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2 Karlsruhe Institute of Tehnology (KIT)Abstrat. We present the UC/ framework, a general de�nition forseure and inoerible multi-party protools. Our framework allows tomodel arbitrary reative protool tasks (by speifying an ideal funtion-ality) and omes with a universal omposition theorem. We show thatgiven natural setup assumptions, we an onstrut inoerible two-partyprotools realising arbitrary funtionalities (with respet to stati adver-saries).Keywords: Inoeribility, universal omposability, voting.1 IntrodutionCommonly, seurity of a ryptographi protool enompasses (very roughly) twoaspets: The protool should guarantee that the private data of the partiesstays seret (privay), and it should ensure that all data transferred or om-puted is orret (integrity). Most seurity de�nitions ensure one or both of theserequirements, and many protools are known to satisfy these de�nitions (e.g.,[16,1,11,8,9℄).There is, however, a requirement that does not fall into either ategory: o-erion resistane (�rst noted by [17,2℄). To illustrate this property, we use theexample of a voting sheme. In a voting sheme, it might be possible for a voter toaquire a reeipt that he ast a spei� vote. This does not violate the anonymityof the voter sine the voter is not required to reveal or even aquire suh a reeipt.Thus privay is maintained. And getting a reeipt does not allow to falsify theoutome of the eletion. Thus the integrity of the sheme is maintained. Yet themere possibility of aquiring a reeipt may make a party oerible. A oeriveadversary may threaten ertain reprisals if the party does not ast a spei� voteand proves this by delivering a reeipt to the adversary. Thus suh an eletionprotool would not be oerion resistant (short: inoerible).Inoeribility is an important property in any setting in whih some maliiousagent has the power to harm and thus threaten other protool partiipants.Clearly, this is not restrited to the setting of voting but may be the ase inother settings, too (e.g., when �nanial transations are involved). Unfortunately,inoeribility turns out to be both di�ult to de�ne and to ahieve.
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Previous de�nitions of inoeribility are usually restrited to speial domainssuh as voting (e.g., [2,19,13℄). An exeption are the models by Canetti and Gen-naro [4℄ and by Moran and Naor [20℄ whih give general de�nitions of inoeriblemulti-party omputation. Their de�nitions are, however, restrited to the aseof seure funtion evaluation. That is, they only onsider protools in whihall parties need to �rst ontribute their inputs, and then from these inputs theoutputs for the parties are omputed. Reative protools, protools that havemultiple phases and where the inputs in one phase an depend on the outputsof an earlier phase, are exluded. For example, the seurity of a ommitmentprotool ould not be modelled in their settings.Besides the problem of reative protools, the issue of omposability arises.When building a omplex protool, it is often neessary to abstrat from ertainsubprotools in the analysis to make the analysis manageable. For example, onemight �rst analyse the protool assuming a perfetly seure mehanism for per-forming ommitments (modelled by a trusted mahine), and then later on provethe seurity of the subprotool that is atually used for the ommitments. Todo so, and also to have a guarantee that the protool does not beome inseurewhen exeuted together with other protools or instanes of itself, one needs aseurity notion that omes with a omposition theorem.In the ase of normal seure multi-party omputation (i.e., without ino-eribility) both the problem of modelling reative protools and of giving strongompositionality guarantees has been solved by Canetti's UC model [6℄. In thismodel, we an de�ne a protool task by speifying a trusted mahine, the idealfuntionality, whih by de�nition performs the required protool task. Sine thismahine an interat with its environment in arbitrary ways, the seurity of verygeneral reative protools an be modelled. Furthermore, the UC model guar-antees that if a protool is seure when using (as opposed to realising) an idealfuntionality, then the protool stays seure when instead of the ideal funtion-ality, a subprotool that seurely realises the ideal funtionality is used. The UCmodel, however, does not guarantee inoeribility.Our ontribution.We de�ne the Composable Inoeribility framework (UC/)whih is an extension of the UC framework. Like UC, UC/ allows to model verygeneral reative protool tasks and gives strong ompositionality guarantees (uni-versal omposition). Additionally, protools seure with respet to UC/ are in-oerible. To illustrate the model, we show that a voting sheme that is UC/seure is also inoerible with respet to a de�nition tailored spei�ally to vot-ing. Finally, we show that in the restrited ase of stati oerions/deeptions(all orruptions and oerions happen at the beginning of the protool), arbi-trary UC/ seure two-party omputation is possible assuming the availabilityof seure hannels.Organisation. In Setion 1.1, we explain the intuition behind the UC/ frame-work. In Setion 2 we de�ne the UC/ framework and present the universalomposition theorem. In Setion 3 we illustrate our model by applying it to thesetting of voting protools. In Setion 4 we present general feasibility results fortwo-party protools. In Setion 5 we give diretions for further work.



