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Abstract. We introduce and formalize the notion ¥Erifiable Computation
which enables a computationally weak client to “outsource” the computatti@an o
functionF on various dynamically-chosen inpws ..., X to one or more work-
ers. The workers return the result of the function evaluation, g.¢-,F(x;), as
well as a proof that the computation Bfwas carried out correctly on the given
valuex;. The primary constraint is that the verification of the proof should requir
substantially less computational effort than compufg; ) from scratch.

We present a protocol that allows the worker to return a computationaliges
non-interactive proof that can be verified@{m- poly(A)) time, wheremis the
bit-length of the output oF, andA is a security parameter. The protocol requires
a one-time pre-processing stage by the client which t&K#s| - poly(A)) time,
whereC is the smallest known Boolean circuit computifg Unlike previous
work in this area, our scheme also provides (at no additional cost) amalibut-
put privacy for the client, meaning that the workers do not learn amynmdtion
about thex; ory; values.

1 Introduction

Several trends are contributing to a growing desire to ‘mutse” computing from a
(relatively) weak computational device to a more powerfuinputation service. For
years, a variety of projects, including SETI@Home [5], Fofg@Home [2], and the
Mersenne prime search [4], have distributed computatimngltions of Internet clients
to take advantage of their idle cycles. A perennial probkedishonest clients: end users
who modify their client software to return plausible resultithout performing any
actual work [23]. Users commit such fraud even when the andeitive is to increase
their ranking on a website listing. Many projects cope witbtsfraud via redundancy:
the same work unit is sent to several clients and the resaltstnpared for consistency.
Apart from wasting resources, this provides little defeagainst colluding users.

Arelated fear plagues cloud computing, where businessesdmputing time from
a service, rather than purchasing, provisioning, and ramiinty their own computing
resources [1, 3]. Sometimes the applications outsourc#tktoloud are so critical that
it is imperative to rule out accidental errors during the patation. Moreover, in such
arrangements, the business providing the computing ssviy have a strong finan-
cial incentive to return incorrect answers, if such answecgiire less work and are
unlikely to be detected by the client.

The proliferation of mobile devices, such as smart phonésnatbooks, provides
yet another venue in which a computationally weak deviceldvtike to be able to
outsource a computation, e.g., a cryptographic operati@ayphoto manipulation, to a
third party and yet obtain a strong assurance that the netutined is correct.



In all of these scenarios, a key requirement is that the amafuwork performed
by the client to generate and verify work instances must bstantially cheaper than
performing the computation on its own. It is also desirablikgep the work performed
by the workers as close as possible to the amount of work deedmmpute the origi-
nal function. Otherwise, the worker may be unable to coreples task in a reasonable
amount of time, or the cost to the client may become prokibiti

PrRIOR WORK: In the security community, research has focused on solsifimsed on
audits and various forms of secure co-processors. Audiddaolutions [9,24] typically
require the client (or randomly selected workers) to radate some portion of the work
done by untrusted workers. This may be infeasible for reasmaonstrained clients and
often relies on some fraction of the workers to be honestt le@st non-colluding.

Secure co-processors [28, 33] provide isolated executimiraments, but their
strong tamper-resistance typically makes them quite estper{thousands of dollars
each) and sparsely deployed. The requirements of tampistarace also lead to the use
of weak CPUs to limit the amount of heat dissipation needée. growing ubiquity of
Trusted Platform Modules (TPMs) [29] in commodity machipesmises to improve
platform security, but TPMs have achieved widespread geptmt in part due to re-
duced costs (one to five dollars) that result in little to nggibal tamper resistance.

In the cryptographic community, there is a long history ofsourcing expensive
cryptographic operations to a semi-trusted device. ChauwthP&dersen define the no-
tion of wallets with observerglL0], a piece of secure hardware installed by a third party,
e.g. a bank, on the client's computer to “help” with expeagiemputations. The hard-
ware is not trusted by the client, who retains assurancdflbdiardware is performing
correctly by analyzing its communication with the bank. ldoberger and Lysyanskaya
formalize this model [17], and present protocols for the patation of modular expo-
nentiations (arguably the most expensive step in publjcekgptography operations).
Their protocol requires the client to interact witho non-colluding servers. Other work
targets specific classes of functions, such as one-wayifumictversion [16].

The theoretical community has devoted considerable atetd the verifiable com-
putation of arbitrary functiondnteractive proofg6, 15] are a way for a powerful (e.g.
super-polynomial) prover to (probabilistically) convena weak (e.g. polynomial) veri-
fier of the truth of statements that the verifier could not catan its own. As it is well
known, the work on interactive proofs lead to the conceprobabilistically checkable
proofs (PCPs), where a prover can prepare a proof that the veriffeclesack in only
very few places (in particular only a constant number of bftthe proofs needed for
NP languages). Notice, however, that the PCP proof mighebgleng, potentially too
long for the verifier to process. To avoid this complicatiliilian proposed the use of
efficient argumengs[19, 20] in which the prover sends the verifier a short commaitm
to the entire proof using a Merkle tree. The prover can the&raatively open the bits
requested by the verifier (this requires the use of a collisasistant hash function). A
non-interactive solution can be obtained using Micali's R¥8ofs [22], which remove
interaction from the above argument by choosing the bitpendased on the applica-

3 We follow the standard terminology: argumentis a computationally sound proof, i.e. a
protocol in which the prover is assumed to be computationally boundexh Brgument, an
infinitely powerful prover can convince the verifier of a false statemangpposed to a proof
where this is information-theoretically impossible or extremely unlikely.



tion of a random oracle to the commitment string. In more meeerk, which still uses
some PCP machinery, Goldwasser et al. [14] show how to buiidtaractive proof to
verify arbitrary polynomial-time computations in almostdar time. They also extend
the result to a non-interactive argument for a restrictedsbf functions.

