
Correcting Errors in RSA Private Keys

Wilko Henecka, Alexander May?, Alexander Meurer??
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Abstract. Let pk = (N , e) be an RSA public key with correspond-
ing secret key sk = (p, q , d , dp , dq , q

−1
p ). Assume that we obtain partial

error-free information of sk, e.g., assume that we obtain half of the most
significant bits of p. Then there are well-known algorithms to recover the
full secret key. As opposed to these algorithms that allow for correcting
erasures of the key sk, we present for the first time a heuristic proba-
bilistic algorithm that is capable of correcting errors in sk provided that
e is small. That is, on input of a full but error-prone secret key esk we
reconstruct the original sk by correcting the faults.

More precisely, consider an error rate of δ ∈ [0, 1
2
), where we flip each bit

in sk with probability δ resulting in an erroneous key esk. Our Las-Vegas
type algorithm allows to recover sk from esk in expected time polynomial
in log N with success probability close to 1, provided that δ < 0.237.
We also obtain a polynomial time Las-Vegas factorization algorithm for
recovering the factorization (p, q) from an erroneous version with error
rate δ < 0.084.
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1 Introduction

RSA is the most widely deployed cryptosystem and has successfully withstood
more than 30 years of cryptanalytic attacks [1]. An RSA modulus N = pq is a
product of two primes and the key-pair e, d ∈ Z∗φ(N ) satisfies ed = 1 modφ(N ).
Although theoretically, it would suffice to use (N , d) as the RSA private key
it is recommended in PKCS#1 standard [10] to use the highly redundant tuple
(N , e, d , p, q , dp , dq , q−1

p ) in order to also allow for a fast Chinese Remainder type
decryption process. Here, the last three components of sk are defined as usual
by dp = d mod p − 1, dq = d mod q − 1 and qp = q−1 mod p.

? This research was supported by the German Research Foundation (DFG) as part
of the project MA 2536/3-1 and by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.

?? This work was supported by the Ruhr-University Research School funded by Ger-
manys Excellence Initiative [DFG GSC 98/1].



In the present work, we look at error-prone RSA keys, where we assume that
the public information (N , e) is never affected by errors. Thus, we only look
at erroneous tuples sk = (p, q , d , dp , dq , q−1

p ). Our error-correction algorithm is
motivated by side-channel attacks that are capable of extracting the complete
private key but with some errors [5]. We assume that the errors are uniformly
spread over the whole secret key, i.e., each secret key bit is flipped with some
fixed error probability δ ∈ [0, 1

2 ). Notice that for δ = 1
2 we obtain a completely

random string that does not provide any information about sk.
Theoretically, our attack framework is modeled by oracle-assisted attacks on

RSA. Oracle-assisted attacks were first introduced by Rivest and Shamir [9] at
Eurocrypt 1985. Rivest and Shamir used an oracle that allowed for querying
bits of p in chosen positions. They showed that given such an oracle 3

5 log p
queries are sufficient to factor N in polynomial time. This was later improved
by Coppersmith [3] to only 1

2 log p queries. In 1992, Maurer [8] showed that
for stronger oracles, which allow for any type of oracle queries with YES/NO
answers, ε log p queries are sufficient for any ε > 0.

In this oracle-based line of research, the goal is to minimize both the power
of the oracle and the number of queries to the oracle. At Crypto 2009, Heninger
and Shacham [6] presented a polynomial time attack on RSA that works when-
ever a 0.27-fraction of the key bits of sk is given, provided that the given bits
are uniformly spread over the whole secret key. So as opposed to the oracle used
by Rivest, Shamir and Coppersmith, the attacker has no control about the po-
sitions in which he receives some of the bits but he knows the positions and on
expectation the erasure intervals between two known bits are never too large.

Notice that all these aforementioned attacks require a limited number of
fault-free information provided by the oracles, mostly in the form of secret key
bits. Since side-channel attacks are practical instantiations of oracles, in most
scenarios it is questionable to put a limit on the number of bits that one can
obtain. Why should an attacker stop at some point to extract bits? Why should
he not proceed until he has the full bit information? In a more realistic scenario
an attacker is capable of extracting the full sk bit string but subject to some
errors that were caused by the physical measurements of his side-channel attack.
This is the error-prone scenario that we address in our paper. Hence our work
might motivate to look for weaker forms of side-channel attacks that produce
only erroneous data.

