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Abstract. We introduce and formalize the notion ofVerifiable Computation,
which enables a computationally weak client to “outsource” the computation of a
functionF on various dynamically-chosen inputsx1, ...,xk to one or more work-
ers. The workers return the result of the function evaluation, e.g.,yi = F(xi), as
well as a proof that the computation ofF was carried out correctly on the given
valuexi . The primary constraint is that the verification of the proof should require
substantially less computational effort than computingF(xi) from scratch.
We present a protocol that allows the worker to return a computationally-sound,
non-interactive proof that can be verified inO(m·poly(λ)) time, wherem is the
bit-length of the output ofF , andλ is a security parameter. The protocol requires
a one-time pre-processing stage by the client which takesO(|C| ·poly(λ)) time,
whereC is the smallest known Boolean circuit computingF . Unlike previous
work in this area, our scheme also provides (at no additional cost) inputand out-
put privacy for the client, meaning that the workers do not learn any information
about thexi or yi values.

1 Introduction

Several trends are contributing to a growing desire to “outsource” computing from a
(relatively) weak computational device to a more powerful computation service. For
years, a variety of projects, including SETI@Home [5], Folding@Home [2], and the
Mersenne prime search [4], have distributed computations to millions of Internet clients
to take advantage of their idle cycles. A perennial problem is dishonest clients: end users
who modify their client software to return plausible results without performing any
actual work [23]. Users commit such fraud even when the only incentive is to increase
their ranking on a website listing. Many projects cope with such fraud via redundancy:
the same work unit is sent to several clients and the results are compared for consistency.
Apart from wasting resources, this provides little defenseagainst colluding users.

A related fear plagues cloud computing, where businesses buy computing time from
a service, rather than purchasing, provisioning, and maintaining their own computing
resources [1,3]. Sometimes the applications outsourced tothe cloud are so critical that
it is imperative to rule out accidental errors during the computation. Moreover, in such
arrangements, the business providing the computing services may have a strong finan-
cial incentive to return incorrect answers, if such answersrequire less work and are
unlikely to be detected by the client.

The proliferation of mobile devices, such as smart phones and netbooks, provides
yet another venue in which a computationally weak device would like to be able to
outsource a computation, e.g., a cryptographic operation or a photo manipulation, to a
third party and yet obtain a strong assurance that the resultreturned is correct.



In all of these scenarios, a key requirement is that the amount of work performed
by the client to generate and verify work instances must be substantially cheaper than
performing the computation on its own. It is also desirable to keep the work performed
by the workers as close as possible to the amount of work needed to compute the origi-
nal function. Otherwise, the worker may be unable to complete the task in a reasonable
amount of time, or the cost to the client may become prohibitive.

PRIOR WORK: In the security community, research has focused on solutions based on
audits and various forms of secure co-processors. Audit-based solutions [9,24] typically
require the client (or randomly selected workers) to recalculate some portion of the work
done by untrusted workers. This may be infeasible for resource-constrained clients and
often relies on some fraction of the workers to be honest, or at least non-colluding.

Secure co-processors [28, 33] provide isolated execution environments, but their
strong tamper-resistance typically makes them quite expensive (thousands of dollars
each) and sparsely deployed. The requirements of tamper-resistance also lead to the use
of weak CPUs to limit the amount of heat dissipation needed. The growing ubiquity of
Trusted Platform Modules (TPMs) [29] in commodity machinespromises to improve
platform security, but TPMs have achieved widespread deployment in part due to re-
duced costs (one to five dollars) that result in little to no physical tamper resistance.

In the cryptographic community, there is a long history of outsourcing expensive
cryptographic operations to a semi-trusted device. Chaum and Pedersen define the no-
tion of wallets with observers[10], a piece of secure hardware installed by a third party,
e.g. a bank, on the client’s computer to “help” with expensive computations. The hard-
ware is not trusted by the client, who retains assurance thatthe hardware is performing
correctly by analyzing its communication with the bank. Hohenberger and Lysyanskaya
formalize this model [17], and present protocols for the computation of modular expo-
nentiations (arguably the most expensive step in public-key cryptography operations).
Their protocol requires the client to interact withtwonon-colluding servers. Other work
targets specific classes of functions, such as one-way function inversion [16].

The theoretical community has devoted considerable attention to the verifiable com-
putation of arbitrary functions.Interactive proofs[6, 15] are a way for a powerful (e.g.
super-polynomial) prover to (probabilistically) convince a weak (e.g. polynomial) veri-
fier of the truth of statements that the verifier could not compute on its own. As it is well
known, the work on interactive proofs lead to the concept ofprobabilistically checkable
proofs(PCPs), where a prover can prepare a proof that the verifier can check in only
very few places (in particular only a constant number of bitsof the proofs needed for
NP languages). Notice, however, that the PCP proof might be very long, potentially too
long for the verifier to process. To avoid this complication,Kilian proposed the use of
efficient arguments3 [19,20] in which the prover sends the verifier a short commitment
to the entire proof using a Merkle tree. The prover can then interactively open the bits
requested by the verifier (this requires the use of a collision-resistant hash function). A
non-interactive solution can be obtained using Micali’s CSProofs [22], which remove
interaction from the above argument by choosing the bits to open based on the applica-

3 We follow the standard terminology: anargumentis a computationally sound proof, i.e. a
protocol in which the prover is assumed to be computationally bounded. Inan argument, an
infinitely powerful prover can convince the verifier of a false statement,as opposed to a proof
where this is information-theoretically impossible or extremely unlikely.



tion of a random oracle to the commitment string. In more recent work, which still uses
some PCP machinery, Goldwasser et al. [14] show how to build an interactive proof to
verify arbitrary polynomial-time computations in almost linear time. They also extend
the result to a non-interactive argument for a restricted class of functions.