Therefore, if we restrict our attention to non-interactivetocols, the state of the art
offers either Micali’s CS Proofs [22] which are argumentstttan only be proven in the
random oracle model, or the arguments from [14] that can belysed for a restricted
class of functions. Our scheme overcomes these limitatginse it is non-interactive,
works for any function, and is provable in the standard mdtlalso provides the client
with input and output privacy, a property not consideredrevipus work.

OuUR CONTRIBUTION. We slightly move away from the notions of proofs and argu-
ments, to define the notion of\#erifiable Computation Schemthis is a protocol be-
tween two polynomial-time parties,ciientand aworker, to collaborate on the compu-
tation of a functionF : {0,1}" — {0,1}™. Our definition uses an amortized notion of
complexity for the client: he can perform some expensivegroeessing, but after this
stage, he is required to run very efficiently. Since the egssing stage happens only
once, it is important to stress that it can be performed irusté&d environment where
the weak client, who does not have the computational powpetform it, outsources
it to a trusted party (think of a military application in whi¢he client loads the result
of the preprocessing stage performed inside the militapeli®y a trusted server, and
then goes off into the field where outsourcing servers mayadtusted anymore — or
think of the preprocessing phase as being executed on #m’slhome machine and
then used by his portable device in the field).

By introducing a one-time preprocessing stage (and thdtimg@amortized notion
of complexity), we can circumvent the result of Rothblum aratihan [26], which
indicated that efficient verifiable computation requires tise of PCP constructions. In
other words, unless a substantial improvement in the effigi@f PCP constructions is
achieved, our model potentially allows much simpler anderefficient constructions
than those possible in previous models.

More specifically, a verifiable computation scheme consistiree phases:

Preprocessing A one-time stage in which the client computes some auxiljpaplic
and private) information associated wkh This phase can take time comparable
to computing the function from scratch, but it is performedycmonce, and its cost
is amortized over all the future executions.

Input Preparation When the client wants the worker to compu¢x), it prepares
some auxiliary (public and private) information abaufhe public information is
sent to the worker.

Output Computation and Verification Once the worker has the public information
associated witlr andx, it computes a stringk which encodes the valug(x) and
returns it to the client. From the valum, the client can compute the valkéx) and
verify its correctness.

Notice that this is a minimally interactive protocol: théecit sends a single message to
the worker and vice versa. The crucial efficiency requireneethat Input Preparation
and Output Verification must take less time than compuBnffom scratch (ideally
linear time,O(n+ m)). Also, the Output Computation stage should take roughty th
same amount of computation Bs



After formally defining the notion of verifiable computatiowe present a verifi-
able computation scheme fanyfunction. Assume that the functidnis described by
a Boolean circuiC. Then the Preprocessing stage of our protocol takes @H€| -
poly(A)), i.e., time linear in the size of the circ@tthat the client would have used to
compute the function on its own (and polynomial in the sagysarameten). Apart
from that, the client runs in linear time, as Input PreparatiakesO(n - poly(A))
time and Output Verification take3(m-poly(A)) time. Finally the worker takes time
O(|C| - poly(A)) to compute the function for the client.

The computational assumptions underlying the securityunfscheme are the se-
curity of block ciphers (i.e., the existence of one-way fimts) and the existence of a
secure fully homomorphic encryption scheme [12, 13, 27(8@re details below).

Dynamic and Adaptive Input Choic@le note that in this amortized model of com-
putation, Goldwasser et al.’s protocol [14] can be modifisidigl Kalai and Raz'’s trans-
formation [18] to achieve a non-interactive scheme (se) [Rowever an important
feature of our scheme, that is not enjoyed by Goldwasser'spabtocol [14], is that
the inputs to the computation & can be chosen in a dynamic and adaptive fashion
throughout the execution of the protocol (as opposed tod¥re they must be fixed
and known in advance).

Privacy.We also note that our construction has the added benefit viding input
and output privacy for the client, meaning that the workexsdaot learn any information
aboutx or F(x) (details below). This privacy feature is bundled into thetpcol and
comes at no additional cost. This is a critical feature fonyneeal-life outsourcing
scenarios in which a function is computed over highly semsitiata (e.g., medical
records or trade secrets). Our work is the first to provide akvatient with the ability
to efficiently and verifiably offload computation to an untagserver in such a way
that the input remains secret.

OUR SOLUTION IN A NUTSHELL. Our work is based on the crucial (and somewhat
surprising) observation that Yao’s Garbled Circuit Counstiion [31, 32], in addition to
providing secure two-party computation, also providesree*time” verifiable compu-
tation. In other words, we can adapt Yao's construction kmnah client to outsource
the computation of a function on a single input. More speailfjcin the preprocessing
stage the client garbles the circGiaccording to Yao’s construction. Then in the “input
preparation” stage, the client reveals the random labstscésted with the input bits of
x in the garbling. This allows the worker to compute the randalpels associated with
the output bits, and from them the client will reconstrE¢k). If the output bit labels
are sufficiently long and random, the worker will not be alblgtess the labels for an
incorrect output, and therefore the client is assuredRl(a} is the correct output.

Unfortunately, reusing the circuit for a second inplts insecure, since once the
output labels of (x) are revealed, nothing can stop the worker from presentiogeth
labels as correct fdF (X'). Creating a new garbled circuit requires as much work as if
the client computed the function itself, so on its own, Ya@iscuits do not provide an
efficient method for outsourcing computation.