Our result and related work. We present the first attack running in expected
polynomial time that recovers a secret key sk from a disturbed secret key s̃k,
where every bit is flipped with a fixed error rate of δ < 0.237. That is, we
allow for error correction of an RSA secret key, provided that the public RSA
exponent is small. We also give results where an attackers obtains an erroneous
version for a subset of the entries of sk = (p, q , d , dp , dq , q−1

p ). E.g., we obtain
a polynomial time attack for erroneous versions of (p, q , d) with error rates
δ < 0.160. Moreover, we obtain a polynomial time factorization algorithm that



factors N given a faulty version of (p, q) with error rate δ < 0.084. In this case,
we do not need any restriction on the public exponent e.

Our work builds on the erasure correction algorithm of Heninger-Shacham [6]
which allows for erasures of the secret key bits of sk with an erasure rate of
δ < 0.73. So as one might expect from coding theory, the correction of errors
seems to be a much harder problem than the correction of erasures.

As our work builds on the Heninger-Shacham algorithm, let us briefly recall
the idea of this construction. Heninger and Shacham recover the parameters
p, q , d , dp , dq bit by bit in a 2-adic fashion by growing a search tree. In their
algorithm, the information from q−1

p is ignored. The nodes in depth k of the
search tree correspond to partial solutions of p mod 2k , q mod 2k , . . . , dq mod 2k .

Since in the erasure correction scenario, one has fragmentary but correct key
material, one can easily prune partial solutions that do not coincide with the
known secret key bits. This process will never discard the correct solution, since
the correct solution will always fully agree with the incomplete key material.
Thus, such an algorithm will always succeed to recover sk.

The only remaining problem is to bound the algorithm’s running time. In-
tuitively, whenever one has sufficiently many key bits to falsify incorrect partial
solutions, one will obtain a bounded number of false partial solutions per itera-
tion and so the total number of nodes in the search tree will stay small. Heninger
and Shacham showed that with high probability the total number of partial so-
lutions is quadratic in log(N ) whenever the erasure rate is smaller than 0.73,
i.e., we know at least a 0.27-fraction of the key bits. In order to show this result,
Heninger and Shacham had to make the heuristic assumption that once a key
candidate differs from the correct key, the subsequent candidate key bits are
distributed uniformly at random.

Clearly, the Heninger-Shacham comparison of key candidates with the given
key material cannot naively been transferred to the error correction scenario.
The reason is that a disagreement of a key candidate may originate from an
incorrect key candidate or from faulty bits of the key material. Thus, in our
construction we do no longer compare bit by bit but we compare larger blocks
of bits. More precisely, we grow subtrees of depth t for each key candidate. This
results in 2t new candidates which we all compare with our faulty key material.
If the bit agreement with our key material in these t bits is above some threshold
parameter C we keep the candidate, otherwise we discard it.

Clearly, we obtain a trade-off for the choice t of the depth of our subtrees. On
the one hand, t cannot be chosen too large since in each iteration wae grow our
search tree by at least 2t candidates. Thus, t must be bounded by O(log log N )
in order to guarantee a polynomial size of the search tree.

On the other hand, depending on the error rate t has to be chosen sufficiently
large to guarantee that the correct key candidate has large agreement with our
key material s̃k in each t successive bit positions, such that the correct candidate
will never be discarded during the execution of our algorithm. Moreover, t has to
be large enough such that the distribution corresponding to the correct candidate
and the distribution derived from an incorrect candidate are separable by some



threshold parameter C . If this property does not hold, we obtain too many faulty
candidates for the next iteration.

We show that the above trade-off restrictions can be fulfilled whenever we
have an error rate δ < 0.237− ε for some fixed ε > 0. That is, if we choose t of
size polynomial in log log N and 1

ε , we are able to define a threshold parameter
C such that the following holds.

1. With probability close to 1 the correct key candidate will never be discarded
during the execution of the algorithm.

2. For fixed ε > 0, our algorithm will consider no more than an expected
total number of logO(1) N key candidates. E.g., our algorithm has expected
running time polynomial in the bit-size of N .

We would like to point out that our proper choice of t and C assumes that
we know a good upper bound for the error rate δ. In practical side-channel
attacks where δ might be unknown to an attacker, one can apply an additional
search step which successively increases the value of δ until a solution is found.
Alternatively, we provide a way to compute an equate upper bound for δ during
the initialization phase of the algorithm.

Our algorithm is a probabilistic algorithm of Las Vegas type, i.e., whenever
it outputs a solution the output is the correct secret key sk. Our error correction
algorithm is elementary. The main work that has to be done is to carefully
choose the subtree depth t and the threshold parameter C , such that all trade-
off restrictions hold. We achieve this goal by using a statistical analysis via
Hoeffding bounds. Our analysis relies on a similar heuristic assumption as in [6],
that is, as soon as a key candidate differs from the correct solution its subsequent
bits are distributed uniformly at random.