Therefore, if we restrict our attention to non-interactiveprotocols, the state of the art
offers either Micali’s CS Proofs [22] which are arguments that can only be proven in the
random oracle model, or the arguments from [14] that can onlybe used for a restricted
class of functions. Our scheme overcomes these limitations, since it is non-interactive,
works for any function, and is provable in the standard model. It also provides the client
with input and output privacy, a property not considered in previous work.

OUR CONTRIBUTION. We slightly move away from the notions of proofs and argu-
ments, to define the notion of aVerifiable Computation Scheme: this is a protocol be-
tween two polynomial-time parties, aclientand aworker, to collaborate on the compu-
tation of a functionF : {0,1}n→ {0,1}m. Our definition uses an amortized notion of
complexity for the client: he can perform some expensive pre-processing, but after this
stage, he is required to run very efficiently. Since the preprocessing stage happens only
once, it is important to stress that it can be performed in a trusted environment where
the weak client, who does not have the computational power toperform it, outsources
it to a trusted party (think of a military application in which the client loads the result
of the preprocessing stage performed inside the military base by a trusted server, and
then goes off into the field where outsourcing servers may notbe trusted anymore – or
think of the preprocessing phase as being executed on the client’s home machine and
then used by his portable device in the field).

By introducing a one-time preprocessing stage (and the resulting amortized notion
of complexity), we can circumvent the result of Rothblum andVadhan [26], which
indicated that efficient verifiable computation requires the use of PCP constructions. In
other words, unless a substantial improvement in the efficiency of PCP constructions is
achieved, our model potentially allows much simpler and more efficient constructions
than those possible in previous models.

More specifically, a verifiable computation scheme consistsof three phases:

PreprocessingA one-time stage in which the client computes some auxiliary(public
and private) information associated withF . This phase can take time comparable
to computing the function from scratch, but it is performed only once, and its cost
is amortized over all the future executions.

Input Preparation When the client wants the worker to computeF(x), it prepares
some auxiliary (public and private) information aboutx. The public information is
sent to the worker.

Output Computation and Verification Once the worker has the public information
associated withF andx, it computes a stringπx which encodes the valueF(x) and
returns it to the client. From the valueπx, the client can compute the valueF(x) and
verify its correctness.

Notice that this is a minimally interactive protocol: the client sends a single message to
the worker and vice versa. The crucial efficiency requirement is that Input Preparation
and Output Verification must take less time than computingF from scratch (ideally
linear time,O(n+ m)). Also, the Output Computation stage should take roughly the
same amount of computation asF .



After formally defining the notion of verifiable computation, we present a verifi-
able computation scheme forany function. Assume that the functionF is described by
a Boolean circuitC. Then the Preprocessing stage of our protocol takes timeO(|C| ·
poly(λ)), i.e., time linear in the size of the circuitC that the client would have used to
compute the function on its own (and polynomial in the security parameterλ). Apart
from that, the client runs in linear time, as Input Preparation takesO(n · poly(λ))
time and Output Verification takesO(m·poly(λ)) time. Finally the worker takes time
O(|C| ·poly(λ)) to compute the function for the client.

The computational assumptions underlying the security of our scheme are the se-
curity of block ciphers (i.e., the existence of one-way functions) and the existence of a
secure fully homomorphic encryption scheme [12,13,27,30](more details below).

Dynamic and Adaptive Input Choice.We note that in this amortized model of com-
putation, Goldwasser et al.’s protocol [14] can be modified using Kalai and Raz’s trans-
formation [18] to achieve a non-interactive scheme (see [25]). However an important
feature of our scheme, that is not enjoyed by Goldwasser et al.’s protocol [14], is that
the inputs to the computation ofF can be chosen in a dynamic and adaptive fashion
throughout the execution of the protocol (as opposed to [14]where they must be fixed
and known in advance).

Privacy.We also note that our construction has the added benefit of providing input
and output privacy for the client, meaning that the worker does not learn any information
aboutx or F(x) (details below). This privacy feature is bundled into the protocol and
comes at no additional cost. This is a critical feature for many real-life outsourcing
scenarios in which a function is computed over highly sensitive data (e.g., medical
records or trade secrets). Our work is the first to provide a weak client with the ability
to efficiently and verifiably offload computation to an untrusted server in such a way
that the input remains secret.

OUR SOLUTION IN A NUTSHELL. Our work is based on the crucial (and somewhat
surprising) observation that Yao’s Garbled Circuit Construction [31, 32], in addition to
providing secure two-party computation, also provides a “one-time” verifiable compu-
tation. In other words, we can adapt Yao’s construction to allow a client to outsource
the computation of a function on a single input. More specifically, in the preprocessing
stage the client garbles the circuitC according to Yao’s construction. Then in the “input
preparation” stage, the client reveals the random labels associated with the input bits of
x in the garbling. This allows the worker to compute the randomlabels associated with
the output bits, and from them the client will reconstructF(x). If the output bit labels
are sufficiently long and random, the worker will not be able to guess the labels for an
incorrect output, and therefore the client is assured thatF(x) is the correct output.

Unfortunately, reusing the circuit for a second inputx′ is insecure, since once the
output labels ofF(x) are revealed, nothing can stop the worker from presenting those
labels as correct forF(x′). Creating a new garbled circuit requires as much work as if
the client computed the function itself, so on its own, Yao’sCircuits do not provide an
efficient method for outsourcing computation.

The second crucial idea of the paper is to combine Yao’s Garbled Circuit with a
fully homomorphic encryption system4 (e.g., Gentry’s recent proposal [13]) to be able

4 While homomorphic encryption already solves the problem of computing over private data, it
does not address the main problem of this paper: to efficiently verify the result.



to safely reuse the garbled circuit for multiple inputs. More specifically, instead of re-
vealing the labels associated with the bits of inputx, the client will encrypt those labels
under the public key of a fully homomorphic scheme. A new public key is generated
for every input in order to prevent information from one execution from being useful
for later executions. The worker can then use the homomorphic property to compute an
encryption of the output labels and provide them to the client, who decrypts them and
reconstructsF(x).