1.1 The intuition behind UC/To understand the UC/ model, we �rst need to get an intuition of how ino-eribility is ahieved. The goal of an inoerible protool is the following: Whenan adversary tries to oere a party into performing a ertain ation (suh asasting a partiular vote v∗), the party should be able to perform the ation itoriginally intended to perform (asting a vote v) without the adversary notiing.That is, the adversary should not be able to tell the di�erene between a party Pthat follows the adversary's instrutions (a orrupted party, asting the vote v∗)and a party P that only tries to make the adversary believe that it follows theadversary's instrutions (a deeiving party, asting the vote v and giving fakeevidene to the adversary that it ast the vote v∗).The most natural way to de�ne inoeribility would be to require that theadversary annot distinguish between a oered and a deeiving party. This, how-ever, usually annot be ahieved. For example, in a voting protool the adversarywill eventually learn the tally. The distribution of the tally will, sine there areonly polynomially many voters, slightly but notieably hange when the voteof P hanges from v to v∗. The adversary an hene distinguish oered anddeeiving parties by observing the tally.Thus, we have to weaken the requirement. The adversary should not be ableto distinguish a oered and a deeiving party any better than he ould do givenonly information that is �legally� available to him (the tally in our example). Ingeneral, however, it is not straightforward to de�ne what information is �legally�available to the adversary in any partiular situation. Neither is it straightfor-ward to determine how muh distinguishing advantage the adversary would getgiven only that information.In order to irumvent this problem, we use a slightly di�erent approah:We �rst de�ne an ideal model in whih the adversary has, by de�nition, onlyaess to the �legally� available information. In the ase of voting, suh an idealmodel would onsist of a trusted mahine (the ideal voting funtionality F) thatollets the votes from all parties and gives only the tally to the adversary. In theideal model, the distinguishing advantage between a oered party (that gives
v∗ to F) and a deeiving party (that gives v to F) is, by de�nition, exatly theadvantage the adversary gets from the �legally� available information (the tally).To make this de�nition more formal, we introdue an additional entity, thedeeiver [14℄. The task of the deeiver is to instrut a deeiving party what itshould do (i.e., how to deeive the adversary). More formally, a deeiving partywill not run any program of its own, but instead follow the instrutions of thedeeiver. (In a sense, the deeiver models the party's free will.) In partiular,the deeiver may instrut a party to ast a vote v and to send to the adversarythe fake noti�ation that it ast vote v∗. (Sine we are in the ideal model, noryptographi reeipts or similar need to be faked.) A orrupted party, on theother hand, will follow the adversaries instrutions.The ombination of adversary and deeiver in the ideal model now allows tomodel any oerion situation that an our in the ideal model. To de�ne whatit means that the real protool is inoerible (or more preisely, as inoerible



as the ideal model), we will use the onept of simulation that underlies manyryptographi de�nitions suh as multi-party omputation and zero-knowledge:We show that for any adversary in the real model that performs some oer-ion attak, there is another adversary in the ideal model (alled the adversary-simulator) that performs a orresponding attak with as muh suess. In otherwords, we require that for any deeiver (speifying what a party would ideallywant to do), and for any adversary in the real model (trying to oere parties),there is an adversary-simulator in the ideal model suh that the real and theideal model are indistinguishable.We are, however, missing one ingredient: We need to speify how the idealdeeptions (spei�ed in terms of inputs to the ideal funtionalities) translateinto real deeptions (spei�ed in terms of faked messages et.). This is done byintroduing a deeiver in the real model, too, alled the deeiver-simulator. Wethen require that for any deeiver in the ideal model (representing a possibledeeption) there is a deeiver-simulator in the real model (that performs theorresponding real deeptions) suh that for any adversary in the real modelthere is a adversary-simulator in the ideal model suh that the two models areindistinguishable.Finally, to model the indistinguishability of the two models, we follow theideas from the UC framework and introdue a further mahine, the environment,that either ommuniates with the mahines in the real model or with the ma-hines in the ideal model and that has to guess whih model it is in. (For detailson how this indistinguishability atually ensures that the adversary's advantagein distinguishing orrupted and deeiving parties arries over from the ideal tothe real model we refer to the example in Setion 3.)1.2 Related workWe are aware of only two works that takle the problem of de�ning inoeribilityor a similar property in a general fashion (i.e., not speialised to a partiularprotool task suh as voting).Inoerible seure funtion evaluation (Canetti-Gennaro, Moran-Naor). Canetti and Gennaro [4℄ present a model for de�ning inoerible se-ure funtion evaluation whih was subsequently re�ned by Moran and Naor[20℄. The model by Moran and Naor is based on the so-alled stand-alone model[5,15, Ch. 7℄. In this model, one assumes that the inputs of all honest parties are�xed before the beginning of the protool. This has several impliations: First,reative protools where parties may deide on their inputs in later phases an-not be modelled. Seond, when atually deploying the protool, one would haveto ensure very strong synhronisation: In order not to introdue possibilities forattaks not overed by the model, we have to ensure that no protool message issent until all honest parties have deided on their input. Third, the stand-alone



model only guarantees sequential omposability.3 That is, we have no guaranteethat the protool stays seure when running onurrently with other protools(whih usually happens in real-life networks).Sine the model by Moran and Naor is based on the stand-alone model, in thismodel oered parties only need to lie about their initial inputs. Beause of this,Moran and Naor do not need to introdue an expliit deeiver; any deeption aparty might want to perform an be enoded by speifying a seond input, theso-alled �fake input�. In ontrast, the more omplex deeptions that are possiblein our setting neessitate the introdution of an expliit mahine, the deeiver,to speify the deeptions.Everything we said about the work by Moran and Naor also applies to theearlier work by Canetti and Gennaro [4℄. Furthermore, the model by Canetti andGennaro only models a very weak form of oerion-resistane; the adversary mayinstrut a oered party to use a di�erent input, but he may not instrut thatparty to deviate from the protool. For a disussion of the di�erene betweenthe models by Moran and Naor and by Canetti and Gennaro, we refer to [20℄.Externalized UC (deniability).Another approah to de�ne properties similarto inoeribility for general protools is the Externalized UC (EUC) frameworkproposed by Canetti, Dodis, Pass, andWal�sh [7℄ (also known as Generalized UC,UC with global setup, or, proposed independently by Hofheinz, Müller-Quade,and Unruh [18℄, UC with atalysts).This framework is, like ours, an extension of the UC framework and inheritsits support for reative protools and its universal omposition theorem. TheEUC framework di�ers from the UC framework by allowing the environment todiretly aess the ideal funtionality used in the real protool. As explained in[7℄, seurity in the EUC framework implies a property alled deniability. Thismeans that no (maliious) protool party P an ollet any information duringthe protool run that an later be used to prove to an outsider that some party
Q partiipated in the protool. (An example for suh inriminating informationwould be a message signed by Q.) In other words, Q an plausibly laim thatthe whole protool did not take plae. Obviously, suh a laim is only realistiwith respet to an outsider who did not himself ommuniate with Q during theprotool exeution. In ontrast, inoeribility as understood by this paper meansthat a party an lie about its ations towards an insider (e.g., a party ould lieeven towards another voter about the vote it has ast).Thus the two models (EUC and UC/) have very di�erent aims. Tehniallythey are, however, related: In the full version [21℄ we show that under ertainonditions, EUC seurity implies UC/ seurity.3 Note that it has not been shown that the variant of the stand-alone model presentedby Moran and Naor does ompose sequentially. But it does not seem unlikely thatthis ould be shown.