Furthermore, we would like to stress that analogous to [6], our algorithm
is restricted to the case of small public exponents e – except for the case of
correcting erroneous factorizations (p, q). Small public exponent RSA appears
to be the standard in practical applications [11].

We ran experiments to verify the predictions of our theoretical analysis and to
validate the heuristic assumption. In practice, we achieved to correct error rates
of up to δ = 0.2 for 1024-bit RSA private keys with good success probabilities
in a matter of seconds.

The paper is organized as follows. In Section 3, we briefly review the Heninger-
Shacham algorithm. Section 4 introduces our new block-based threshold algo-
rithm that grows subtrees of depth t . Section 5 is devoted to the theoretical
analysis of the subtree depth t and the choice of the threshold parameter for
pruning nodes that correspond to incorrect candidates. Experimental results are
given in Section 6.

2 Notation and Mathematical Background

For an n-bit string x = (xn−1, . . . , x0) ∈ {0, 1}n let x [i ] = xi denote the i -th bit
of x (where x [0] is the least significant bit of x) and let x[i ..j ] = (xi , xi−1, . . . , xj )



for i ≥ j . Throughout the paper we denote by ln(n) the natural logarithm of n
to base e and we denote by log(n) the binary logarithm of n to base 2.

The main technical tool used in our analysis is Hoeffding’s bound [7], which
upper bounds the absolute error of sums of independent random variables from
their mean value.

Theorem 1. Let X1, . . . ,Xn be a sequence of independent Bernoulli trials with
identical success probability Pr[Xi = 1] = p for all i . Define X :=

∑n
i=1 Xi .

Then for every 0 < γ < 1 we have

i) Pr[X ≥ n(p + γ)] ≤ e−2nγ2
,

ii) Pr[X ≤ n(p − γ)] ≤ e−2nγ2
.

A slightly more general version of Hoeffding’s inequality allows for each random
variable Xi an individual expectation E[Xi ] as well as a wider range, i.e. Xi ∈
[a, b] for a, b ∈ R. We define E[X ] =

∑n
i=1 E[Xi ] and the above statement

transforms to

Pr [X >< E[X ]± nγ] ≤ e−
2nγ2

(b−a)2 . (1)

3 The Heninger-Shacham Algorithm

Let (N , e) be an RSA public key with corresponding PKCS#1 standard secret
key sk = (p, q , d , dp , dq , q−1

p ), where

ed = 1 modφ(N ), dp = d mod p − 1, dq = d mod q − 1 and q−1
p = q−1 mod p.

We will ignore the last parameter q−1
p as it is not used in the attack. Let N

be the product of two n
2 -bit primes, i.e., all the secret key parameters except d

can be represented by n
2 bits. The Heninger-Shacham algorithm recovers these

parameters bit by bit starting from the least significant bit until bit n
2 −1, where

the factorization is revealed. Although by a result of Coppersmith [3] an amount
of n

4 bits would suffice for factoring N in polynomial time, going up to bit n
2 − 1

instead does not significantly change the algorithm’s analysis.
It is not hard to see that all parameters p, q , d , dp , dq alone reveal the factor-

ization of N , see [4]. Thus, the secret key is a highly redundant representation
of the prime factorization. This redundancy in turn implies that the following
four RSA identities simultaneously hold

N = pq (2)
ed = 1 + kφ(N ) (3)

edp = 1 + kp(p − 1) (4)
edq = 1 + kq(q − 1), (5)

for some parameters k , kp and kq that we are able to compute for small public
exponents e.



We have 0 < k < e d
φ(N ) < e, so there are at most e−1 possible candidates for

k . Therefore, we can brute-force search over all candidate values for k . Following
an argument of Boneh, Durfee and Frankel [2], for each candidate value k ′, we
define

d(k ′) =
⌊

1 + k ′(N + 1)
e

⌋
, (6)

which differs for the right choice k ′ = k from d by k(p+q)
e < p + q . Thus, for

the right candidate choice of k the values of d(k) and d agree roughly on half of
their most significant bits.

In the erasure correction scenario, Heninger and Shacham simply compare
each candidate d(k ′) with the given fragmentary version of d in order to deter-
mine k uniquely with overwhelming probability.

We proceed similarly in the error correction szenario. Assume that we obtain
some error-prone secret key

s̃k := (p̃, q̃ , d̃ , d̃p , d̃q),

which is derived from sk by flipping each bit individually with some fixed prob-
ability δ ∈ [0, 1

2 ). Intuitively, if δ is significantly below 1
2 , then among all e − 1

candidates d(k ′), k ′ = 1, . . . , e − 1, the Hamming distance between the upper
half most significant bits of d(k ′) and d̃ should be minimal for the correct choice
k ′ = k . In Appendix A, we show that this is true with overwhelming probability
for the error rates δ that we allow.