While existing fully-homomorphic encryption schemes [12,13,27,30] are expensive
(leading to large constants in our protocol’s performance), we anticipate that any per-
formance improvements in future schemes will directly result in similar performance
gains for our protocol as well, since we use the fully-homomorphic encryption scheme
in a black-box fashion.

One pre-processing step for many workers.Note that the pre-processing stage is
independent of the worker, since it simply produces a Yao-garbled version of the cir-
cuit C. Therefore, in addition to being reused many times, this garbled circuit can also
be sent to many different workers, which is the usage scenario for applications like
Folding@Home [2], which employ a multitude of workers across the Internet.

Handling malicious workers.In our scheme, if we assume that the worker learns
whether or not the client accepts the proofπx, then for every execution, a malicious
worker potentially learns a bit of information about the labels of the Yao-garbled cir-
cuit. For example, the worker could try to guess one of the labels, encrypt it with the
homomorphic encryption and see if the client accepts. In a sense, the output of the client
at the end of the execution can be seen as a very restricted “decryption oracle” for the
homomorphic encryption scheme (which is, by definition, notCCA secure). Because
of this one-bit leakage, we are unable to prove security in this case.

There are two ways to deal with this. One is to assume that the verification output
bit by the client remains private until all of the workers’ results have been returned.
The other is to repeat the pre-processing stage, i.e. the Yaogarbling of the circuit, every
time a verification fails. In this case, in order to preserve agood amortized complexity,
we must assume that failures do not happen very often. This isindeed the case in the
previous scenario, where the same garbled circuit is used with several workers, under
the assumption that only a small fraction of workers will be malicious. See Section 5.

2 Background

YAO’ S PROTOCOL FOR TWO-PARTY COMPUTATION. We summarize Yao’s protocol
for two-party private computation [31, 32]. For more details, we refer the interested
reader to Lindell and Pinkas’ excellent description [21].

We assume two parties, Alice and Bob, wish to compute a function F over their
private inputsa andb. For simplicity, we focus on polynomial-time deterministic func-
tions, but the generalization to stochastic functions is straightforward.

At a high-level, Alice convertsF into a boolean circuitC. She prepares a garbled
version of the circuit,G(C), and sends it to Bob, along with a garbled version,G(a),
of her input. Alice and Bob then engage in a series of oblivious transfers so that Bob
obtainsG(b) without Alice learning anything aboutb. Bob then applies the garbled
circuit to the two garbled outputs to derive a garbled version of the output:G(F(a,b)).
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Fig. 1. Yao’s Garbled Circuits. The original binary gate(a) can be represented by a standard
truth table(b). We then replace the 0 and 1 values with the corresponding randomly chosenλ-bit
values(c). Finally, we use the values for wa and wb to encrypt the values for the output wire wz
(d). The random permutation of these ciphertexts is the garbled representation of gate g.

Alice can then translate this into the actual output and share the result with Bob. Note
that the privacy of this protocol assumes an honest-but-curious adversary model.

In more detail, Alice constructs the garbled version of the circuit as follows. For

each wirew in the circuit, Alice chooses two random valuesk0
w,k1

w
R
← {0,1}λ to rep-

resent the bit values of 0 or 1 on that wire. Once she has chosenwire values for every
wire in the circuit, Alice constructs a garbled version of each gateg (see Figure 1). Let
g be a gate with input wireswa andwb, and output wirewz. Then the garbled version
G(g) of g is simply four ciphertexts:

γi j = Eki
a
(E

k j
b
(kg(i, j)

z )), wherei ∈ {0,1}, j ∈ {0,1} (1)

whereE is an secure symmetric encryption scheme with an “elusive range” (more de-
tails below). The order of the ciphertexts is randomly permuted to hide the structure of
the circuit (i.e., we shuffle the ciphertexts, so that the first ciphertext does not necessar-
ily encode the output for(0,0)).

In Yao’s protocol, Alice transfers all of the ciphertexts toBob, along with the wire
values corresponding to the bit-level representation of her input. In other words, she
transfers eitherk0

a if her input bit is 0 ork1
a if her input bit is 1. Since these are randomly

chosen values, Bob learns nothing about Alice’s input. Alice and Bob then engage in
an oblivious transfer so that Bob can obtain the wire values corresponding to his inputs
(e.g.,k0

b or k1
b). Bob learns exactly one value for each wire, and Alice learns nothing

about his input. Bob can then use the wire values to recursively decrypt the gate cipher-
texts, until he arrives at the final output wire values. When hetransmits these to Alice,
she can map them back to 0 or 1 values and hence obtain the result of the function
computation.

HOMOMORPHIC ENCRYPTION. A fully-homomorphic encryption schemeE is de-
fined by four algorithms: the standard encryption functionsKeyGenE , EncryptE , and
DecryptE , as well as a fourth functionEvaluateE . EvaluateE takes in a circuitC and
a tuple of ciphertexts and outputs a ciphertext that decrypts to the result of applyingC
to the plaintexts. A nontrivial scheme requires thatEncryptE andDecryptE operate in
time independent ofC [12,13,27,30]. More precisely, the time needed to generatea ci-
phertext for an input wire ofC, or decrypt a ciphertext for an output wire, is polynomial
in the security parameter of the scheme (independent ofC). Note that this implies that



the length of the ciphertexts for the output wires is boundedby some polynomial in the
security parameter (independent ofC).

Gentry recently proposed a scheme, based on ideal lattices,that satisfies these re-
quirements for arbitrary circuits [12, 13] (since Gentry’sproposal, additional integer-
based schemes have been proposed [27,30]). The complexity of KeyGenE in his initial
leveledfully homomorphic encryption scheme grows linearly with the depth ofC. How-
ever, under the assumption that his encryption scheme iscircular secure– i.e., roughly,
that it is “safe” to reveal an encryption of a secret key underits associated public key –
the complexity ofKeyGenE is independent ofC. See [8,12,13] for more discussion on
circular-security (and, more generally, key-dependent-message security) as it relates to
fully homomorphic encryption.

