delegation scheme Del2 = 〈D2,W2〉
in Figure 2 below.

– Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M , and a time bound T .

– Offline Stage. Both D2 and W2 receive as input a function F .
1. D2 generates a pair of keys (pk, sk)← KeyGen(1k), computes an encryption r̂ = Encpk(0̄)

and the (deterministic) homomorphic evaluation ŵ = F̂ (r̂) = Evalpk(r̂, F ), and stores
the tuple (pk, sk, r̂, ŵ) as his secret key.

– Online Stage. Both D2 and W2 receive an input x ∈ {0, 1}n.
1. D2 computes an encryption x̂ = Encpk(x), sets r̂0 = r̂ and r̂1 = x̂, samples a random bit

b ∈R {0, 1}, and sends the public key pk and (ẑ0, ẑ1) = (r̂b, r̂1−b) to W2.

2. W2 computes ŷi = F̂ (ẑi) = Evalpk(ẑi, F ) for i ∈ {0, 1}, and sends (ŷ0, ŷ1) =

(F̂ (ẑ0), F̂ (ẑ1)) to D2.
3. D2 accepts and outputs the answer Decsk(ŷ1−b) iff ŵ = ŷb.

Fig. 2. Delegation Scheme Del2 = 〈D2,W2〉

It is straightforward to check that if the fully homomorphic encryption scheme
has perfect correctness, then Del2 has the perfect completeness. To argue the
soundness of the scheme, we first give the definition of one-time soundness.

Definition 5 (One-time Soundness for Delegation Schemes). Let Del =
〈D,W〉 be a delegation scheme and k ∈ N be a security parameter. The one-
time security game G(k) for Del is the same as security game for Del defined
in Definition 3 excepts that it only allows one round in the online stage. We say
that Del has one-time soundness error ε if for every PPT worker strategy
W∗ who chooses a polynomial time delegation function, and all sufficiently large
k, Pr[W∗ succeeds in G(k)] ≤ ε(k).

Lemma 1. Assume that the fully homomorphic encryption is semantically se-
cure. Then the delegation scheme Del2 has one-time soundness error 1/2+ngl(k).
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6 Del3 = 〈D3,W3〉: One-time, Arbitrary-input Delegation
Scheme with Negligible Soundness

In this section, we exploit the above computational randomization technique to
improve the soundness. The idea is the following: The delegator D asks the worker
to compute F̂ on multiple independent rerandomized inputs x̂i = Encpk(x) to-
gether with multiple r̂i’s (sent in a random order), as opposed to a single x̂ and
a single r̂. Upon receiving the worker’s answers, the delegator D checks whether
(i) the returned value for r̂i is equal to F̂ (r̂i) for every r̂i, and (ii) the decryption
of the returned values for x̂i are consistent, and accepts the consistent value if
the worker’s answers pass these two tests. Observe that for a malicious worker
to cheat, he needs to simultaneously cheat on all the x̂i’s while providing cor-
rect answers on all the r̂i’s. The formal description of the delegation scheme
Del3 = 〈D3,W3〉 appears in Figure 3.

– Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M and a time bound T , and an additional parameter t.

– Offline Stage. Both D3 and W3 receive as input a function F
1. D3 generates a pair of keys (pk, sk)← KeyGen(1k), computes t independent encryptions

r̂i = Encpk(0̄) and the homomorphic evaluations ŵi = F̂ (r̂i) = Evalpk(r̂i, F ) for i ∈ [t],
and stores pk, sk, and the pairs (r̂1, ŵ1), . . . , (r̂t, ŵt) as his secret key.

– Online Stage. Both D3 and W3 receive an input x ∈ {0, 1}n.
1. D3 computes t independent encryptions r̂i+t = Encpk(x) for i ∈ [t], samples a random

permutation π ∈R S2t, and sends the public key pk and (ẑπ(1), . . . , ẑπ(2t)) = (r̂1, . . . , r̂2t)
to W3.

2. W3 computes ŷi = F̂ (ẑi) = Evalpk(ẑi, F ) for i ∈ [2t], and sends to D3 the tuple

(ŷ1, . . . , ŷ2t) = (F̂ (ẑ1), . . . , F̂ (ẑ2t)).

3. D3 checks two things. First, D3 checks if ŵi = ŷπ(i) for all i ∈ [t]. Second, D3 decrypts
ŷπ(i+t) for i ∈ [t], and checks if the decrypted values are the same. D3 accepts and
outputs the consistent decrypted value if the returned values pass the two tests.

Fig. 3. Delegation Scheme Del3 = 〈D3,W3〉

In the following lemma, we argue that since the x̂i’s and the r̂i’s are com-
putationally indistinguishable, the probability of cheating is exponentially small
in t (which is the number of x̂i’s). Thus, by setting t = ω(log k), the protocol
〈D3,W3〉 achieves negligible soundness error.