The second crucial idea of the paper is to combine Yao's @drflircuit with a
fully homomorphic encryption systehte.g., Gentry’s recent proposal [13]) to be able

4 While homomorphic encryption already solves the problem of computiegmrvate data, it
does not address the main problem of this paper: to efficiently verifyethdtr



to safely reuse the garbled circuit for multiple inputs. Blaepecifically, instead of re-
vealing the labels associated with the bits of inguhe client will encrypt those labels
under the public key of a fully homomorphic scheme. A new mukéy is generated
for every input in order to prevent information from one extan from being useful

for later executions. The worker can then use the homomombperty to compute an
encryption of the output labels and provide them to the tlieho decrypts them and
reconstructs (x).

While existing fully-homomorphic encryption schemes [122I7,30] are expensive
(leading to large constants in our protocol’s performane&) anticipate that any per-
formance improvements in future schemes will directly hesusimilar performance
gains for our protocol as well, since we use the fully-homgwhec encryption scheme
in a black-box fashion.

One pre-processing step for many workexste that the pre-processing stage is
independent of the worker, since it simply produces a Yatigd version of the cir-
cuit C. Therefore, in addition to being reused many times, thislgdrcircuit can also
be sent to many different workers, which is the usage scerfariapplications like
Folding@Home [2], which employ a multitude of workers acrtise Internet.

Handling malicious workersin our scheme, if we assume that the worker learns
whether or not the client accepts the pragf then for every execution, a malicious
worker potentially learns a bit of information about thed&bof the Yao-garbled cir-
cuit. For example, the worker could try to guess one of theligkencrypt it with the
homomorphic encryption and see if the client accepts. Imaesehe output of the client
at the end of the execution can be seen as a very restrictedyfition oracle” for the
homomorphic encryption scheme (which is, by definition, GQA secure). Because
of this one-bit leakage, we are unable to prove securityifdase.

There are two ways to deal with this. One is to assume thatefi&oation output
bit by the client remains private until all of the workersstdts have been returned.
The other is to repeat the pre-processing stage, i.e. thgafdding of the circuit, every
time a verification fails. In this case, in order to presergmad amortized complexity,
we must assume that failures do not happen very often. Thigleed the case in the
previous scenario, where the same garbled circuit is us#dseveral workers, under
the assumption that only a small fraction of workers will balicious. See Section 5.

2 Background

YAO'S PROTOCOL FOR TWGPARTY COMPUTATION. We summarize Yao’s protocol
for two-party private computation [31, 32]. For more detailve refer the interested
reader to Lindell and Pinkas’ excellent description [21].

We assume two parties, Alice and Bob, wish to compute a fondti over their
private inputsa andb. For simplicity, we focus on polynomial-time determingstinc-
tions, but the generalization to stochastic functionsraightforward.

At a high-level, Alice convert$ into a boolean circuiC. She prepares a garbled
version of the circuitG(C), and sends it to Bob, along with a garbled versiGia),
of her input. Alice and Bob then engage in a series of oblisitansfers so that Bob
obtainsG(b) without Alice learning anything aboui. Bob then applies the garbled
circuit to the two garbled outputs to derive a garbled versibthe outputG(F (a,b)).
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Fig. 1. Yao's Garbled Circuits. The original binary gatga) can be represented by a standard
truth table(b). We then replace the 0 and 1 values with the corresponding randomlgthdst
values(c). Finally, we use the values forvand w, to encrypt the values for the output wirg w
(d). The random permutation of these ciphertexts is the garbled representdtimte g.

Alice can then translate this into the actual output andestiza result with Bob. Note
that the privacy of this protocol assumes an honest-butasiadversary model.
In more detail, Alice constructs the garbled version of thieuit as follows. For

each wirew in the circuit, Alice chooses two random valugs k%, & {0,1}* to rep-
resent the bit values of 0 or 1 on that wire. Once she has cheiservalues for every
wire in the circuit, Alice constructs a garbled version oflegateg (see Figure 1). Let
g be a gate with input wires/; andwy, and output wiren,. Then the garbled version
G(g) of gis simply four ciphertexts:

Vi = Ekia(EktJ-)(k?('v”)), wherei € {0,1},j € {0,1} (1)
whereE is an secure symmetric encryption scheme with an “elusiwvgega(more de-
tails below). The order of the ciphertexts is randomly peeduo hide the structure of
the circuit (i.e., we shuffle the ciphertexts, so that the iighertext does not necessar-
ily encode the output fof0, 0)).

In Yao’s protocol, Alice transfers all of the ciphertextsBob, along with the wire
values corresponding to the bit-level representation ofitgut. In other words, she
transfers eithek? if her input bit is 0 ork} if her input bit is 1. Since these are randomly
chosen values, Bob learns nothing about Alice’s input. &knd Bob then engage in
an oblivious transfer so that Bob can obtain the wire valwesesponding to his inputs
(e.g.,kg or kg). Bob learns exactly one value for each wire, and Alice learothing
about his input. Bob can then use the wire values to recuysirypt the gate cipher-
texts, until he arrives at the final output wire values. Whetraesmits these to Alice,
she can map them back to 0 or 1 values and hence obtain thé oésé function
computation.

HoMOMORPHIC ENCRYPTION. A fully-homomorphic encryption schemg is de-
fined by four algorithms: the standard encryption functifeyGen,, Encrypt+, and
Decryptz, as well as a fourth functioRvaluater. Evaluater takes in a circuiC and

a tuple of ciphertexts and outputs a ciphertext that desriygpthe result of applyinG

to the plaintexts. A nontrivial scheme requires tBatrypt z andDecrypt operate in
time independent ot [12, 13,27, 30]. More precisely, the time needed to generate
phertext for an input wire of, or decrypt a ciphertext for an output wire, is polynomial
in the security parameter of the scheme (independe@).dflote that this implies that



the length of the ciphertexts for the output wires is bounlgledome polynomial in the
security parameter (independeniQ)f

Gentry recently proposed a scheme, based on ideal lattiwgssatisfies these re-
quirements for arbitrary circuits [12, 13] (since Gentrgi®posal, additional integer-
based schemes have been proposed [27,30]). The compléxigy&en, in his initial
leveledfully homomorphic encryption scheme grows linearly witk ttepth ofC. How-
ever, under the assumption that his encryption schermiecigar secure-i.e., roughly,
that it is “safe” to reveal an encryption of a secret key urtdeassociated public key —
the complexity oKeyGen, is independent of. See [8,12,13] for more discussion on
circular-security (and, more generally, key-dependeessage security) as it relates to
fully homomorphic encryption.