3 Problem Definition

At a high-level, a verifiable computation scheme is a two-party protocol in which a
client chooses a function and then provides an encoding of the function and inputs to
the function to aworker. The worker is expected to evaluate the function on the input
and respond with the output. The client then verifies that theoutput provided by the
worker is indeed the output of the function computed on the input provided.

3.1 Basic Requirements

A verifiable computation schemeV C = (KeyGen,ProbGen,Compute,Verify ) con-
sists of the four algorithms defined below.

1. KeyGen(F,λ)→ (PK,SK): Based on the security parameterλ, the randomizedkey
generationalgorithm generates a public key that encodes the target function F ,
which is used by the worker to computeF . It also computes a matching secret key,
which is kept private by the client.

2. ProbGenSK(x)→ (σx,τx): The problem generationalgorithm uses the secret key
SK to encode the function inputx as a public valueσx which is given to the worker
to compute with, and a secret valueτx which is kept private by the client.

3. ComputePK(σx)→ σy: Using the client’s public key and the encoded input, the
workercomputesan encoded version of the function’s outputy = F(x).

4. Verify SK(τx,σy)→ y∪ ⊥: Using the secret keySK and the secret “decoding”τx,
theverificationalgorithm converts the worker’s encoded output into the output of
the function, e.g.,y = F(x) or outputs⊥ indicating thatσy does not represent the
valid output ofF onx.

A verifiable computation scheme should be both correct and secure. A scheme
is correct if the problem generation algorithm produces values that allows an honest
worker to compute values that will verify successfully and correspond to the evaluation
of F on those inputs. More formally:

Definition 1 (Correctness).A verifiable computation schemeV C is correctif for any
function F, the key generation algorithm produces keys(PK,SK)←KeyGen(F,λ) such
that, ∀x ∈ Domain(F), if (σx,τx)← ProbGenSK(x) and σy← ComputePK(σx) then
y = F(x)← Verify SK(τx,σy).



Intuitively, a verifiable computation scheme is secure if a malicious worker cannot
persuade the verification algorithm to accept an incorrect output. In other words, for a
given functionF and inputx, a malicious worker should not be able to convince the
verification algorithm to output ˆy such thatF(x) 6= ŷ. Below, we formalize this intuition
with an experiment, wherepoly(·) is a polynomial.

ExperimentExpVeri f
A [V C ,F,λ]

(PK,SK)
R
← KeyGen(F,λ);

For i = 1, . . . , ℓ = poly(λ);
xi ← A(PK,x1,σ1, . . . ,xi−1,σi−1);
(σi ,τi)← ProbGenSK(xi);

(i, σ̂y)← A(PK,x1,σ1, . . . ,xℓ,σℓ);
ŷ← Verify SK(τi , σ̂y)
If ŷ 6=⊥ andŷ 6= F(xi), output ‘1’, else ‘0’;

Essentially, the adversary is given oracle access to generate the encoding of multiple
problem instances. The adversary succeeds if it produces anoutput that convinces the
verification algorithm to accept on the wrong output value for a given input value. Note
that in this experiment, the adversary does not learn whether or not he succeeded; we
consider the implications of providing the adversary with this information in Section 5.
We can now define the security of the system based on the adversary’s success in the
above experiment.

Definition 2 (Security). For a verifiable computation schemeV C , we define the ad-
vantage of an adversary A in the experiment above as:

AdvVeri f
A (V C ,F,λ) = Prob[ExpVeri f

A [V C ,F,λ] = 1] (2)

A verifiable computation schemeV C is securefor a function F, if for any adversary
A running in probabilistic polynomial time,

AdvVeri f
A (V C ,F,λ)≤ negli(λ) (3)

wherenegli() is a negligible function of its input.

In the above definition, we could have also allowed the adversary to select the func-
tion F . However, our protocol is a verifiable computation scheme that is secure forall
F , so the above definition suffices.

3.2 Input and Output Privacy

While the basic definition of a verifiable computation protects the integrity of the com-
putation, it is also desirable that the scheme protect the secrecy of the input given to the
worker(s). We define input privacy based on a typical indistinguishability argument that
guarantees thatno information about the inputs is leaked.

Intuitively, a verifiable computation scheme isprivatewhen the public outputs of the
problem generation algorithmProbGenover two different inputs are indistinguishable;
i.e., an adversary cannot decide which encoding is the correct one for a given input.
More formally consider the following experiment: the adversary is given the public key



for the scheme and selects two inputsx0,x1. He is then given the encoding of a randomly
selected one of the two inputs and must guess which one was encoded. During this
process the adversary is allowed to request the encoding of any input he desires. The
experiment is described below. The oraclePubProbGenSK(x) callsProbGenSK(x) to
obtain(σx,τx) and returns only the public partσx.

ExperimentExpPriv
A [V C ,F,λ]

(PK,SK)
R
← KeyGen(F,λ);

(x0,x1)← APubProbGenSK(·)(PK)
(σ0,τ0)← ProbGenSK(x0);
(σ1,τ1)← ProbGenSK(x1);

b
R
←{0,1};

b̂← APubProbGenSK(·)(PK,x0,x1,σb)

If b̂ = b, output ‘1’, else ‘0’;

Definition 3 (Privacy). For a verifiable computation schemeV C , we define the advan-
tage of an adversary A in the experiment above as:

AdvPriv
A (V C ,F,λ) =

∣

∣

∣

∣

Prob[ExpPriv
A [V C ,F,λ] = 1]−

1
2

∣

∣

∣

∣

(4)

A verifiable computation schemeV C is privatefor a function F, if for any adversary
A running in probabilistic polynomial time,

AdvPriv
A (V C ,F,λ)≤ negli(λ) (5)

wherenegli() is a negligible function of its input.