Lemma 2. Assume that the fully homomorphic encryption is semantically se-

cure. Then the delegation scheme Del3 has one-time soundness error
(

2t
t

)−1
+

ngl(k).

7 The First Main Delegation Schemes Del4

All the delegation schemes presented in Section 4 – 6 had only one-time sound-
ness. Namely, the delegator could delegate the computation of only one input x.
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In this section, we present reusable delegation schemes, which satisfy the (stan-
dard) soundness property of Definition 4. To this end, we abstract the idea of
Gennaro, Gentry, and Parno [GGP09] and present a generic transformation that
converts any delegation scheme with one-time soundness to a reusable delega-
tion scheme (i.e., one which satisfies the soundness property of Definition 4).
Applying the transformation to the previous delegation scheme Del3, we obtain
our first main delegation scheme Del4.

For intuition, let us take a closer look at why the previous delegation scheme
Del3 = 〈D3,W3〉 is not reusable. Recall that in that scheme it is essential for the
worker to not know the r̂i’s: Once a malicious worker W∗ learns the values of the
r̂i’s, he can easily cheat by answering correctly only on those r̂i’s. Therefore, each
precomputed pair (r̂i, Ĉ(r̂i)) can be used only once. Phrased more abstractly,
the security of the protocol 〈D3,W3〉 relies on assumption that the secret key
of the delegator D3 (i.e., the pairs (r̂i, Ĉ(r̂i))), remains secret. However, in that
protocol, this secret key is revealed after delegating one input.

To make the protocol reusable, we use the idea of [GGP09], of running the
protocol under a fully-homomorphic encryption scheme. Namely, our transforma-
tion takes any delegation scheme Del = 〈D,W〉 which has only one-time sound-
ness, and converts it into a new delegation scheme D̃el = 〈D̃, W̃〉 with (standard)
soundness, as follows: The delegator D̃, instead of sending the message of D in
the clear (which may reveal information about his secret key), will send a public
key pk corresponding to a fully homomorphic encryption scheme, and will send
the message of D encrypted under the public key pk. The worker W̃ will then use
the homomorphic property of the encryption scheme, to compute an encrypted
reply of W. This enables the delegator D̃ to hide its message (which contains the
information about the delegator’s secret key) from the worker W̃, while still al-
lowing the worker to do the computation for the delegator. A formal description
of the transformation can be found in Figure 4.

The transformation. Let Del = 〈D,W〉 be a one-time delegation scheme. We define a trans-

formed delegation scheme D̃el = 〈D̃, W̃〉 from Del as follows.

– Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M and a time bound T .

– Offline Stage. D̃el has exactly the same offline stage as Del.
(Recall that in this stage both players receive a function F .)

– Online Stage. both D̃ and W̃ receive input x ∈ {0, 1}n.

1. D̃ generates a fresh pair of keys (pk, sk)← KeyGen(1k) of a fully-homomorphic encryption
scheme, computes D’s message q = D(F, x, σD) and its encryption q̂ = Encpk(q), and sends

pk and q̂ to W̃.
2. W̃ homomorphically computes an encrypted version of W’s message â =

Eval(q̂,W(F, x, σW, ·)), and sends â to D̃.

3. D̃ decrypts â to obtain a = W(F, x, σW, q), and computes his decision and his output
according to D.

Fig. 4. Transforming one-time delegation scheme Del into a reusable delegation scheme
D̃el
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We next analyze the properties of the resulting (reusable) delegation scheme
D̃el.

– If the one-time delegation scheme Del has a non-interactive off-line stage,
then so does D̃el, since the offline stage remains unchanged.

– If the one-time delegation scheme Del has an efficient worker W, then the
resulting (reusable) delegation scheme D̃el also has an efficient worker W̃,
since W̃ does the same computation as W, but in an encrypted manner.

– The fact that the complexity of the algorithms (KeyGen,Enc,Dec) are in-
dependent of the runtime of F , implies that if the one-time delegation
scheme Del has an efficient delegator D then the delegator D̃ in the resulting
(reusable) delegation scheme D̃el is also efficient.

– The completeness of the fully homomorphic encryption scheme implies that if
the one-time delegation scheme Del is complete then the resulting (reusable)
delegation scheme D̃el is also complete.

Thus, it remains to analyze the soundness of the resulting delegation scheme
D̃el. Intuitively, by using a fully homomorphic encryption scheme, the informa-
tion about the delegator’s secret is not leaked, and so the delegator can reuse
the secret key to delegate the computation on multiple inputs. However, note
that not only the delegator’s message, but also the delegator’s decision bit can
leak information about the delegator’s secret key , since the delegator’s decision
depends on his secret key . Hence, in the security game (see Definition 3), the
delegator terminates the scheme once he rejects to ensure the delegator’s secret
key is not leaked. (As discussed in Section 3, an alternative option is to assume
that the worker does not learn the decision of the delegator, and our scheme is
also sound in this model.)