This means that we can learn the unknown k in Eq. (3). Moreover, we can
immediately correct almost half of the most significant bits of d . Notice that
this information is not useful in the Heninger-Shacham algorithm as one stops
to recover the secret key bits when reaching bit n

2 − 1. However, we can use this
information to compute a good approximation δ̃ of the error rate δ. Therefore,
we simply compute the normalized Hamming distance of d(k) and d̃ by

δ̃ :=
2
n

n−1∑
i=n/2

d̃ [i ]⊕ d(k)[i ]. (7)

For n large enough and any fixed tolerance ε > 0, we have δ ≤ δ̃ + ε with
overwhelming probability. That is, in our asymptotic analysis it is reasonable
to assume that the algorithm knows an upper bound of the error rate δ. For
practical values of n, one can easily show that

Pr[δ < δ̃ + ε] ≥ 3
4

where ε = 0.037 for n = 1024, see App. B for more details.
Now that we are able to compute k , Heninger and Shacham show that this

directly allows us to compute candidates for (kp , kq). If e is prime then there
are only two candidate values. In general, for e with m different prime factors



there exist up to 2m candidates. So one has to run 2m copies of the Heninger-
Shacham algorithm in parallel. Since m = O(log e) and since we consider small
public exponent RSA only, this factor can be neglected. We denote this whole
precomputation process by (k , kp , kq)← Init(N , e).

Now let us start to reconstruct a secret key in a bitwise manner. Since p, q are
odd primes, we have p[0] = q [0] = 1 and 2|p−1 as well as 2|q−1. Let τ(x ) denote
the largest exponent such that 2τ(x) divides x , i.e. τ(x ) := max{k ∈ N : 2k |x}.
From Eq. (4), we obtain

edp = 1 mod 21+τ(kp).

Thus, we can immediately correct the least 1 + τ(kp) bits of dp from the knowl-
edge of e and kp . Analogously, we can compute from Eq. (5) the 1 + τ(kq) least
significant bits of dq and from Eq. (3) the 2 + τ(k) least significant bits of d .

Moreover, if we fix all bits p[i − 1..0] then changing bit p[i ] will change bit
dp [i +τ(kp)]. For odd kp this means that changing the i -th bit on the right hand
side of Eq. (4) changes the corresponding i -th bit on the left hand side. Shifting
by τ(kp) on the right-hand side translates the change to position i + τ(kp) on
the left hand side.

Thus, Heninger and Shacham define for each bit index i a so-called i -th bit
slices, which we denote by

Slice(i) := (p[i ], q [i ], d [i + τ(k)], dp [i + τ(kp)], dq [i + τ(kq)]).

Let Slice(0)← Mount(e, k , kp , kq) be the computation of the initial first bit slice
consisting of the steps described above, i.e., we set

Slice(0)← (1, 1, d [τ(k)], dp [τ(kp)], dq [τ(kq)]),

where the last three entries can be easily computed once k , kp and kq are known.
The running time of Mount(·) can be neglected in our small public exponent
RSA scenario.

Lifting solutions. Assume that we have computed a partial solution sk′ =
(p′, q ′, d ′, d ′p , d

′
q) up to Slice(i − 1). We would like to proceed by calculating

all candidate solutions (p, q , d , dp , dq) for the subsequent Slice(i). Heninger and
Shacham show that by applying a multivariate version of Hensel’s Lemma to
Eq. (2)-(5) one obtains the following identities

p[i ] + q [i ] = (N − p′q ′)[i ] mod 2 (8)

d [i + τ(k)] + p[i ] + q [i ] = (k(N + 1) + 1− k(p′ + q ′)− ed ′)[i + τ(k)] mod 2 (9)

dp [i + τ(kp)] + p[i ] = (kp(p′ − 1) + 1− ed ′p)[i + τ(kp)] mod 2 (10)

dq [i + τ(kq)] + q [i ] = (kq(q ′ − 1) + 1− ed ′q)[i + τ(kq)] mod 2. (11)

This means we have four linearly independent equations in the five unknowns
p[i ], q [i ], d [i +τ(k)], dp [i +τ(kp)], dq [i +τ(kq)] of Slice(i). Therefore, each Hensel
lift yields exactly two candidate solutions. We denote this lifting process by
Expand(p′, q ′, d ′, d ′p , d

′
q).



In the erasure correction scenario, Heninger and Shacham use their knowledge
of the correct secret key bits to prune incorrect candidates produced by the
lifting process. The analysis in [6] mainly shows that the number of candidates
is sufficiently upper bounded as long as enough secret key bits are available.