An immediate consequence of the above definition is that in a private scheme, the
encoding of the input must be probabilistic (since the adversary can always queryx0,x1
to thePubProbGenoracle, and if the answer were deterministic, he could decide which
input is encoded inσb).

A similar definition can be made for output privacy.

3.3 Efficiency

The final condition we require from a verifiable computation scheme is that the time
to encode the input and verify the output must be smaller thanthe time to compute the
function from scratch.

Definition 4 (Outsourceable).A V C can be outsourced if it permits efficient genera-
tion and efficient verification. This implies that for any x and anyσy, the time required
for ProbGenSK(x) plus the time required forVerify (σy) is o(T), where T is the fastest
known time required to compute F(x).

Notice that we are not including the time to compute the key generation algorithm
(i.e., the encoding of the function itself). Therefore, theabove definition captures the
idea of an outsourceable verifiable computation scheme which is more efficient than
computing the function in anamortizedsense, since the cost of encoding the function
can be amortized over many different input computations.



4 An Efficient Verifiable-Computation Scheme
with Input and Output Privacy

We are now ready to describe our scheme. Informally, our protocol works as follows.
The key generation algorithm consists of running Yao’s garbling procedure over a
Boolean circuit computing the functionF : the public key is the collection of cipher-
texts representing the garbled circuit, and the secret key consists of all the random wire
labels. The input is encoded in two steps: first a fresh public/secret key pair for a homo-
morphic encryption scheme is generated, and then the labelsof the correct input wires
are encrypted with it. These ciphertexts constitute the public encoding of the input,
while the secret key is kept private by the client. Using the homomorphic properties
of the encryption scheme, the worker performs the computation steps of Yao’s proto-
col, but working over ciphertexts (i.e., for every gate, given the encrypted labels for
the correct input wires, obtain an encryption of the correctoutput wire, by applying
the homomorphic encryption over the circuit that computes the “double decryption” in
Yao’s protocol). At the end, the worker will hold the encryption of the labels of the
correct output wires. He returns these ciphertexts to the client who decrypts them and
then computes the output from them. We give a detailed description below.

Protocol V C .
1. KeyGen(F,λ)→ (PK,SK): RepresentF as a circuitC. Following Yao’s Circuit

Construction (see Section 2), choose two values,w0
i ,w

1
i

R
← {0,1}λ for each wire

wi . For each gateg, compute the four ciphertexts(γg
00,γ

g
01,γ

g
10,γ

g
11) described in

Equation 1. The public keyPK will be the full set of ciphertexts, i.e.,PK ←
∪g(γg

00,γ
g
01,γ

g
10,γ

g
11), while the secret key will be the wire values chosen:SK←

∪i(w0
i ,w

1
i ).

2. ProbGenSK(x)→ σx: Run the fully-homomorphic encryption scheme’s key gener-
ation algorithm to create a new key pair:(PKE ,SKE )←KeyGenE (λ). Letwi ⊂SK
be the wire values representing the binary expression ofx. Set the public value
σx← (PKE ,EncryptE (PKE ,wi)) and the private valueτx← SKE .

3. ComputePK(σx)→ σy: CalculateEncryptE (PKE ,γi). Construct a circuit∆ that on
inputw,w′,γ outputsDw(Dw′(γ)), whereD is the decryption algorithm correspond-
ing to the encryptionE used in Yao’s garbling (therefore∆ computes the appropri-
ate decryption in Yao’s construction). CalculateEvaluateE (∆, EncryptE (PKE ,wi),
EncryptE (PKE ,γi)) repeatedly, to decrypt your way through the ciphertexts, just
as in the evaluation of Yao’s garbled circuit. The result isσy←EncryptE (PKE , w̄i),
wherew̄i are the wire values representingy = F(x) in binary.

4. Verify SK(σy)→ y∪⊥: UseSKE to decryptEncryptE (PKE , w̄i), obtainingw̄i . Use
SK to map the wire values to an outputy. If the decryption or mapping fails, then
output⊥.

Remark: On verifying ciphertext ranges in an encrypted form.Recall that Yao’s scheme
requires the encryption schemeE to have anefficiently verifiable range[21]: Given
the keyk, it is possible to decide efficiently if a given ciphertext falls into the range
of encryptions underk. In other words, there exists an efficient machineM such that
M(k,γ) = 1 iff γ ∈ Rangeλ(k). This is needed to “recognize” which ciphertext to pick
among the four ciphertexts associated with each gate.



In our verifiable computation schemeV C , we need to perform this check using an
encrypted form of the keyc = EncryptE (PKE ,k). When applying the homomorphic
properties ofE to the range testing machineM, the worker obtains an encryption of 1
for the correct ciphertext, and an encryption of 0 for the others. Of course he is not able
to distinguish which one is the correct one.

The worker then proceeds as follows: for the four ciphertextsγ1,γ2,γ3,γ4 associated
with a gateg, he first computesci = EncryptE (PKE ,M(k,γi)) using the homomorphic
properties ofE over the circuit describingM. Note that only one of these ciphertexts
encrypts a 1, exactly the one corresponding to the correctγi . Then the worker com-
putesdi = EncryptE (PKE ,Dk(γi)) using the homomorphic properties ofE over the
decryption circuit∆. Note thatk′ = ΣiM(k,γi)Dk(γi) is the correct label for the out-
put wire. Therefore, the worker can use the homomorphic properties ofE to compute
c = EncryptE (PKE ,k′) = EncryptE (PKE ,ΣiM(k,γi)Dk(γi)) from ci ,di , as desired.

The main result of our paper is the following.

Theorem 1. Let E be a Yao-secure symmetric encryption scheme andE be a seman-
tically secure homomorphic encryption scheme. Then protocol V C is a secure, out-
sourceable and private verifiable computation scheme.