Lemma 3. Assume that the fully homomorphic encryption is semantically se-
cure. Let Del = 〈D,W〉 be a delegation scheme with negligible one-time soundness
error, and let D̃el = 〈D̃, W̃〉 be the delegation scheme obtained by applying to Del
the transformation described in Figure 4. Then D̃el also has negligible soundness
error.

Applying the above transformation to the previous delegation scheme Del3,
we obtain our main delegation scheme Del4. We summarize the properties of
Del4 in the following theorem.

Theorem 1. Assume that the fully homomorphic encryption scheme is seman-
tically secure. Then the delegation scheme Del4 = 〈D4,W4〉 has the following
properties, for delegating the computation of a function F : {0, 1}n → {0, 1}m
computable by a Turing machine M that runs in time T ≥ max{n,m}, on secu-
rity parameter k:

– Perfect completeness and negligible soundness error.
– Non-interactive offline stage, with D4 running in time poly(T, |M |, k) and

generating a secret key of length poly(n,m, k), but not creating any public
key.
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– 2-message online stage, with D4 running in time poly(n,m, k) and W4 run-
ning in time poly(T, |M |, k). That is, both D4 and W4 are efficient in the
online stage.

8 The Second Main Delegation Scheme Del5

We note that in all the delegation schemes presented in Section 4 – 7, the dele-
gator needs to run heavy computations in the offline stage. For example, in the
offline stage of Del4, the delegator needs to compute pairs of the form (r̂i, F̂ (r̂i)),
where each r̂i ← Encpk(0̄), and therefore runs in time comparable to the runtime
of F .

In this section, we show how to make the offline stage efficient by delegating
its computation as well. However, since we do not know how to do non-interactive
delegation (this is the problem we started with!), this will come at the price of
making the offline stage interactive. In particular, we will use universal argu-
ments, a notion developed by [Mic94,Kil92,BG02], and which yields a 4-message
delegation scheme. However, we cannot apply universal arguments directly, as
they allow the worker to learn the result of the computation, which in our case
is supposed to be the secret state of the delegator. To solve this problem, we
use yet another layer of fully homomorphic encryption, and use the universal
argument to delegate an encrypted form of the computation.

8.1 Universal Arguments

Consider the language

Luni , {(M,x, y, t) : M is a Turing machine that on input x outputs y after at most t steps}

Definition 6 (Universal Arguments [BG02]). A universal argument sys-
tem is a pair of interactive Turing machines, denoted by (P, V ), that satisfy the
following properties.

– Efficient verification. There exists a polynomial p such that for any z =
(M,x, y, t) the total runtime of V , on common input z, is at most p(|z|).
In particular, all the messages exchanged in the protocol have length smaller
than p(|z|).

– Completeness via a relatively-efficient prover. For every (M,x, y, t) ∈
Luni, Pr[(P, V )(M,x, y, t) = 1] = 1.

Furthermore, there exists a polynomial p such that for every (M,x, y, t) ∈
Luni, the total runtime of P on input z = (M,x, y, t) is at most p(|M |, t).

– Computational soundness. For every polynomial-size circuit family P ∗ =
{P ∗n}n∈N there exists a negligible function µ such that for every (M,x, y, t) ∈
{0, 1}n \ Luni, Pr[(P ∗n , V )(M,x, y, t) = 1] ≤ µ(n).
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Remark. We note that Barak and Goldreich [BG02] consider a more general
language L, where they allow the Turing machine M to be non-deterministic.
Moreover, they require an additional proof-of-knowledge type property. In this
work, we are only interested in deterministic Turing machines, and only focus
on the properties that we need.

Theorem 2 ([Kil92,Mic94,BG02]). Assuming the existence of collision-resistant
hash functions, there exists a 4-message (2-round) universal argument system.

We remark that the existence of fully homomorphic encryption schemes im-
plies the existence of collision-resistant hash functions [IKO05].

8.2 Our New Delegation Scheme Del5

We now show how to use a universal argument (P, V ), together with a fully
homomorphic encryption scheme E = (KeyGen,Enc,Dec), to convert any dele-
gation scheme Del = (D,W) with a non-interactive offline stage into a delegation
scheme D̃el = (D̃, W̃), such that the online stage remains unchanged, but the
offline stage of D̃el is now interactive (consists of 4 messages) and the delegator
D̃ is efficient in the offline stage.