Notice that in our error correction scenario, such a simple pruning is not
possible, since a disagreement of Slice(i) with the corresponding bits of s̃k might
be due to errors in our faulty secret key.

4 Blockwise Threshold-Based Vector Correction

4.1 Generic Description

In this section, we present our new algorithm for error correction. We would
like to point out that our construction is a generic, elementary algorithm for
reconstructing arbitrary unknown tuples of bit vectors x given only a corrupted
version x̃ and some public information on x, which does not directly allow for
extracting x. For example, x may be the prime factorization of some public N .

In coding theory language, our construction resembles a maximum likelihood
approach. In each iteration, we keep those vectors that are locally closest to x̃
in the Hamming distance. Hopefully, we are also able to discard many incorrect
partial solutions due to our public information.

Let x = (x1, . . . ,xm). In a nutshell, our algorithm tries to reconstruct x it-
eratively by calculating a block of t bits of each of x1, . . . ,xm in each iteration.
The algorithm proceeds in four phases, where the second and third phase are
iterated until the candidates have the same bitlength as x.

Initialization phase: Use the public information to compute some initial par-
tial solution to x. This initialization is optional and may result in the empty
string as the only partial solution.

Expansion phase: Each partial solution is lifted for the next t most significant
bits, i.e., we compute the next t bits of each of x1, . . . ,xm. Per partial solution
this will result in up to 2mt new partial solutions. By using our public informa-
tion, we may hope to obtain considerably less than 2mt candidates.

Pruning phase: For every new partial solution we count the number of matches
of the mt expanded bits with the corresponding bits of x̃. If this number is below
some threshold parameter C then we discard the partial solution.

Finalization phase: We test with the help of our public information whether
one of our candidate solutions is indeed equal to the desired x.

Obviously, the choice of the blocksize t is crucial for our algorithm. Since the
number of partial solutions in the expansion phase grows exponentially in t , we
cannot allow for large parameters t . On the other hand, we cannot choose t too



small, because we have to make sure that during the pruning phase the following
two properties hold.

– The correct partial solution – the one that can be expanded to the desired
x – is pruned only with small probability.

– Sufficiently many incorrect solutions are pruned such that the total number
of candidates can be minimized.

4.2 Error Correction for RSA keys

Let us now specialize the generic description from the previous section to our
RSA error correction scenario. We want to compute some unknown RSA secret
key sk = (p, q , d , dp , dq) from an erroneous version s̃k = (p̃, q̃ , d̃ , d̃p d̃q) with the
help of the public key (N , e). For describing our algorithm, we use the notion
introduced in Sect. 3.

Algorithm Error-Correction

INPUT: (N , e), erroneus s̃k = (p̃, q̃ , d̃ , d̃p , d̃q) with error rate δ

Initialization phase:
• (k , kp , kq)← Init(N , e)
• Slice(0)← Mount(e, k , kp , kq)

For i = 1 to
⌈

n/2−1
t

⌉
Expansion phase: For every candidate (p′, q ′, d ′, d ′p , d

′
q)

with slices 0 . . . (i−1)t expand the candidate t times with the
Expand(·) procedure of Heninger-Shacham. This results in
2t new candidates which differ in the slices (i−1)t +1, . . . , it .

Pruning phase: For every new candidate (p′, q ′, d ′, d ′p , d
′
q)

count the number of bits in the expanded slices
(i − 1)t + 1, . . . , it that agree with the corresponding
bits of s̃k. If this number is below some threshold parameter
C , discard the solution.

Finalization phase: For every candidate sk′ = (p′, q ′, d ′, d ′p , d
′
q)

check all RSA identities (2)–(5). If all equations hold, output sk′.

OUTPUT: sk = (p, q , d , dp , dq)

Notice that during the Expansion phase for every partial solution we only
obtain 2t new candidates for the 5t new bits instead of the naive 25t candi-
dates. This is due to the clever usage of our public information in the Expand(·)
procedure of Heninger and Shacham.

In the subsequent section, we will analyze the probability that our algorithm
succeeds in computing the secret key sk. We will show that a choice of t = θ( lnn

ε2 )



will be sufficient for error rates δ < 0.237−ε. The threshold parameter C will be
chosen such that the correct partial solution will survive each pruning phase with
probability close to 1 and such that we expect that the number of candidates
per iteration is bounded by 2t+1. For every fixed ε > 0, this leads to an expected
running time that is polynomial in n.