2 The Composable Inoeribility Framework (UC/)2.1 Review of the UC frameworkOur model is based on the Universal Composability (UC) framwork [6℄. For selfontainment and to �x notation, we give a short overview over the UC framework.An interative Turing mahine (ITM) is a Turing mahine that has additionaltapes for inoming and for outgoing ommuniation. An ITM may be ativatedby a message on an inoming ommuniation tape. At the end of an ativation,the ITM may send a message on an outgoing ommuniation tape to anotherITM. The reipient of a message is addressed by the unique identity of that ITM.The ations of an ITM may depend on a global parameter k ∈ N, the so-alledseurity parameter.A network is modeled as a (possibly in�nite) set of ITMs.4 We all a network
S exeutable if it ontains an ITM Z with distinguished input and output tapeand with the speial identity env. An exeution of S with input z ∈ {0, 1}∗ andseurity parameter k ∈ N is the following random proess: First, Z is ativatedwith the message z on its input tape. Whenever an ITM M1 ∈ S �nishes anativation with an outgoing message m addressed to another ITM M2 ∈ S onits outgoing ommuniation tape, the other ITM M2 is invoked with inomingmessage m on its inoming ommuniation tape (tagged with the identity of thesender M1). If an ITM terminates its ativation without an outgoing messageor sends a message to a non-existing ITM, the ITM Z is ativated. When theITM Z sends a message on its output tape (not the ommuniation tape!), theexeution of S terminates. The output of Z we denote by EXECS(k, z). An ITM
Z with identity env we all an environment and an ITM A with identity adv weall an adversary. A protool is a network that does not ontain an environmentor an adversary.We all networks S, S′ indistinguishable if there is a negligible funtion µsuh that for all k ∈ N, z ∈ {0, 1}∗, we have that |Pr[EXECS(k, z) = 1] −
Pr[EXECS′(k, z) = 1]| ≤ µ(k). We all S, S′ perfetly indistinguishable if µ = 0.Using the above network model, seurity is de�ned by omparison. We �rstde�ne an ideal protool ρ that spei�es the intended protool behaviour. Thenwe de�ne what it means that another protool π (seurely) emulates ρ:De�nition 1 (UC [6℄). Let π and ρ be protools. We say that π UC emulates ρif for any polynomial-time adversary A there exists a polynomial-time adversary
S (the adversary-simulator) suh that for any polynomial-time environment Zthe networks π ∪ {A,Z} (alled the real model) and ρ ∪ {S,Z} (alled the idealmodel) are indistinguishable.In the UC framework, one an model seure hannels (that do not even leak thelength of the transmitted message) by diret ommuniation between the ITMs;inseure hannels an be modelled by sending messages to the adversary; seure4 In the ase of in�nite networks we require the network to be uniform in the sense thatgiven the identity of an ITM, we an ompute the ode of that ITM in deterministipolynomial-time.



hannels that leak the length of the message, as well as authentiated hannelsan be modelled as an ideal funtionality.Corruptions are modelled as follows: The environment Z an send speialorruption requests to protool parties (whih are ITMs in π). If a protool partyreeives suh a request, it sends its urrent state to the adversary and from thenon is ontrolled by the adversary (i.e., it forwards all inoming ommuniationto the adversary and vie versa).Usually, the ideal model will be desribed by a so-alled ideal funtionality.Suh an ideal funtionality is an inorruptible ITM that an be seen as a trustedthird party aessible to the protool parties. The ideal protool orrespondingto F onsists of F itself and a so-alled dummy-party P̃ for eah party P inthe real model. The dummy-party P̃ simply forwards all messages reeived fromthe environment to F and vie versa. In slight abuse of notation, we write Ffor the ideal protool orresponding to F . Note that the dummy-parties anbe orrupted, hene the inputs and outputs to F from orrupted parties an bein�uened by the adversary-simulator. Using the onept of an ideal funtionality,we an express many protool tasks by �rst speifying an ideal funtionality Fthat ful�ls the protool task by de�nition, and then requiring that the protool
π UC emulates F .We an also onsider real protools π whih ontain ideal funtionalities
F (e.g., a funtionality modelling a CRS). These funtionalities an then beaessed by all parties. We then say that π is a protool in the F-hybrid model.For more details, we refer the reader to the full version of [6℄.2.2 The Composable Inoeribility framework (UC/)In our framework (UC/) the possibility of oerions is modelled by the preseneof an additional adversarial entity, alled the deeiver. Formally, a deeiver is anITM D with the speial identity dec. We further re�ne the notion of a protool:A protool is a network that does not ontain an environment, adversary, ordeeiver.A typial network would onsist of a protool π, an adversary A, a deeiver
D, and an environment Z (where the adversary and the deeiver may also bealled adversary-simulator and deeiver-simulator for larity depending on theirrole in the protool). We put no restrition on the ommuniation between ma-hines, A,D,Z may all ommuniate with eah other. Both the adversary andthe deeiver may ontrol parties. The exat mehanism of this is the following:Corruption model. A protool party may be in one of three orruption states:Unontrolled , orrupted , and deeiving . We say a party is ontrolled if it is or-rupted or deeiving. Initially, all mahines are unontrolled. Unontrolled partiesbehave aording to the protool spei�ation. If the environment Z sends aorruption request to an unontrolled party, the party beomes orrupted. If theenvironment sends a deeption request to an unontrolled or a orrupted party,the party beomes deeiving. When a party beomes orrupted or deeiving, itsends its state to the adversary or the deeiver, respetively. From then on, it