The proof of Theorem 1 requires two high-level steps. First,we show that Yao’s gar-
bled circuit scheme is a one-time secure verifiable computation scheme, i.e. a scheme
that can be used to computeF securely on one input. This is an almost immediate re-
duction to the security of Yao’s protocol as a two-party computation scheme. Then,
by using the semantic security of the homomorphic encryption scheme, we reduce the
security of our scheme (with multiple executions) to the security of a single execution
where we expect the adversary to cheat. The proof appears in Appendix A.

INPUT AND OUTPUT PRIVACY. Note that for each oracle query the input and the output
are encrypted under the homomorphic encryption schemeE . It is not hard to see that
the proof of correctness above, easily implies the proof of input and output privacy. For
the one-time case, it obviously follows from the security ofYao’s two-party protocol.
For the general case, it follows from the semantic security of E , and the proof relies on
the same style of hybrid arguments described above.

5 How to Handle Cheating Workers

Our definition of security (Definition 2) assumes that the adversary does not see the
output of theVerify procedure run by the client on the valueσ returned by the adversary.
Theorem 1 is proven under the same assumption. In practice this means that our protocol
V C is secure if the client keeps the result of the computation private.

In practice, there might be circumstances where this is not feasible, as the behavior
of the client will change depending on the result of the evaluation (e.g., the client might
refuse to pay the worker). Intuitively, and we prove this formally below, seeing the result
of Verify on proofs the adversary correctlyComputes using the output ofPubProbGen
does not help the adversary (since it already knows the result based on the inputs it
supplied toPubProbGen). But what if the worker returns a malformed response –
i.e., something for whichVerify outputs⊥. How does the client respond, if at all?
One option is for the client to ask the worker to perform the computation again. But



this repeated request informs the worker that its response was malformed, which is an
additional bit of information that a cheating worker might exploit in its effort to generate
forgeries. Is our scheme secure in this setting? In this section, we prove that our scheme
remains secure as long as the client terminates after detecting a malformed response.
We also consider the interesting question of whether our scheme is secure if the client
terminates only after detectingk> 1 malformed responses, but we are unable to provide
a proof of security in this modified setting.

Note that there is a real attack on the scheme in this setting if the client does not ter-
minate. Specifically, for concreteness, suppose that each ciphertext output byEncryptE

encrypts a single bit of a label for an input wire of the garbled circuit, and that the ad-
versary wants to determine the first bitwb1

11 of the first label (where that label stands
in for unknown inputb1 ∈ {0,1}). To do this, the adversary runsCompute as before,
obtaining ciphertexts that encrypt the bits ¯wi of a label for the output wire. Using the
homomorphism of the encryption schemeE , it XORs wb1

11 with the first bit of w̄i to
obtainw̄′i , and it sends (the encryption of) ¯w′i as its response. IfVerify outputs⊥, then
wb1

11 must have been a 1; otherwise, it is a 0 with overwhelming probability. The adver-
sary can thereby learn the labels of the garbled circuit one bit at a time – in particular,
it can similarly learn the labels of the output wire, and thereafter generate a verifiable
response without actually performing the computation.

Intuitively, one might think that if the client terminates after detectingk malformed
responses, then the adversary should only be able to obtain about k bits of informa-
tion about the garbled circuit before the client terminates(using standard entropy ar-
guments), and therefore it should still be hard for the adversary to output the entire
“wrong” label for the output wire as long asλ is sufficiently larger thank. However,
we are unable to make this argument go through. In particular, the difficulty is with the
hybrid argument in the proof of Theorem 1, where we graduallytransition to an exper-
iment in which the simulator is encrypting the same Yao inputlabels in every round.
This experiment must be indistinguishable from the real world experiment, which per-
mits different inputs in different rounds. When we don’t givethe adversary informa-
tion about whether or not its response was well-formed or not, the hybrid argument is
straightforward – it simply depends on the semantic security of the FHE scheme.

However, if we do give the adversary that information, then the adversary can easily
distinguish rounds with the same input from rounds with random inputs. To do so, it
chooses some “random” predicateP over the input labels, such thatP(w1

b1
,w2

b2
, . . .) =

P(w1
b′1

,w2
b′2

, . . .) with probability 1/2 if (b1,b2, . . .) 6= (b′1,b
′
2, . . .). Given the encryptions

of w1
b1

,w2
b2

, . . ., the adversary runsCompute as in the scheme, obtaining ciphertexts
that encrypt the bits ¯wi of a label for the output wire, XORs (using the homomorphism)
P(w1

b1
,w2

b2
, . . .) with the first bit ofw̄i , and sends (an encryption of) the result ¯w′i as its

response. If the client is making the same query in every round – i.e., the Yao input
labels are the same every time – then, the predicate always outputs the same bit, and
thus the adversary gets the same response (well-formed or malformed) in every round.
Otherwise, the responses will tend to vary.

One could try to make the adversary’s distinguishing attackmore difficult by (for
example) trying to hide which ciphertexts encrypt the bits of which labels – i.e., via
some form of obfuscation. However, the adversary may define its predicate in such a
way that it “analyzes” this obfuscated circuit, determineswhether two ostensibly dif-



ferent inputs in fact represent the same set of Yao input labels, and outputs the same
bit if they do. (It performs this analysis on the encrypted inputs, using the homomor-
phism.) We do not know of any way to prevent this attack, and preventing it may be
rather difficult in light of Barak et al.’s result that there is no general obfuscator [7].

Security with Verification Access.We say that a verifiable computation scheme is secure
with verification accessif the adversary is allowed to see the result ofVerify over the
queriesxi he has made to theProbGen oracle inExpVeri f

A (see Definition 2).

Let V C
† be like V C , except that the client terminates if it receives a malformed

response from the worker. Below, we show thatV C
† is secure with verification access.

In other words, it is secure to provide the worker with verification access (indicating
whether a response was well-formed or not), until the workergives a malformed re-

sponse. LetExpVeri f†

A

[

V C
†
,F,λ

]

denote the experiment described in Section 3.1, with

the obvious modifications.

Theorem 2. If V C is a secure outsourceable verifiable computation scheme, thenV C
†

is a secure outsourceable verifiable computation scheme with verification access. IfV C

is private, so isV C
†.