5 Choice of Parameters and Success / Runtime Analysis

We now give a detailed analysis for algorithm Error-Correction from the
previous section. Afterwards, we show that this analysis easily generalizes to
settings where an attacker obtains instead of a faulty version of all five parame-
ters in sk only faulty versions of e.g. (p, q , d) or (p, q).

5.1 Full Analysis for the RSA Case

Remember that in algorithm Error-Correction, we count the number of
matching bits between 5t-bit blocks of s̃k and every partial candidate solution.
Let us define a random variable Xc for the number of matching bits between s̃k
and a correct partial solution.

The distribution of Xc is clearly the binomial distribution with parameters
5t and probability (1− δ), denoted by Xc ∼ Bin(5t , 1− δ). That is, we have

Pr[Xc = γ] =
(

5t
γ

)
(1− δ)γδ5t−γ (12)

for γ = 0, . . . , 5t . The expected number of matches is thus E[Xc ] = 5t(1− δ).
Assume that we expand some incorrect partial solution (p′, q ′, d ′, d ′p , d

′
q) by

5t bits to 2t new candidates. We let the random variable Xb represent the number
of matching bits of s̃k with the expanded 5t bits of these bad candidates.

In order to analyze the distribution of Xb , we make use of the following
heuristic assumption which follows directly from the heuristic assumption of
Heninger-Shacham [6] when applied to t-bit blocks.

Heuristic 2. Every solution generated by applying the expansion phase to an
incorrect partial solution is an ensemble of t randomly chosen bit slices.

That is under Heuristic 2, every expansion of an incorrect candidate in Error-
Correction results in an additional 5t uniformly random bits.

Heninger and Shacham verified the validity of this heuristic experimentally.
Under Heuristic 2 we see that

Pr[Xb = γ] =
(

5t
γ

)
2−5t . (13)

Now, we basically have to choose our threshold C such that the two distributions
are sufficiently separated.

The remainder of this section is devoted to proof our main result.



Main Theorem 3. Under Heuristic 2 for every fixed ε > 0 the following holds.
Let (N , e) be an RSA public key with n-bit N and fixed e. We choose

t =
⌈

ln(n)
10ε2

⌉
, γ0 =

√
(1 + 1

t ) · ln(2)
10 and C = 5t( 1

2 + γ0).

Further, let s̃k = (p̃, q̃ , d̃ , d̃p , d̃q) be an RSA secret key with noise rate

δ ≤ 1
2
− γ0 − ε.

Then algorithm Error-Correction corrects s̃k in expected time O
(

n2+
ln(2)
5ε2

)
with success probability at least 1−

(
5ε2

ln(n) + 1
n

)
.

Remark. Notice that for sufficiently large n, t converges to infinity and thus γ0

converges to
√

ln(2)
10 ≈ 0.263. This means that Error-Correction asymptot-

ically allows for error rates 1
2 − γ0 − ε ≈ 0.237− ε and succeeds with probability

close to 1.

Proof. The proof of our main theorem is organized as follows. First, we upper
bound the expected number of bad solutions that arise in each iteration of the
algorithm. Second, we show that our correct solution survives all pruning steps
with probability close to 1. Third, we upper bound the total number of partial
solutions that arise during the execution of Error-Correction and conclude
that Error-Correction runs in polynomial time.

Let the random variables Yi represent the number of incorrect partial solu-
tions that pass the threshold comparison in the pruning phase of the i -th itera-
tion of Error-Correction. Further, let the random variable Y =

∑τ(n)
i=1 Yi de-

note the total number of incorrect solutions examined by Error-Correction,
where τ(n) :=

⌈
n/2−1

t

⌉
denotes the total number of iterations.

Lemma 4. The expected number of bad candidates that pass the i-th round’s
pruning phase is upper bounded by E[Yi ] < 2t+1.

Proof. Define two random variables Zg and Zb as follows: Zg denotes the number
of bad candidates arising from the unique correct solution, Zb counts the number
of bad candidates generated from a single bad partial solution. It is not hard to
see that

E[Y1] = E[Zg ] and E[Y2] = E[Zg ] + E[Zb ] · E[Y1] = E[Zg ] · (1 + E[Zb ]).

More generally, we obtain

E[Yi ] = E[Zg ] + E[Zb ] · E[Yi−1] = E[Zg ] + E[Zb ] · (E[Zg ] + E[Zb ] · E[Yi−2)]

= . . . = E[Zg ]
i−1∑
k=0

E[Zb ]k = E[Zg ]
1− E[Zb ]i

1− E[Zb ]
.



Now, we aim at upper bounding E[Zb ] < 1 in order to upper bound

E[Yi ] = E[Zg ]
1− E[Zb ]i

1− E[Zb ]
<

E[Zg ]
1− E[Zb ]

. (14)

Therefore, we define 2t random variables Z i
b for i = 1, . . . , 2t such that

Z i
b =

{
1 i -th bad candidate passes
0 otherwise

.