is ontrolled by the adversary or the deeiver, respetively (that is, it forwardsall inoming ommuniation to the ontrolling mahine and sends messages asinstruted by the ontrolling mahine). The only exeption is that if a orruptedmahine reeives a deeption request, it will not forward that request to theadversary, beause in that moment, it will beome deeiving and hene be underthe ontrol of the deeiver. We stress that if a party is deeiving, the adversaryannot even observe that party's ommuniation (unless the party ommuniatesover an inseure hannel or with a orrupted party).We assume the existene of a globally readable register that ontains thestate of eah party (whether it is unontrolled, orrupted, or deeiving). However,when the adversary reads this register, the state of any deeiving mahine willbe reported as orrupted. (This re�ets the fat that the adversary should notbe able to know whih mahine is deeiving.) Protool parties will not usuallyread this register; in some ases, however, it might be useful if the behaviour ofan ideal funtionality an depend on whether a mahine is ontrolled or not.5Seurity de�nition. We are now ready to speify the notion of UC/ seurity.In this notion, we do not only require the adversary-simulator (in the ideal model)to simulate the adversary's ations (in the real model), but simultaneously re-quire that the deeiver-simulator (in the real model) simulates the ations of thedeeiver (in the ideal model). The resulting notion is stritly stronger than UC.De�nition 2 (UC/). Let π and ρ be protools. We say that π UC/ emulates
ρ if for any polynomial-time deeiver D there exists a polynomial-time deeiver
DS (the deeiver-simulator) suh that for any polynomial-time adversary A thereexists a polynomial-time adversary AS (the adversary-simulator) suh that forany polynomial-time environment Z the following networks are indistinguishable:
π ∪ {A,DS,Z} and ρ ∪ {AS ,D,Z}.Where is the deeption strategy? The existene of a deeption strategy thathonest parties an follow when being oered is an essential part of any notion ofinoeribility. Suh a deeption strategy also exists in our model: if we onsiderthe deeiver D̃ that simply obeys any ommands (suh as �vote for Bob�) sentto it by the environment (we all suh a deeiver a dummy-deeiver D̃S , seeSetion 2.4), then the orresponding deeiver-simulator desribes how a oeredparty should behave in any situation. For an example of how to derive a speialpurpose deeption strategy from D̃S , see the proof of Theorem 10.Why is the adversary not informed about deeiving parties? The readermay notie an asymmetry in the de�nition: While the deeiver learns whih partyis orrupted and whih party is deeiving, the adversary will be told that a partyis orrupted even if it is deeiving. This is neessary beause during a deeption,the goal is to heat the adversary into thinking that one behaves as he instruts5 A typial example is the key exhange funtionality, whih returns a random keyfor both parties [6, full version℄. If one of the parties is orrupted, the key is insteadhosen by the adversary. Thus the funtionality needs to know whih parties areorrupted.



(i.e., that one is orrupted). Therefore orrupted and deeiving parties should beindistinguishable from the point of view of the adversary.Why an deeiving party not beome orrupted? Another asymmetry isthat a orrupted party an later beome deeiving while the model does notallow to orrupt parties that are deeiving. Although formally both diretionsould be allowed, we have exluded the latter beause we ould not �nd aninterpretation for suh a senario. For an interpretation of the former diretion(bad-guy oerions), see the next setion.2.3 Corruption shedulesThe notion of UC/ (De�nition 2) allows the environment to orrupt or oereany party at any point of time. This leads to a very strit de�nition. To get ade�nition that is more lenient but easier to ful�l, one an impose ertain restri-tions on the orruption and deeption requests performed by the environment.We all suh a restrition a orruption shedule.Bad-guy oerions. There are no restritions on the environment (exept thatthe environment annot orrupt a deeiving party, this is impliit in the mod-elling of the orruption mehanism).We all this notion bad-guy oerions beause the environment may �rst or-rupt a party (make it a �bad-guy�) and then later oere it. It is very di�ult todesign protools that are seure against bad-guy oerions beause a orruptedparty may be instruted by the adversary to atively deviate from the protoolto produe evidene against itself and thus thwart its own deniability. (In on-trast, a deeiving party would, given the same instrutions, only try to make theadversary believe that it follows these instrutions.)For example, in some protool the ability to deeive the adversary (and thusthe inoeribility of the protool) might be based on the following fat: Whenthe adversary requests a private seret m of some party, that party may send adi�erent seretm′ instead whih ontains a trapdoor. This trapdoor then is lateressential for ahieving inoeribility. In the setting of bad-guy oerions, a partymight �rst be orrupted and then reveal the true seret m to the adversary.This seret m does not ontain a trapdoor. Then later, if the party beomesdeeiving, it will be unable to follow its deeption strategy beause it does notknow any trapdoor for m. In a nutshell, while orrupted, a party may ativelytry to prevent its own inoeribility. Thus we expet that UC/ seurity withrespet to bad-guy oerions is very hard to ahieve.In pratise, bad-guy oerions are arguably a very rare event. A possible mo-tivation for bad-guy oerions is the following thought experiment: A member(say, Bob) of a riminal organisation is required by the rules of that organisationto atively produe and deliver some evidene (e.g., ertain keys) against himselfto that organisation. While Bob still works for the organisation, he will not tryto irumvent these rules and will deliver this evidene. But if Bob later deidesto leave the riminal organisation and to ooperate with the polie (underover),