3 Problem Definition

At a high-level, a verifiable computation scheme is a twdyparotocol in which a
client chooses a function and then provides an encoding of theifumand inputs to
the function to avorker. The worker is expected to evaluate the function on the input
and respond with the output. The client then verifies thatadtiiput provided by the
worker is indeed the output of the function computed on tipeiprovided.

3.1 Basic Requirements

A verifiable computation schenmEC = (KeyGen, ProbGen, Compute, Verify ) con-
sists of the four algorithms defined below.

1. KeyGen(F,A) — (PK, SK): Based on the security paramekethe randomizetey
generationalgorithm generates a public key that encodes the targeti@umF,
which is used by the worker to compuge It also computes a matching secret key,
which is kept private by the client.

2. ProbGengk(x) — (0x,Tx): The problem generatiomlgorithm uses the secret key
SKto encode the function inputas a public valuey which is given to the worker
to compute with, and a secret valuewhich is kept private by the client.

3. Computepi (0yx) — 0y: Using the client’s public key and the encoded input, the
workercomputesn encoded version of the function’s outgut F(x).

4. Verify g¢(1x,0y) — YU L: Using the secret ke$K and the secret “decodingy,
the verificationalgorithm converts the worker’s encoded output into thgoubf
the function, e.g.y = F(x) or outputs L indicating thatoy does not represent the
valid output ofF onx.

A verifiable computation scheme should be both correct ardree A scheme
is correct if the problem generation algorithm producesieslthat allows an honest
worker to compute values that will verify successfully andrespond to the evaluation
of F on those inputs. More formally:

Definition 1 (Correctness).A verifiable computation scheniéC is correctif for any
function F, the key generation algorithm produces K&}s, SK) < KeyGen(F,A) such
that, ¥x € Domain(F), if (0x,Tx) < ProbGengk(x) and oy < Computepy (0x) then
y = F(x) « Verify g(Tx, 0y).



Intuitively, a verifiable computation scheme is secure ifaioious worker cannot
persuade the verification algorithm to accept an incorratwd. In other words, for a
given functionF and inputx, a malicious worker should not be able to convince the
verification algorithm to output Such thaf (x) # y. Below, we formalize this intuition
with an experiment, whergoly(-) is a polynomial.

ExperimentExp\,f\erif [VC,F,\

(PK, SK) & KeyGen(F,A);

Fori=1,....¢=poly(A);
X« A(PK,X1,01,...,%-1,0i-1);
(0i,Ti) « ProbGensk(X);

(i,6y) < A(PK,X1,01,...,X,0¢);

y «— Verify gi(Ti, Oy)

If ¥#£1 andy+ F(x), output ‘1’, else ‘0’;

Essentially, the adversary is given oracle access to gertbaencoding of multiple
problem instances. The adversary succeeds if it producestpnt that convinces the
verification algorithm to accept on the wrong output valuesfgiven input value. Note
that in this experiment, the adversary does not learn whetheot he succeeded; we
consider the implications of providing the adversary witis information in Section 5.
We can now define the security of the system based on the adysrsuccess in the
above experiment.

Definition 2 (Security). For a verifiable computation schentéC, we define the ad-
vantage of an adversary A in the experiment above as:

AV (¢, F\) = ProbExpp [V ¢, F ] = 1] )

A verifiable computation schemnié( is securdor a function F, if for any adversary
A running in probabilistic polynomial time,

AdVE (V¢ F ) < negli (\) ©)
wherenegl i () is a negligible function of its input.

In the above definition, we could have also allowed the advgrt® select the func-
tion F. However, our protocol is a verifiable computation schenag ihsecure foall
F, so the above definition suffices.

3.2 Input and Output Privacy

While the basic definition of a verifiable computation progettie integrity of the com-
putation, it is also desirable that the scheme protect theesg of the input given to the
worker(s). We define input privacy based on a typical indgatishability argument that
guarantees thato information about the inputs is leaked.

Intuitively, a verifiable computation schemepisvatewhen the public outputs of the
problem generation algorithProbGen over two different inputs are indistinguishable;
i.e., an adversary cannot decide which encoding is the coorge for a given input.
More formally consider the following experiment: the adsaaw is given the public key



for the scheme and selects two inpxgsx;. He is then given the encoding of a randomly
selected one of the two inputs and must guess which one waslethcDuring this
process the adversary is allowed to request the encodingyoihaut he desires. The
experiment is described below. The oraBlebProbGergk(x) calls ProbGengk(X) to
obtain(ay, Tx) and returns only the public past.

ExperimenExpi™ [V C,F,\|
(PK,SK) & KeyGen(F,\):;
(XO,Xl) - APubProbGenSK()(pK)
(00,To) < ProbGensk(Xo);
(01,T1) < ProbGengk(x1);
b {0,1};
b APUbPrObGer‘SK<‘>(PK,Xo,Xl,Ob)
If b= Db, output ‘1’, else ‘0’;

Definition 3 (Privacy). For a verifiable computation scheriéc, we define the advan-
tage of an adversary A in the experiment above as:

AR (Y C,F,\) = [ProbExph™ [V C,F,\] = 1] — % (4)
A verifiable computation scheniéC is privatefor a function F, if for any adversary
A running in probabilistic polynomial time,

AA™(VC,F\) <negli (\) (5)
wherenegl i () is a negligible function of its input.