Write Zb =
∑2t

i=1 Z i
b . Since all the Z i

b are identically distributed, we simplify this
to E[Zb ] = 2t E[Z i

b ] and upper bound E[Z i
b ] for some fixed i . Note, that Z i

b = 1
iff at least C bits match, i.e.,

E[Z i
b ] = Pr[Z i

b = 1] = Pr[Xb ≥ C ],

where Xb ∼ Bin(5t , 1
2 ) is defined as in (13). Applying Hoeffding’s bound (Theo-

rem 1) directly yields

Pr[Xb ≥ C ] = Pr
[

Xb ≥ 5t
(

1
2

+ γ0

)]
≤ exp(−10tγ2

0) = 2−(1+ 1
t )t ≤ 2−(t+1).

This implies E[Zb ] ≤ 1
2 < 1 and we can simplify equation (14) to

E[Yi ] <
E[Zg ]

1− E[Zb ]
< 2t+1,

since we clearly have E[Zg ] ≤ 2t − 1. ut

Lemma 5. Error-Correction succeeds with probability at least 1−
(

5ε2

ln(n) + 1
n

)
.

Proof. The probability of pruning the correct solution at one single round is
given by Pr[Xc < C ], where Xc ∼ Bin(5t , 1 − δ) as defined in (12). Using
1
2 + γ0 ≤ 1− δ − ε and applying Hoeffding’s bound (Theorem 1) yields

Pr[Xc < C ] = Pr
[

Xc < 5t
(

1
2

+ γ0

)]
≤ Pr [Xc < 5t(1− δ − ε)]

≤ exp(−10tε2) ≤ 1
n
.

Since algorithm Error-Correction runs τ(n) ≤ n
2t + 1 rounds, the total

success probability is given by

Pr[success] = (1−Pr[Xc < C ])τ(n) ≥
(

1− 1
n

)τ(n)

≥ 1− τ(n)
n

≥ 1−
(

1
2t

+
1
n

)
= 1−

(
5ε2

ln(n)
+

1
n

)
.

ut



Lemma 6. Error-Correction runs in expected time O
(

n2+
ln(2)
5ε2

)
.

Proof. The total expected runtime T of Error-Correction is given by

T = TInit +O(e) · (TMount + Tmain)

where TInit, TMount and Tmain represent the runtime of the procedures Init, Mount
and the main loop of Error-Correction, respectively. Recall that a factor of
O(e) arises from the fact that Init(·) possibly outputs up to e candidate tuples
(k , kp , kq). Since we assume e to be fixed, we can neglect TInit as well as TMount

and obtain T = O(Tmain).
In order to upper bound Tmain, we upper bound the runtime needed by the

expansion and pruning phase for one single partial solution:

– During the expanding phase, each partial solution implies the computation
of
∑t−1

i=0 2i < 2t equation systems given by the equations (8)-(11). The right
hand sides of equations (8)-(11) can be computed in time O(n) – when
storing the results of the previous iteration. This yields a total computation
time of O(n2t) for the expanding phase.

– The pruning phase can be realized in time O(t) for each of the fresh 2t

partial solutions, summing up to O(t2t).

We can upper bound t ≤ n, which results in an overall runtime of O((n+t)·2t) =
O(n2t) per candidate.

An application of Lemma 4 yields an upper bound for the expected total
number of partial solutions examined during the whole execution which is given
by

E[Y ] =
τ(n)∑
i=1

E[Yi ] < τ(n) · 2t+1 ≤
( n

2t
+ 1
)
· 2t+1 = O

(
n2t
)
.

Putting both together finally yields

Tmain = O
(
n2t · n2t

)
= O

(
n222t

)
= O

(
n2+

ln(2)
5ε2

)
.

ut

Combining Lemma 5 and 6 proves the Main Theorem. ut

Although theoretically Lemma 6 gives us a polynomial running time for every
fixed ε > 0, our running time heavily depends on the parameter t and thus on
ε. So one might expect that in practice one cannot achieve error rates close to
the theoretical bound δ < 0.237 since the running time already explodes for
moderately small error terms ε.

However, we give in Appendix C a more refined analysis of the parameter t
for moderately small ε. This analysis shows that our choice of t in Theorem 3 is
quite conservative, since we insist on a success probability of Error Correc-
tion close to 1. We obtain more flexibility if we also allow for smaller success
rates. This in turn leads to a smaller choice of t , which allows to easily correct
error rates up to δ = 0.2 in practice. We will use this refined analysis in the
experimental section (Section 6).