Bob may have to onviningly at as if he was still following the riminal or-ganisation's instrutions. This is exatly the ase that is modelled by bad-guyoerions.In most ases, however, UC/ with bad-guy oerions will be muh to stronga notion, and the notion of good-guy oerions (below) will be preferred.Good-guy oerions. The environment may orrupt parties at any time andmay send deeption requests to unontrolled parties at any time. The environ-ment may not send deeption requests to orrupted parties.Reeipt-freeness. The environment may orrupt parties at any time, and maysend deeption requests to unontrolled parties after the end of the protool (sothat the adversary gets their state). The environment may not send deeptionrequests to a orrupted party. Reeipt-freeness implies that an honest party doesnot learn any data during the protool that ould later be used to prove after theprotool exeution that the party performed a ertain ation. (Note that witherasing parties, reeipt-freeness is probably easy to ahieve: an honest partysimply erases all intermediate protool data.)Stati orruptions/deeptions. All orruption and deeption requests mustbe sent at the very beginning of the protool exeution. In partiular, this im-plies that the environment annot hoose whih parties to orrupt depending onmessages it observes during the protool exeution.Combinations.The above orruptions shedules may be ombined by requiringthat the environment obeys a ertain shedule with respet to some parties andanother with respet to other parties. For example, one might have protoolsthat are UC/ seure with reeipt-freeness for Alie and good-guy oerions forBob.2.4 Properties of UC/ seurityThe proofs in this setion are omitted for spae reasons. They an be found inthe full version [21℄.Dummy adversary and deeiver. A dummy-adversary is an adversary thatjust follows the instrutions of the environment. More preisely, it forwards allmessages it reeives to the environment, and sends only the messages the en-vironment instruts it to send. It was shown by Canetti [6℄ in the UC settingthat the dummy-adversary is omplete, that is, without loss of generality wean onsider only the dummy-adversary. Therefore we only have to speify theadversary-simulator for the dummy-adversary instead of having to speify theadversary-simulator for every possible adversary. This simpli�es proofs.In the setting of UC/, we an additionally onsider the dummy-deeiver thatjust follows the instrutions of the environment. Below, we will show that boththe dummy-adversary and the dummy-deeiver are omplete. Besides stronglysimplifying proofs, the ompleteness of the dummy-deeiver has an additionaloneptual advantage. The deeiver-simulator orresponding to the dummy-deeiver enodes a universal deeption strategy. That is, for any �ideal deeption�,



it tells us how to perform this deeption in the real protool. The existene ofsuh a universal deeption strategy is very important in real life, protool usersneed to have an expliit strategy how to lie in whih situation; it is not su�ientthat suh a strategy exists for eah situation.De�nition 3 (Dummy-adversary, dummy-deeiver). The dummy-adversary Ã is an adversary that, when reeiving a message (id ,m) from theenvironment, sends m to the party with identity id , and that, when reeiving mfrom a party with identity id , sends (id ,m) to the environment. The dummy-deeiver D̃ is de�ned analogously.Lemma 4 (Completeness of dummy-adversary and dummy-deeiver).Let π and ρ be protools. Then π UC/ emulates ρ i� π UC/ emulates ρ withrespet to the dummy-adversary/deeiver (i.e., when only onsidering adversary
Ã and deeiver D̃ in De�nition 2).Universal omposition. One of the main advantages of the UC framework isthe universal omposition theorem. This theorem guarantees that a UC seureprotool π an be seurely used as a subprotool of arbitrary other protools σ,even when σ and polynomially many instanes of π run onurrently. The sameompositionality result also holds for the UC/ seurity notion.To formulate the omposition theorem, we introdue some notation. Let πand σ be protools. Then let σπ denote the protool where σ invokes a polynomialnumber of instanes of the subprotool π. That is, mahines in σ may give inputsto mahines in π, these inputs are treated by π as oming from the environment.When the mahines in π give output bak to the environment, these are sent tothe invoking mahines in σ. Thus, in a sense, in σπ, the protool σ plays the roleof the environment for the instanes of π. For example, if σF is a protool usinga ommitment funtionality F (i.e., σF is a protool in the F-hybrid model),then σπ would be the protool that uses the subprotool π instead of using theommitment funtionality F . The following theorem guarantees that, if π UC/emulates some other protool ρ (e.g., ρ = F), we do not loose seurity if wereplae subprotool invoations of ρ by subprotool invoations of π.Theorem 5 (Universal omposition). Let π, ρ, and σ be polynomial-timeprotools. Assume that π UC/ emulates ρ. Then σπ UC/ emulates σρ.The most ommon use ase of the omposition theorem is given by the fol-lowing orollary:Corollary 6. Let π and σ be polynomial-time protools, and F and G bepolynomial-time funtionalities. Assume that π UC/ emulates F and that σFUC/ emulates G. Then σπ UC/ emulates G.3 Voting shemesIn this setion we illustrate the UC/ seurity notion by applying it to the speialase of voting shemes. We give a de�nition of inoeribility that is tailored to