An immediate consequence of the above definition is that invate scheme, the
encoding of the input must be probabilistic (since the aslugrcan always queng, X1
to thePubProbGenoracle, and if the answer were deterministic, he could degitich
input is encoded iwp).

A similar definition can be made for output privacy.

3.3 Efficiency

The final condition we require from a verifiable computaticheme is that the time
to encode the input and verify the output must be smaller thartime to compute the
function from scratch.

Definition 4 (Outsourceable).A 9/C can be outsourced if it permits efficient genera-
tion and efficient verification. This implies that for any deanyaoy, the time required
for ProbGensk(x) plus the time required foverify (oy) is o(T), where T is the fastest
known time required to computg(%).

Notice that we are not including the time to compute the kayegation algorithm
(i.e., the encoding of the function itself). Therefore, #iwve definition captures the
idea of an outsourceable verifiable computation schemehniBienore efficient than
computing the function in ammortizedsense, since the cost of encoding the function
can be amortized over many different input computations.



4 An Efficient Verifiable-Computation Scheme
with Input and Output Privacy

We are now ready to describe our scheme. Informally, ouropmtworks as follows.

The key generation algorithm consists of running Yao'’s tjagbprocedure over a
Boolean circuit computing the functidf: the public key is the collection of cipher-
texts representing the garbled circuit, and the secret &mgists of all the random wire
labels. The input is encoded in two steps: first a fresh pldalaret key pair for a homo-
morphic encryption scheme is generated, and then the lab#ie correct input wires
are encrypted with it. These ciphertexts constitute thdipw@mcoding of the input,

while the secret key is kept private by the client. Using tbenbmorphic properties
of the encryption scheme, the worker performs the compmutagieps of Yao’s proto-
col, but working over ciphertexts (i.e., for every gate,egivthe encrypted labels for
the correct input wires, obtain an encryption of the cordput wire, by applying

the homomorphic encryption over the circuit that computes‘tdouble decryption” in

Yao's protocol). At the end, the worker will hold the encrigpot of the labels of the

correct output wires. He returns these ciphertexts to tieatcivho decrypts them and
then computes the output from them. We give a detailed gegmmibelow.

Protocol VC.
1. KeyGen(F,A) — (PK,SK): Represenf as a circuitC. Following Yao'’s Circuit

Construction (see Section 2), choose two valuésy! bl {0,1}* for each wire
wi. For each gate, compute the four ciphertextyg,, Yoy, Yio: Yi1) described in
Equation 1. The public kePK will be the full set of ciphertexts, i.ePK «
Ug(Y30: You: Yio- Y11). While the secret key will be the wire values chos8iK «—
Ui(Wiovwil)-

2. ProbGensk(Xx) — ox: Run the fully-homomorphic encryption scheme’s key gener-
ation algorithm to create a new key pdiPKz, SKz) «— KeyGeng(A). Letw; C SK
be the wire values representing the binary expressiox &et the public value
ox — (PKg,Encrypt £ (PK£,w;)) and the private valug, — SKg.

3. Computepi (0x) — 0y: CalculateEncrypt z (PK,Yi). Construct a circuifA that on
inputw,w,y outputsDy,(Dy (Y)), whereD is the decryption algorithm correspond-
ing to the encryptiort used in Yao’s garbling (therefoecomputes the appropri-
ate decryption in Yao's construction). Calcul&ealuatez (A, Encrypt £ (PKz,w;),
Encrypt«(PKz,Vi)) repeatedly, to decrypt your way through the ciphertextst, ju
as in the evaluation of Yao’s garbled circuit. The resuttyis— Encrypt «(PKz,w;),
wherew; are the wire values representing- F (x) in binary.

4. Verify g (0y) — Yy U L: UseSKg to decryptEncrypt z (PKe, W), obtainingw;. Use
SKto map the wire values to an outpytlf the decryption or mapping fails, then
output_L.

Remark: On verifying ciphertext ranges in an encrypted foRecall that Yao's scheme
requires the encryption schenieto have arefficiently verifiable rangg21]: Given
the keyk, it is possible to decide efficiently if a given ciphertexliganto the range
of encryptions undek. In other words, there exists an efficient machiiesuch that
M(k,y) = 1 iff y € Range, (k). This is needed to “recognize” which ciphertext to pick
among the four ciphertexts associated with each gate.



In our verifiable computation schenié¢C, we need to perform this check using an
encrypted form of the keg = Encrypt«(PKg, k). When applying the homomorphic
properties ofE to the range testing machimé, the worker obtains an encryption of 1
for the correct ciphertext, and an encryption of O for theeeshOf course he is not able
to distinguish which one is the correct one.

The worker then proceeds as follows: for the four ciphestexty., y3, Y4 associated
with a gateg, he first computes; = Encrypt «(PKz,M(k,Y;)) using the homomorphic
properties ofE over the circuit describing/l. Note that only one of these ciphertexts
encrypts a 1, exactly the one corresponding to the cogedthen the worker com-
putesd; = Encrypt+(PKg¢,Dk(yi)) using the homomorphic properties @f over the
decryption circuitA. Note thatk' = Z;M(k,y;)Dk(y:) is the correct label for the out-
put wire. Therefore, the worker can use the homomorphicqnas of £ to compute
¢ = Encrypt£(PKz,K') = Encrypt £ (PK£, ZiM(k,yi)Dk(yi)) from ¢;, d;, as desired.

The main result of our paper is the following.

Theorem 1. Let E be a Yao-secure symmetric encryption schemefahd a seman-
tically secure homomorphic encryption scheme. Then pobt®¢C is a secure, out-
sourceable and private verifiable computation scheme.