The proof appears in Appendix B.
In practice Theorem 2 implies that every time a malformed response is received, the

client must re-garble the circuit (or, as we said above, makesure that the results of the
verification procedure remain secret). Therefore the amortized efficiency of the client
holds only if we assume that malformed responses do not happen very frequently.

In some settings, it is not necessary to inform the worker that its response is mal-
formed, at least not immediately. For example, in the Folding@Home application [2],
suppose the client generates a new garbled circuit each morning for its many workers.
At the end of the day, the client stops accepting computations using this garbled circuit,
and it (optionally) gives the workers information about thewell-formedness of their re-
sponses. Indeed, the client may reveal all of its secrets forthat day. In this setting, our
previous proof clearly holds even if there are arbitrarily many malformed responses.

6 Conclusions and Future Directions

In this work, we introduced the notion of Verifiable Computation as a natural formula-
tion for the increasingly common phenomenon of outsourcingcomputational tasks to
untrusted workers. We describe a scheme that combines Yao’sGarbled Circuits with a
fully-homomorphic encryption scheme to provide extremelyefficient outsourcing, even
in the presence of an adaptive adversary. As an additional benefit, our scheme maintains
the privacy of the client’s inputs and outputs.

Our work leaves open several interesting problems. It wouldbe desirable to de-
vise a verifiable computation scheme that used a more efficient primitive than fully-
homomorphic encryption. Similarly, it seems plausible that a verifiable scheme might
sacrifice input privacy to increase its efficiency. Finally,while our scheme is resilient
against a single malformed response from the worker, ideally we would like a scheme
that toleratesk > 1 malformed responses.
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A Proof of Theorem 1

The proof of Theorem 1 proceeds in two steps. First, we show that Yao’s garbled circuit
scheme is a one-time secure verifiable computation scheme, in other words, a scheme
that can be used to computeF securely on one input. This is an almost immediate
reduction to the security of Yao’s protocol as a two-party computation scheme. Then,
by using the semantic security of the homomorphic encryption scheme, we reduce the
security of our scheme (with multiple executions) to the security of a single execution
in which we expect the adversary to cheat.

A.1 Proof Sketch of Yao’s Security for One Execution

Consider the verifiable computation schemeV CYao defined as follows:

Protocol V CYao.
1. KeyGen(F,λ)→ (PK,SK): RepresentF as a circuitC. Following Yao’s Circuit

Construction (see Section 2), choose two values,w0
i ,w

1
i

R
← {0,1}λ for each wire

wi . For each gateg, compute the four ciphertexts(γg
00,γ

g
01,γ

g
10,γ

g
11) from Equation 1.

The public keyPK will be the full set of ciphertexts, i.e,PK←∪g(γg
00,γ

g
01,γ

g
10,γ

g
11),

while the secret key will be the wire values chosen:SK←∪i(w0
i ,w

1
i ).



2. ProbGenSK(x)→ σx: Reveal the labels of the input wires associated withx. In
other words, letwi ⊂ SK be the wire values representing the binary expression of
x, and setσx← wi . τx is the empty string.

3. ComputePK(σx)→ σy: Compute the decryptions in Yao’s protocol to obtain the
labels of the correct output wires. Setσy to be these labels.

4. Verify SK(σy)→ y∪ ⊥: UseSK to map the wire values inσy to the binary repre-
sentation of the outputy. If the mapping fails, output⊥.

Theorem 3. V CYao is a correct verifiable computation scheme.

Proof of Theorem 3: The proof of correctness follows directly from the proof of
correctness for Yao’s garbled circuit construction [21]. UsingC andx̃ produces a ˜y that
represents the correct evaluation ofF(x).

In the full version of the paper [11], we prove thatV CYao is a one-timesecure
verifiable computation scheme. The definition ofone-time secureis the same as Defini-
tion 2 except that in experimentExpVeri f

A , the adversary is allowed to query the oracle
ProbGenSK(·) only once (i.e.,ℓ = 1) and must cheat on that input.

Intuitively, an adversary who violates the security of thisscheme must either guess
the “incorrect” random valuek1−yi

w for one of the output bit values representingy, or
he must break the encryption scheme used to encode the “incorrect” wire values in the
circuit. The former happens with probability≤ 1

2λ , i.e., negligible inλ. The latter vio-
lates our security assumptions about the encryption scheme. We formalize this intuition
using a hybrid argument similar to the one used in [21].

Theorem 4. Let E be a Yao-secure symmetric encryption scheme. ThenV CYao is a
one-time secure verifiable computation scheme.

A.2 Completing the Proof of Theorem 1

The proof of Theorem 1 follows from Theorem 4 and the semanticsecurity of the
homomorphic encryption scheme. More precisely, we show that if the homomorphic
encryption scheme is semantically secure, then we can transform (via a simulation)
a successful adversary against the full verifiable computation schemeV C into an at-
tacker for the one-time secure protocolV CYao. The intuition is that for each query, the
labels in the circuit are encrypted with a semantically-secure encryption scheme (the
homomorphic scheme), so multiple queries do not help the adversary to learn about the
labels, and hence if he cheats, he must be able to cheat in the one-time case as well.

Proof of Theorem 1: Let us assume for the sake of contradiction that there is an
adversaryA such thatAdvVeri f

A (V C ,F,λ) ≥ ε, whereε is non-negligible inλ. We use
A to build another adversaryA′ which queries theProbGen oracle only once, and for
whichAdvVeri f

A′ (V CYao,F,λ)≥ ε′, whereε′ is close toε. The details ofA′ follow.
A′ receives as input the garbled circuitPK. It activatesA with the same input. Letℓ

be an upper bound on the number of queries thatA makes to itsProbGen oracle. The
adversaryA′ chooses an indexi at random between 1 andℓ and continues as follows. For
the j th query byA, with j 6= i, A′ will respond by (i) choosing a random private/public
key pair for the homomorphic encryption scheme(PK j

E
,SKj

E
) and (ii) encrypting ran-

dom λ-bit strings underPK j
E

. For theith query,x, the adversaryA′ givesx to its own



ProbGen oracle and receivesσx, the collection of active input labels corresponding to
x. It then generates a random private/public key pair for the homomorphic encryption
scheme(PKi

E
,SKi

E
), and it encryptsσx (label by label) underPKi

E
.