the spei� ase of voting protools and show that this de�nition is implied bythe UC/ seurity notion.De�nition 7 (Voting sheme). Fix sets V (the set of votes), T (the set of tal-lies), P (the set of voters). A tally funtion is an e�iently omputable funtion
tally : (V ∪ {⊥})P → T .A voting sheme for tally is a two-stage protool. We all the stages votingphase and tallying phase. In suh a protool, eah party Pi ∈ P gets an input
vi ∈ V ∪ {⊥} (the vote of Pi). vi = ⊥ means that the Pi does not partiipate inthe protool (abstention). In the end of the tallying phase a distinguished party
T outputs a value t ∈ T .Typially, V would be the set of all andidates. In more omplex shemes,elements of V might be, e.g., ordered lists of andidates in order of dereasingpreedene. The set of tallies T usually is the set of all funtions V → N0.Alternatively, in a voting sheme whih only announes the winner, we wouldhave have T = V . The tally funtion tally(v1, . . . , vn) spei�es what the orrettally is for the votes vi ∈ V ∪ {⊥} where vi = ⊥ denotes abstention.Note that we do not require that the parties Pi 6= T are aware whether theyare in the tallying or the voting phase. Suh a requirement might be di�ultto ensure in an asynhronous environment. In partiular, votes ast during thetallying phase (but before the tally is announed) might or might not be ounted.An ideal voting sheme is given by the following funtionality:De�nition 8 (Voting funtionality). The voting funtionality Fvote = F tally

voteexpets (at most one) message vi ∈ V from eah party Pi ∈ P. When reeiving
tally from T , Fvote sets vi := ⊥ for all Pi ∈ P from whih it did not reeivea message vi ∈ V yet. Then Fvote omputes t := tally(vi, i ∈ P) (the tally) andsends t to the adversary. Then, when Fvote reeives deliver from the adversary,it sends t to the party T .This funtionality models that the tally output by T is orretly omputedusing the tally funtion (as long as T itself is not orrupted) and that the indi-vidual votes are seret (even if T is orrupted).Natural properties of voting shemes are, e.g., orretness (the tally is orreteven in the presene of an adversary) and anonymity (the adversary annot tellwho voted for whom, exept as deduible from the tally itself). We will notformalise these properties here, but it is easy to see that a voting sheme thatUC emulates the voting funtionality Fvote satis�es reasonable formalisations ofthese properties. Sine the UC/ seurity notion is stronger than UC, this impliesthat these elementary properties are satis�ed by UC/ seure voting sheme, too.In our ontext, the most interesting property of a voting sheme is ino-eribility. We will �rst formalise what inoeribility means for voting shemes(independently of our framework). Then we will show that inoeribility of vot-ing shemes is implied by seurity in the UC/ framework. Assume some party
P that wants to ast a vote v. In an inoerible voting sheme, we expet thatif the adversary A fores a party P to deviate from the protool, A should not



be able to tell the di�erene between P obeying the adversary A, or the party
P asting the vote v anyway (we say P deeives the adversary). Of ourse, sinethe adversary learns the tally, this goal is unahievable � the tally always leaks anon-negligible amount of information about the vote of P (at least if the numberof voters is polynomial). We an only ahieve the following: The adversary's ad-vantage in distinguishing between P obeying and P deeiving is not greater thanthe advantage with whih the adversary ould distinguish these two ases givenonly the tally. To formulate this de�nition, we �rst introdue some notation:Fix a voter P ∈ P and a vote v ∈ V ∪ {⊥}. Fix a distribution B on (V ∪
{⊥})P\{P}. (B represents the distribution of the votes of the other voters.) Givena vote v, let Bv denote the distribution over (V ∪ {⊥})P that hooses the votesfor all Pi ∈ P \ {P} aording to B and uses the vote v for P . Aordingly,
tally(Bv) denotes the tally resulting from votes hosen aording to Bv. Let
Advideal (B, v) := maxv∗ ∆(Bv,Bv∗) where v∗ ranges over V ∪{⊥} and ∆ denotesthe statistial distane. (Advideal desribes how well an adversary an distinguishbetween being obeyed and being deeived using only the tally.)A voting adversary is an adversary that ontrols a party P (however, de-pending on the setting, P may hoose to ignore the instrutions given by theadversary) and that may deide when the tallying phase starts. We require thata voting adversary eventually starts the tallying phase. Furthermore, when theparty T outputs the tally, the tally is given to the voting adversary. In the end,the voting adversary outputs a bit b.Given a voting adversary A, let Probey(A,B) be the probability that A out-puts 1 in the ase that the party P follows the instrutions of the adversary (i.e.,
P is orrupted) and all other parties honestly follow the protool (with inputshosen aording to B).Given some program ode d (the deeption strategy for P ), let
Prdeceive(A, d,B) denote the probability that the adversary A outputs 1 if Pfollows the instrutions in d and all other parties honestly follow the protool(with inputs hosen aording to B). (Intuitively, d is a strategy that tells P howto vote for v and simultaneously make the adversary believe that P obeys theadversary.) We assume that d gets v and the identity of P as input. In the samesetting, let Tallydeceive(A, d,B) denote the tally output by T .De�nition 9 (Inoerible voting shemes). A voting sheme is inoeribleif there is a deeption strategy d suh that for every polynomial-time voting ad-versary, every voter P ∈ P, every vote v ∈ V, and every e�iently sampleabledistribution B the following holds:� The deeption strategy asts the right vote: The random variables

Tallydeceive(A, d,B) and tally(Bv) are omputationally indistinguishable.� The adversary annot distinguish between being obeyed and being de-eived: For some negligible funtion µ we have that ∣