The proof of Theorem 1 requires two high-level steps. Rivstshow that Yao’s gar-
bled circuit scheme is a one-time secure verifiable comjputaicheme, i.e. a scheme
that can be used to computesecurely on one input. This is an almost immediate re-
duction to the security of Yao’s protocol as a two-party camtagion scheme. Then,
by using the semantic security of the homomaorphic encrypgicheme, we reduce the
security of our scheme (with multiple executions) to theusigg of a single execution
where we expect the adversary to cheat. The proof appeansparilix A.

INPUT AND OUTPUT PRIVACY. Note that for each oracle query the input and the output
are encrypted under the homomorphic encryption sch&mléis not hard to see that
the proof of correctness above, easily implies the proofipifit and output privacy. For
the one-time case, it obviously follows from the securityyab’s two-party protocol.
For the general case, it follows from the semantic secufit¥,cand the proof relies on
the same style of hybrid arguments described above.

5 How to Handle Cheating Workers

Our definition of security (Definition 2) assumes that theeaadary does not see the
output of theVerify procedure run by the client on the valmeeturned by the adversary.
Theorem 1 is proven under the same assumption. In practscegans that our protocol
1V is secure if the client keeps the result of the computatiorats.

In practice, there might be circumstances where this isessible, as the behavior
of the client will change depending on the result of the ex@dun (e.g., the client might
refuse to pay the worker). Intuitively, and we prove thisiiatly below, seeing the result
of Verify on proofs the adversary correc@pmputes using the output dubProbGen
does not help the adversary (since it already knows thetrbaskd on the inputs it
supplied toPubProbGen). But what if the worker returns a malformed response —
i.e., something for which/erify outputs L. How does the client respond, if at all?
One option is for the client to ask the worker to perform thenpatation again. But



this repeated request informs the worker that its resporsemalformed, which is an
additional bit of information that a cheating worker migRpoit in its effort to generate
forgeries. Is our scheme secure in this setting? In thisagatie prove that our scheme
remains secure as long as the client terminates after dejextmalformed response.
We also consider the interesting question of whether ougrsehis secure if the client
terminates only after detectitkg> 1 malformed responses, but we are unable to provide
a proof of security in this modified setting.

Note that there is a real attack on the scheme in this seftihg tlient does not ter-
minate. Specifically, for concreteness, suppose that épbhrtext output b¥Encrypt ¢
encrypts a single bit of a label for an input wire of the gadhbtécuit, and that the ad-
versary wants to determine the first bufll of the first label (where that label stands
in for unknown inputb; € {0,1}). To do this, the adversary ru@ompute as before,
obtaining ciphertexts that encrypt the hits of a label for the output wire. Using the
homomorphism of the encryption scherfig it XORs vv?ll with the first bit ofw; to
obtainw{, and it sends (the encryption ofj as its response. Werify outputsL, then

v\};ll must have been a 1; otherwise, it is a 0 with overwhelming giodiby. The adver-
sary can thereby learn the labels of the garbled circuit én&tla time — in particular,
it can similarly learn the labels of the output wire, and #adter generate a verifiable
response without actually performing the computation.

Intuitively, one might think that if the client terminatefiexr detecting malformed
responses, then the adversary should only be able to oHtain ka bits of informa-
tion about the garbled circuit before the client termindtesng standard entropy ar-
guments), and therefore it should still be hard for the ashugrto output the entire
“wrong” label for the output wire as long asis sufficiently larger thark. However,
we are unable to make this argument go through. In partidhladifficulty is with the
hybrid argument in the proof of Theorem 1, where we graduadlgsition to an exper-
iment in which the simulator is encrypting the same Yao inpbels in every round.
This experiment must be indistinguishable from the realldverperiment, which per-
mits different inputs in different rounds. When we don’t gitee adversary informa-
tion about whether or not its response was well-formed oy thet hybrid argument is
straightforward — it simply depends on the semantic segcafithe FHE scheme.

However, if we do give the adversary that information, tHemadversary can easily
distinguish rounds with the same input from rounds with andnputs. To do so, it
chooses some “random” predic&ever the input labels, such thatwtl)l7w§2,...) =

P(Wé/l,wg,z, ...) with probability 1/2 if (by, by,...) # (b},b5,...). Given the encryptions
of w%17w227..., the adversary run€ompute as in the scheme, obtaining ciphertexts
that encrypt the bitey; of a label for the output wire, XORs (using the homomorphism)
P(W, W5, ..) with the first bit ofwi, and sends (an encryption of) the resylias its
response. If the client is making the same query in everydoune., the Yao input
labels are the same every time — then, the predicate alwapsitsuhe same bit, and
thus the adversary gets the same response (well-formedlfarmad) in every round.
Otherwise, the responses will tend to vary.

One could try to make the adversary’s distinguishing attacke difficult by (for
example) trying to hide which ciphertexts encrypt the bitsvbich labels — i.e., via
some form of obfuscation. However, the adversary may definpredicate in such a
way that it “analyzes” this obfuscated circuit, determimd®ether two ostensibly dif-



ferent inputs in fact represent the same set of Yao inputdabed outputs the same
bit if they do. (It performs this analysis on the encrypteguts, using the homomor-
phism.) We do not know of any way to prevent this attack, arevgmting it may be
rather difficult in light of Barak et al.’'s result that thererio general obfuscator [7].

Security with Verification Acceséle say that a verifiable computation scheme is secure
with verification acces# the adversary is allowed to see the resulMefify over the

queriesx; he has made to tHerobGen oracle inExp.°"" (see Definition 2).