Once we prove the Lemma 1 below, we have our contradiction andthe proof of
Theorem 1 is complete.

Lemma 1. AdvVeri f
A′ (V CYao,F,λ)≥ ε′ whereε′ is non-negligible inλ.

Proof of Lemma 1: This proof also proceeds by defining, for any adversaryA, a set
of hybrid experimentsH k

A (V C ,F,λ) for k = 0, . . . , ℓ− 1. We define the experiments
below. Leti be an index randomly selected between 1 andℓ as in the proof above.

Experiment H k
A (V C ,F,λ) = 1]: In this experiment, we change the way the oracle

ProbGen computes its answers. For thej th query:
– j ≤ k and j 6= i: The oracle will respond by (i) choosing a random private/public

key pair for the homomorphic encryption scheme(PK j
E
,SKj

E
) and (ii) encrypting

randomλ-bit strings underPK j
E

.
– j > k or j = i: The oracle will respond exactly as inV C , i.e. by (i) choosing a ran-

dom private/public key pair for the homomorphic encryptionscheme(PK j
E
,SKj

E
)

and (ii) encrypting the correct input labels in Yao’s garbled circuit underPK j
E

.

In the end, the bit output by the experimentH k
A is 1 if A successfully cheats on theith

input and otherwise is 0. We denote withAdvk
A(V C ,F,λ) = Prob[H k

A (V C ,F,λ) = 1].
Note that

– H 0
A (V C ,F,λ) is identical to the experimentExpVeri f

A [V C ,F,λ], except for the way
the bit is computed at the end. Since the indexi is selected at random between 1
andℓ, we have that

Adv0
A(V C ,F,λ) =

AdvVeri f
A (V C ,F,λ)

ℓ
≥

ε
ℓ

– H ℓ−1
A (V C ,F,λ) is equal to the simulation conducted byA′ above, so

Advℓ−1
A (V C ,F,λ) = AdvVeri f

A′ (V CYao,F,λ)

If we prove fork= 0, . . . , ℓ−1 that experimentsH k
A (V C ,F,λ) andH k−1

A (V C ,F,λ)
are computationally indistinguishable, that is for everyA

|Advk
A(V C ,F,λ)−Advk−1

A (V C ,F,λ)| ≤ negli(λ) (6)

we are done, since that implies that

AdvVeri f
A′ (V CYao,F,λ)≥

ε
ℓ
− ℓ ·negli(λ)

which is the desired non-negligibleε′.
But Eq. 6 easily follows from the semantic security of the homomorphic encryption

scheme. Indeed assume that we could distinguish betweenH k
A andH k−1

A , then we can
decide the following problem, which is easily reducible to the semantic security ofE :



Security of E with respect to Yao Garbled Circuits: Given a Yao-garbled circuit
PKYao, an input x for it, a random public key PKE for the homomorphic encryption
scheme, a set of ciphertexts c1, . . . ,cn where n is the size of x, decide if for all i, ci =
EncryptE (PKE ,wxi

i ), where wi is the ith input wire and xi is the ith input bit of x, or ci
is the encryption of a random value.

Now run experimentH k−1
A with the following modification: at thekth query, instead of

choosing a fresh random key forE and encrypting random labels, answer withPKE and
the ciphertextsc1, . . . ,cn defined by the problem above. Ifci is the encryption of a ran-
dom value, then we are still running experimentH k−1

A , but if ci = EncryptE (PKE ,wxi
i ),

then we are actually running experimentH k
A . Therefore we can decide the Security of

E with respect to Yao Garbled Circuits with the same advantagewith which we can
distinguish betweenH k

A andH k−1
A .

The reduction of the Security ofE with respect to Yao Garbled Circuits to the basic
semantic security ofE is an easy exercise, and details will appear in the final version.

B Proof of Theorem 2

Proof of Theorem 2: Consider two games between a challenger and an adversary
A. In the real world game forV C

†, Game 0, the interactions between the challenger
and A are exactly like those between the client and a worker in the real world – in
particular, ifA’s response was well-formed, the challenger tellsA so, but the challenger
immediately aborts ifA’s response is malformed. Game 1 is identical to Game 0, except
that whenA queriesVerify , the challenger always answers with the correcty, whether
A’s response was well-formed or not, and the challenger neveraborts. Letεi be A’s
success probability in Gamei.

First, we show that ifV C is secure, thenε1 must be negligible. The intuition is
simple: since the challenger always responds with the correct y, there is actually no in-
formation in these responses, sinceA could have computedy on its own. More formally,
there is an algorithmB that breaksV C with probabilityε1 by usingA as a sub-routine.B
simply forwards communications between the challenger (now a challenger for theV C

game) andA, except thatB tells A the correcty w.r.t. all of A’s responses.B forwards
A’s forgery along to the challenger.

Now, we show thatε0≤ ε1, from which the result follows. LetEmal be the event that
A makes a malformed response, and letEf be the event thatA successfully outputs a

forgery – i.e., whereExpVeri f†

A [V C
†
,F,λ] outputs ‘1’.A’s success probability, in either

Game 0 or Game 1, is:

Prob[Ef ] = Prob[Ef |Emal] ·Prob[Emal]+Prob[Ef |¬Emal] ·Prob[¬Emal] (7)

If A does not make a malformed response, then Games 0 and 1 are indistinguishable to
A; therefore, the second term above has the same value in Games0 and 1. In Game 0,
Prob[Ef |Emal] = 0, since the challenger aborts. Therefore,ε0≤ ε1.