∣Probey(A,B) −

Prdeceive(A, d,B)
∣

∣ ≤ Advideal (B, v) + µ.Many variants of this de�nition are possible. For example, one ould allowthe voting adversary to orrupt additional parties from P \ {P}. (In this ase,



one would have to adapt the de�nition of Advideal .) For the sake of simpliity,we do not strive to �nd the most general formulation of De�nition 9, espeiallyin view of the fat that the UC/ framework already provides us with a verygeneral de�nition of inoeribility.We will now show that inoeribility in the sense of De�nition 9 is alreadyimplied by UC/ seurity. We �nd that the proof of the following theorem is veryinstrutive beause it gives some intuition for the UC/ framework, and beauseit illustrates how appliation-spei� inoeribility de�nitions (not restrited tothe appliation of voting) an be proven to be implied by UC/ seurity.Theorem 10. Let π be a voting sheme for the tally funtion tally. Assumethat π UC/ emulates F tally
vote with stati orruption/deeption. Then π is aninoerible voting sheme.Proof. Fix a voting adversary A. We de�ne the UC/ adversary A′ to behavelike A, exept that when A starts the tallying phase, A′ instead sends tally tothe environment. When A would give an output b, A′ sends b to the environment.We de�ne an environment Zobey := ZP,v,B

obey as follows: Initially, Zobey sends aorruption request to the party P . Then Zobey hooses votes v1, . . . , vn aordingto the distribution B and gives these votes as input to the parties Pi ∈ P \ {P}(or, if vi = ⊥, sends no input to Pi). When the adversary sends tally to Zobey ,
Zobey sends tally to the party T . When the adversary sends b to Zobey , Zobeyterminates with output b.Furthermore, we de�ne Zdeceive := ZP,v,B

deceive as follows: Initially, Zdeceive sendsa deeption request to the party P . Then Zdeceive hooses votes v1, . . . , vn aord-ing to the distribution B and gives these votes as input to the parties Pi ∈ P\{P}(or, if vi = ⊥, sends no input to Pi). Then it sends v to the deeiver. (This willmake the deeiver D de�ned below instrut P to ast vote v.) When the adver-sary sends tally to Zdeceive, Zdeceive sends tally to the party T . When theadversary sends b to Zdeceive, Zdeceive terminates with output b.We de�ne the deeiver D as follows: When reeiving a state from party P , Dinstruts P to send this state to the adversary. (This is neessary only for formalreasons: sine the adversary should believe that P is orrupted, he expets astate from P . Sine we are in the ase of stati orruptions/deeptions, the stateis only sent before the start of the protool and is thus empty.) When D reeives
v from the environment, D instruts P to send v to the funtionality Fvote. (I.e.,
P should ast the vote v.) Messages oming from the adversary are ignored.In partiular, when the adversary instruts P to ast some other vote, this isignored.Sine π UC/ emulates Fvote := F tally

vote , there exist a polynomial-timedeeiver-simulator DS and a polynomial-time adversary-simulator A′
S suh thatfor all polynomial-time environments Z, the networks π ∪ {A′,DS ,Z} and

Fvote ∪ {A′
S ,D,Z} are indistinguishable. (We write Fvote for the protool on-taining Fvote and the dummy parties.)By onstrution,

Probey(A,B) = Pr[EXECπ∪{A′,DS,Zobey} = 1]. (1)



(We omit the arguments k, z from EXEC for brevity.) Note that sine no partyis deeiving, the deeiver-simulator DS does nothing.We de�ne the deeption strategy d as follows: A party P following d andwishing to ast the vote v internally simulates DS . Then P sends the emptystate to DS . (This is done for formal reasons: in the UC/ framework, DS wouldget suh an empty state when P is deeiving from the start. Hene this messageinforms DS that P is deeiving.) Then P sends v to the internally simulated
DS as oming from the environment. Then P follows the instrutions that DSgives to it. In the ase that only P is deeiving, DS only sends instrutions to
P . Thus it is not neessary that P simulates any other mahines ommuniatingwith DS .Then, by onstrution,

Prdeceive(A, d,B) = Pr[EXECπ∪{A′,DS ,Zdeceive} = 1]. (2)Compare the networks Fvote ∪ {A′
S ,D,Zdeceive} and Fvote ∪ {A′

S ,D,Zobey}. Inthe �rst network, Zdeceive instruts the dummy-party P̃ (via the deeiver D) tosend the vote v to Fvote. In the seond network, A′
S instruts P̃ to send someother vote v∗ to Fvote (where we write v∗ = ⊥ to indiate that A′

S does notinstrut P̃ to vote before A′
S sends tally to the environment). In the idealmodel, P̃ does not reeive any inoming messages from other parties. Thus, inboth networks, A′

S does not get any messages from P̃ . Thus, A′
S an only use thetally to distinguish the networks. The distribution of the tally in the network

Fvote ∪ {A′
S,D,Zobey} is tally(Bv∗), and the distribution of the tally in thenetwork Fvote ∪ {A′

S ,D,Zdeceive} is tally(Bv). Sine Zobey and Zdeceive outputthe bit b reeived from A′
S , it follows that

∣

∣Pr[EXECFvote∪{A′

S
,D,Zobey} = 1]− Pr[EXECFvote∪{A′

S
,D,Zdeceive} = 1]

∣

∣

≤ max
v∗∈V∪{⊥}

∆(Bv,Bv∗) = Advideal(B, v).Sine for all polynomial-time Z, the networks π ∪ {A′,DS ,Z} and Fvote ∪
{A′