Let " be like VC, except that the client terminates if it receives a malfatme

response from the worker. Below, we show thée is secure with verification access.
In other words, it is secure to provide the worker with vedfion access (indicating
whether a response was well-formed or not), until the wogtees a malformed re-

sponse. LeExp\A/erifT fI/CT, F, )\] denote the experiment described in Section 3.1, with

the obvious modifications.

Theorem 2. If VC is a secure outsourceable verifiable computation SCherBB,‘lﬂfT
is a secure outsourceable verifiable computation schentewsiification access. /¢

is private, so isvc’.

The proof appears in Appendix B.

In practice Theorem 2 implies that every time a malformegaase is received, the
client must re-garble the circuit (or, as we said above, nsake that the results of the
verification procedure remain secret). Therefore the ameattefficiency of the client
holds only if we assume that malformed responses do not nagy frequently.

In some settings, it is not necessary to inform the worket itsaesponse is mal-
formed, at least not immediately. For example, in the Fg@ome application [2],
suppose the client generates a new garbled circuit eachimydior its many workers.
At the end of the day, the client stops accepting computatiging this garbled circuit,
and it (optionally) gives the workers information about tirel-formedness of their re-
sponses. Indeed, the client may reveal all of its secretth&drday. In this setting, our
previous proof clearly holds even if there are arbitrarilgny malformed responses.

6 Conclusions and Future Directions

In this work, we introduced the notion of Verifiable Compigatas a natural formula-
tion for the increasingly common phenomenon of outsourcimigputational tasks to
untrusted workers. We describe a scheme that combines &aolsed Circuits with a
fully-homomorphic encryption scheme to provide extrenedficient outsourcing, even
in the presence of an adaptive adversary. As an additiomafibeour scheme maintains
the privacy of the client’s inputs and outputs.

Our work leaves open several interesting problems. It wingddesirable to de-
vise a verifiable computation scheme that used a more effipiemitive than fully-
homomorphic encryption. Similarly, it seems plausiblet thaerifiable scheme might
sacrifice input privacy to increase its efficiency. Finalifhile our scheme is resilient
against a single malformed response from the worker, ig@adl would like a scheme
that tolerate& > 1 malformed responses.
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A Proof of Theorem 1

The proof of Theorem 1 proceeds in two steps. First, we shatwo’s garbled circuit
scheme is a one-time secure verifiable computation schenaghér words, a scheme
that can be used to compufe securely on one input. This is an almost immediate
reduction to the security of Yao’s protocol as a two-partynpatation scheme. Then,
by using the semantic security of the homomaorphic encrypgicheme, we reduce the
security of our scheme (with multiple executions) to theusiz of a single execution

in which we expect the adversary to cheat.

A.1 Proof Sketch of Yao’s Security for One Execution

Consider the verifiable computation schefri€y o defined as follows:

Protocol ¥ Cyao
1. KeyGen(F,A\) — (PK,SK): Represenf as a circuitC. Following Yao’s Circuit

Construction (see Section 2), choose two valuésy! 8 {0,1}* for each wire
w;. For each gatg, compute the four ciphertextga,, V9, Yo, Y1) from Equation 1.
The public keyPK will be the full set of ciphertexts, i.@K « Ug(Yao, Yo1: Yio, Yia)»
while the secret key will be the wire values chosBK:«— Uj (WP, w!).



2. ProbGensk(x) — oy: Reveal the labels of the input wires associated withn
other words, lety; € SK be the wire values representing the binary expression of
X, and sety < W;. Ty is the empty string.

3. Computepi (0x) — 0y: Compute the decryptions in Yao’s protocol to obtain the
labels of the correct output wires. Sstto be these labels.

4. Verify g(0y) — y U L: UseSKto map the wire values igy to the binary repre-
sentation of the outpuyt If the mapping fails, output .

Theorem 3. ¥ (Cyaois a correct verifiable computation scheme.

Proof of Theorem 3: The proof of correctness follows directly from the proof of
correctness for Yao's garbled circuit construction [21$ind)C andxX produces & that
represents the correct evaluationgk).

In the full version of the paper [11], we prove th@tCyao iS a one-timesecure
verifiable computation scheme. The definitiorook-time securs the same as Defini-
tion 2 except that in experimefixp}c" ', the adversary is allowed to query the oracle
ProbGensk(-) only once (i.e.f = 1) and must cheat on that input.

Intuitively, an adversary who violates the security of thiteme must either guess
the “incorrect” random valué, ¥ for one of the output bit values representiygor
he must break the encryption scheme used to encode theréotbwire values in the
circuit. The former happens with probability 2% i.e., negligible in\. The latter vio-
lates our security assumptions about the encryption schéf@aérmalize this intuition
using a hybrid argument similar to the one used in [21].

Theorem 4. Let E be a Yao-secure symmetric encryption scheme. Thépny, is a
one-time secure verifiable computation scheme.

A.2 Completing the Proof of Theorem 1

The proof of Theorem 1 follows from Theorem 4 and the semasgiturity of the
homomorphic encryption scheme. More precisely, we showitlthe homomorphic
encryption scheme is semantically secure, then we canforamgvia a simulation)
a successful adversary against the full verifiable comjmtaticheme?/C into an at-
tacker for the one-time secure protoddCy a0 The intuition is that for each query, the
labels in the circuit are encrypted with a semanticallyuse@ncryption scheme (the
homomorphic scheme), so multiple queries do not help theradvwy to learn about the
labels, and hence if he cheats, he must be able to cheat iméhemoe case as well.
Proof of Theorem 1: Let us assume for the sake of contradiction that there is an
adversaryA such thatAdv,®" (¢, F,\) > €, wheree is non-negligible in\. We use
A to build another adversa#y which queries thérobGen oracle only once, and for
which Ad\)A’,e”f(‘VCYa@ F,\) > ¢, whereg' is close tce. The details o’ follow.