Instead of having the delegator carry out its computations on its own in the
offline stage, it will use a worker to do it for him. However, as previously noted,
there is a subtle issue here: the result of the computation done by the delegator in
the offline stage should remain secret for soundness to hold. Therefore, we cannot
simply delegate this computation. Instead, will delegate this computation in a
secret manner; namely, we will do a universal argument over encrypted data, as
follows.

Suppose without loss of generality, that in the offline stage the delegator
D chooses some randomness r ∈ {0, 1}` for ` = poly(k)4 computes a function
g(r), where g may depend on both the delegated function F and the security
parameter k. The delegator D can delegate this computation, in a secret manner,
by giving the worker an encryption of r (rather than r in the clear); i.e., giving
the worker a pair (pk,Encpk(r)), and delegating the computation of the function
Evalpk(Encpk(r), g) to the worker, by running a universal argument protocol.
Then all the delegator needs to do is to decrypt the message he gets from the
worker. A formal description of this transformation can be found in Figure 5.

Analysis of our transformation can be found in the full version of this pa-
per [CKV10]. By applying the transformation above to the delegation scheme
Del4, and relying on Theorem 1, we get the following theorem.

Theorem 3. Assume that there exists a fully homomorphic encryption scheme.
Then there is a secure delegation scheme Del = 〈D,W〉 with the following prop-
erties, for delegating the computation of a function F : {0, 1}n → {0, 1}m com-
putable by a Turing machine M that runs in time T ≥ max{n,m}, on security
parameter k:

4 The randomness of D can always be reduced to poly(k) by use of a pseudorandom
generator if needed.
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The transformation. Let Del = 〈D,W〉 be a delegation scheme with a non-interactive offline

stage. We define a transformed delegation scheme D̃el = 〈D̃, W̃〉 from Del as follows.

– Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M and a time bound T .

– Offline Stage. Both D̃ and W̃ receive as input the functin F .
Suppose that in the delegation scheme Del, the delegator D chooses a random r ← {0, 1}`

(where ` = poly(k)) and computes σD = D(1k, F ; r). We denote by g(·) def
= D(1k, F ; ·). The

offline stage of D̃el proceeds as follows.
1. The delegator D̃ chooses a random r ← {0, 1}`; chooses a random key pair (pk, sk) ←

KeyGen(1k); computes r̂ = Encpk(r); and sends the pair (pk, r̂) to the worker W̃.

2. The worker W̃ computes c = Evalpk(r̂, g) and sends c to the delegator.

3. Then the worker W̃ and the delegator D̃ engage in a universal argument, where the worker
proves to the delegator that indeed c = Evalpk(r̂, g).

4. If the delegator D̃ accepts the universal argument, then he decrypts the ciphertext c and
outputs σD ← Decsk(c).

– Online Stage. The online stage of D̃el is identical to the online stage of Del.

Fig. 5. Transforming delegation scheme Del with non-interactive but inefficient offline
stage into D̃el with an efficient but interactive offline stage

– Del has perfect completeness and negligible soundness error.
– The offline stage consists of 4 messages, with D running in time poly(n,m, k, |M |, log T )

and W running in time poly(T, |M |, k).
– The offline stage produces a secret key of length poly(n,m, k) for D, and no

public key.
– In the (2-message) online stage, D runs in time poly(n,m, k) and W runs

in time poly(T, |M |, k).

Thus, D and W are efficient in both stages.

8.3 Pipelined Implementation of Del5

As mentioned in the introduction, the soundness of our main schemes Del4 and
Del5 is only guaranteed as long as the adversarial worker does not learn that the
delegator has rejected a proof, as this may leak information about the delegator’s
secret key. Hence, the delegator needs to re-run the offline stage after rejection.

Our “pipelined” scheme avoids this issue by having the delegator keep c
secret keys (for a constant c) and continually refresh them during the online
stage. Recall that Del5 has an efficient but 4-message offline stage where the
delegator delegates the computation of his secret key to a worker. The idea is
that, in each execution of the 2-message online stage, the delegator and the
worker shall simultaneously run 2c copies of offline stages in the background.
These are run in a pipelined fashion so that with each online stage, c copies
of the offline stage are finished and can be used to refresh secret keys that are
expired. We consider a secret key to be expired when it has been used in an online
stage of Del5 in which the delegator has rejected. Thus, the delegator will always
have a fresh secret key available provided that for every c online stages in which
there is an error (i.e. rejection), there are at least 2 consecutive errorless stages.
We note that this implementation requires the worker and delegator to maintain
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state, and thus is most useful for settings in which the delegator is interacting
with a single worker for many executions and wishes to avoid disruption from
benign faults. (If the worker were truly cheating, then it seems prudent to halt
the interaction and restart with a different worker...)
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