S ,D,Z} are indistinguishable, it follows that
∣

∣Pr[EXECπ∪{A′,DS ,Zobey} = 1]−Pr[EXECπ∪{A′,DS ,Zdeceive} = 1]
∣

∣ ≤ Advideal(B, v)+µfor some negligible funtion µ. Then with (1) and (2) we get that
∣

∣Probey(A,B)− Prdeceive(A, d,B)
∣

∣ ≤ Advideal (B, v) + µ.This shows that the protool π satis�es the seond ondition in De�nition 9.(Notie that the onstrution of the deeption strategy d is independent of Aand B.)We are left to show that Tallydeceive(A, d,B) and tally(Bv) are indistinguish-able (�rst ondition of De�nition 9).Let t denote the message reeived by Zdeceive from the party T (t is thetally). In the network Fvote ∪ {A′
S ,D,Zdeceive}, t is the output of Fvote. Thus



the distribution of t is tally(Bv): The party P is instruted by D to send thevote v, all other parties ast votes hosen aording to the distribution B.In the network π ∪ {A′,DS ,Zdeceive}, by onstrution of Zdeceive and of d,the distribution of t is Tallydeceive(A, d,B).For ontradition, assume that Tallydeceive(A, d,B) and tally(Bv) were notomputationally indistinguishable. Then there is an e�iently omputablefuntion f : {0, 1}∗ → {0, 1} suh that |Pr[f(Tallydeceive(A, d,B)) = 1] −
Pr[f(tally(Bv)) = 1]| is not negligible. Then we de�ne Z∗

deceive like Zdeceive,exept that Z∗
deceive outputs f(t). Then |Pr[EXECπ∪{A′,DS,Z∗

deceive
} = 1] −

Pr[EXECFvote∪{A′

S
,D,Z∗

deceive
} = 1]| is not negligible. This is a ontradition tothe fat that for all polynomial-time Z, the networks π ∪ {A′,DS ,Z} and

Fvote∪{A′
S ,D,Z} are indistinguishable. Thus Tallydeceive(A, d,B) and tally(Bv)are omputationally indistinguishable and the �rst ondition of De�nition 9 issatis�ed by π. ⊓⊔The design of voting protools that are UC/ seure is, of ourse, an openproblem. We believe designing UC/ seure remote voting shemes to be a hal-lenging problem that may involve novel ryptographi tehniques. In the aseof non-remote voting (i.e., involving voting booths and other partially trustedsetup suh as in, e.g., [10,12,20,3℄), realising UC/ seurity might be muh easier.We therefore partiularly propose UC/ as a seurity de�nition for that setting.4 Inoerible two-party protoolsIn the previous setion, we have seen that UC/ seure protools are inoerible.We have not, however, shown that suh protools exist at all. Fortunately, theprotools that were presented in [18,7℄ for general multi-party omputation in theexternalized UC (EUC) model are also seure in our UC/ model in the two-partyase and therefore enjoy inoeribility in addition to the properties guaranteedby the EUC model. The proof that their protools work in our setting is quitetehnial; we defer it to the full version [21℄. We only state the �nal result here.The protools from [18,7℄ an be based on one of the following funtionalities:The key registeration with knowledge (KRK) funtionality Fkrk is a fun-tionality where eah party may register a publi key/seret key pair and everyparty may request the publi keys of all parties and the seret key of itself. Theaugmented CRS (ACRS) funtionality Facrs hooses a publi key and a orre-sponding master seret key, and derives for eah party a orresponding individualseret key. The publi key is given to all parties, the seret key of eah partyis only given to that party. The signature ard funtionality Fsc with owner Ppiks a signing/veri�ation key pair and reveals the veri�ation key to all parties.The party P (the owner) may send arbitrary messages m to Fsc and reeivessignatures of m bak. The signing key is never revealed.



Theorem 11 (UC/ two-party omputation). Let F ∈ {Fkrk,Facrs,Fsc}.Let G be a well-formed silent 6 funtionality. Then there is a protool π in the
F-hybrid model suh that π UC/ emulates G with stati orruptions/deeptions.5 Conlusions and open problemsWe have presented the UC/ framework. This framework enables us to modelthe inoeribility of general multi-party protools. The UC/ framework omeswith a strong omposition theorem (universal omposition). We have shown thatwith respet to stati oerions/deeptions, arbitrary two-party protool tasksan be realised in the framework.Diretions for future work inlude:� Good-guy/bad-guy oerions. Our feasibility results only hold for stati o-erions/deeptions. We believe that feasibility results similar to those pre-sented in Setion 4 an be shown for good-guy oerions. To ahieve proto-ols that are seure with respet to bad-guy oerions, we believe that newryptographi tehniques will have to be developed.� Inseure hannels.We assumed perfetly seure hannels, i.e., hannels wherethe adversary does not even notie that a message is sent. Can the resultsfrom Setion 4 be generalised to a setting with weaker assumptions on thehannels?� Multi-party protools. Our feasibility results are restrited to two-party pro-tools. To apture important ases like voting protools we need to extendthis to multi-party protools.� Impossibility results. Sine inoeribility is a strong requirement, we also ex-pet that many protool tasks annot be ful�lled. For example, is it possibleto realise a non-trivial protool task using only a ommon referene string?� Not knowing who is oered/orrupted. In our setting, the deeiver-simulator's strategy may depend on who is orrupted/oered. If we restritevery party's strategy to be independent of the other parties, an we stillonstrut UC/ seure protools?Aknowledgements.We thank Yevgeniy Dodis and Daniel Wihs for extensivedisussions. We also thank the anonymous reviewers for helpful omments.
6 A well-formed funtionality is one whose behaviour does not depend on whih partiesare orrupted or deeiving. We all G silent if it does not ommuniate with theadversary or deeiver.
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