A’ receives as input the garbled circBiK. It activatesA with the same input. Let
be an upper bound on the number of queries ghatakes to itProbGen oracle. The
adversary chooses an indexat random between 1 aricind continues as follows. For
the j'" query byA, with j # i, A" will respond by (i) choosing a random private/public
key pair for the homomorphic encryption sche(ﬁ’é(j@,SK%) and (ii) encrypting ran-
dom A-bit strings undePK}J. For theit" query,x, the adversar@ givesx to its own



ProbGen oracle and receivesy, the collection of active input labels corresponding to
x. It then generates a random private/public key pair for ti@dmorphic encryption
schemgPK.., SK..), and it encrypt®y (label by label) undePK..

Once we prove the Lemma 1 below, we have our contradictionti@gbroof of
Theorem 1 is complete. [ |

Lemma 1. AdVi" (7 Cyao F,A) > € wheree’ is non-negligible in.

Proof of Lemma 1: This proof also proceeds by defining, for any advergars set
of hybrid experimentSH}f(’l/C, F,A) for k=0,...,£— 1. We define the experiments
below. Leti be an index randomly selected between 1 &ad in the proof above.

Experiment }[,f('Va F,A\) = 1]: In this experiment, we change the way the oracle
ProbGen computes its answers. For tii8 query:

— j<kand j#i: The oracle will respond by (i) choosing a random privateligub
key pair for the homomorphic encryption sche(ﬂK%,SKJE) and (ii) encrypting
randomA-bit strings undePK%.

— j>kor j=i: The oracle will respond exactly as #C, i.e. by (i) choosing a ran-
dom private/public key pair for the homomorphic encrypt'scmheme(PKj@,SKjg)
and (ii) encrypting the correct input labels in Yao’s gacotércuit underPK(jE.

In the end, the bit output by the experimetf is 1 if A successfully cheats on tfié
input and otherwise is 0. We denote wild\s (1/C,F,\) = Prob[#X(VC,F,\) = 1].
Note that '

— HO(VC,F,\) is identical to the experimelixp)c" ' [7/C,F,\], except for the way
the bit is computed at the end. Since the indéx selected at random between 1
and/, we have that

AV (Ve F )

AdR(VC,F\) = ;

>

~1 m

— H-Y V¢, F,\) is equal to the simulation conducted Ayabove, so
AdVy Y(VC,F ) = AdVE™ (VCyao F M)

If we prove fork=0,...,/ — 1 that experiments{X(VC,F,\) andHX~1(VC,F,\)
are computationally indistinguishable, that is for evary

AR (VC,F, ) —Advg H(VC,F )| < negl i (V) (6)
we are done, since that implies that

AdVE" (VCyao FA) > —£-negl i (A)

1 m

which is the desired non-negligibt&

But Eq. 6 easily follows from the semantic security of the loomorphic encryption
scheme. Indeed assume that we could distinguish bet%@‘emd}[,'f‘l, then we can
decide the following problem, which is easily reduciblelte semantic security of:



Security of £ with respect to Yao Garbled Circuits: Given a Yao-garbled circuit
PKyao an input x for it, a random public key BKfor the homomorphic encryption
scheme, a set of ciphertextg c.,c, where n is the size of x, decide if for all i,
Encrypt ¢ (PKgz, W), where wis the " input wire and xis the I input bit of x, or ¢
is the encryption of a random value.

Now run experimenil[,f*1 with the following modification: at th&" query, instead of
choosing a fresh random key férand encrypting random labels, answer vtz and
the ciphertexts;, ..., cy defined by the problem above.dfis the encryption of a ran-
dom value, then we are still running experimeﬂffl, butifc; = Encryptg(PKg,V\fi‘i),
then we are actually running experimeﬁ,f. Therefore we can decide the Security of
‘E with respect to Yao Garbled Circuits with the same advantaitfe which we can
distinguish betweerf and #< 1,

The reduction of the Security @ with respect to Yao Garbled Circuits to the basic
semantic security of is an easy exercise, and details will appear in the final @Brsi

B Proof of Theorem 2

Proof of Theorem 2: Consider two games between a challenger and an adversary

A. In the real world game fof’c', Game 0, the interactions between the challenger
and A are exactly like those between the client and a worker in &a¢ world — in
particular, ifA’'s response was well-formed, the challenger tal&o, but the challenger
immediately aborts iA's response is malformed. Game 1 is identical to Game 0, éxcep
that whenA queriesVerify, the challenger always answers with the corsgeethether
A’s response was well-formed or not, and the challenger naberts. Lete; be A's
success probability in Ganie

First, we show that ift/C is secure, ther; must be negligible. The intuition is
simple: since the challenger always responds with the cbyreéhere is actually no in-
formation in these responses, siceould have computeglon its own. More formally,
there is an algorithrB that breaks/ C with probabilitye; by usingA as a sub-routindd
simply forwards communications between the challengewr@challenger for thd’C
game) andA, except thaB tells A the correcty w.r.t. all of A’'s responsesB forwards
A's forgery along to the challenger.

Now, we show thatg < €1, from which the result follows. LdEn g be the event that
A makes a malformed response, andHetbe the event thah successfully outputs a

forgery —i.e., whereExp\A/erifT

Game 0 or Game 1, is:

[‘VCT, F,A] outputs ‘1".A’s success probability, in either

Prob]E¢] = Prob[E¢ |Emal] - Prob[Emal] + ProblE¢ | ~Emai] - Prob[—=Emal] @)

If A does not make a malformed response, then Games 0 and 1 atéiguishable to
A; therefore, the second term above has the same value in Gaargb1. In Game 0,
Prob[E¢|Emal] = 0, since the challenger aborts. Therefagex €;. [ |