5.2 Generalization

We now formulate a slightly generalized version of our Main Theorem 3. There-
fore, we parametrize algorithm Error-Correction such that it allows for a
secret key with m components like in the generic description in Sect. 4.1.

So our RSA secret key sk = (p, q , d , dp , dq) resembles the parameter choice
m = 5. We can apply the same analysis as in Section 5.1. The distributions of
Xc and Xb are now given by Xc ∼ Bin(mt , 1− δ) and Xb ∼ Bin(mt , 1

2 ).

Main Theorem 7. Under Heuristic 2 for every fixed ε > 0 the following holds.
Let (N , e) be an RSA public key with n-bit N and fixed e. We choose

t =
⌈

ln(n)
2mε2

⌉
, γ0 =

√
(1 + 1

t ) · ln(2)
2m and C = mt( 1

2 + γ0).

Further, let s̃k = (s̃k1, . . . , s̃km) be a generic RSA secret key with noise rate

δ ≤ 1
2
− γ0 − ε.

Then algorithm Error-Correction corrects s̃k in expected time O
(

n2+
ln(2)
mε2

)
with success probability at least 1−

(
mε2

ln(n) + 1
n

)
.

As a consequence we obtain various results for scenarios where an attacker ob-
tains an erroneous subset of the parameters in sk = (p, q , d , dp , dq). The resulting
upper bounds for the error rates δ = 1

2 − γ0 are summarized in the following
table. In the column “Equations” we indicate which of the Eqs. (8)-(11) are used.

Table 1. Parameters for varied RSA scenarios

sk m Equations δ

(p, q) 2 (8) 0.084
(p, q , d) 3 (8),(9) 0.160
(p, q , d , dp) 4 (8)-(10) 0.206
(p, q , d , dq) 4 (8),(9),(11) 0.206
(p, q , d , dp , dq) 5 (8)-(11) 0.237

The case sk = (p, q , dp) can also be handled by our algorithm by using
Eqs. (8),(10) with parameter m = 3. The only problem is that we cannot derive
k and therefore compute kp as described in Sect. 3, since we do not have infor-
mation of d . Instead, we simply run e − 1 copies of the algorithm in parallel for
each possible choice of 1 ≤ k < e.

6 Implementation and Experiments

We implemented our algorithm in Java and tested it on an Intel Xeon Quad-
Core processor at 2.66 GHz with 8 GB of DDR2 SDRAM at 800 MHz. In all
experiments we set the public exponent to e = 216 + 1. For the case sk =



(p, q , d , dp , dq) we ran a large number of experiments for a key size of 1024 bit
and error rates δ ∈ [0.05, 0.2]. We also carried out experiments for the scenarios
sk = (p, q) and sk = (p, q , d) where we made experiments for different error rates
up to the upper bounds presented in Table 1.

In each repetition, the RSA secret key was independently and randomly
disturbed with error rate δ. For simplicity, we omitted the mounting phase, i.e.,
the calculation of k as well as kq and kp . Thereby, we avoided to choose the
wrong assignment for kq and kp . Instead we just used the correct values for
these parameters.

The choice of our tree depth t roughly followed the refined analysis in Ap-
pendix C, where we made some manual adjustments for very small error rates
and for δ ≥ 0.18. The threshold parameter C was chosen as recommended in
Theorem 3 with some rounding. All manual adjustments were made in order
to obtain comparability of our experiments, i.e., we slightly tuned to achieve
success probabilities in an interval between 20% and 50%. We point out that
for small error rates it is easy to achieve much better success probabilities by a
small increase of the parameter t .

For each experiment we generated 100 different RSA secret keys and dis-
turbed each of these keys with 100 different error vectors resulting in a total
sample size of 10.000 runs per error rate δ.

The tables below summarize our results. We computed the success probability
by calculating the term Pr[Xc < C ] as defined in Eq. (12) exactly for the given
parameters (row “Pr theoretical”). The experimental results perfectly match the
exact calculations. In the last row, we give the average running time of algorithm
Error-Correction in order to reconstruct a single key successfully.

Table 2. Experimental results for n = 1024 and sk = (p, q , d , dp , dq)

δ 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

t 3 4 5 6 7 9 9 10 10 11 12 12 13 16 16 20
C 12 16 20 24 28 36 36 39 39 42 46 45 48 59 59 74

Pr theoretical 0.39 0.48 0.51 0.49 0.44 0.50 0.27 0.49 0.28 0.44 0.28 0.35 0.43 0.47 0.26 0.23
experimental 0.40 0.48 0.52 0.50 0.45 0.51 0.27 0.50 0.28 0.45 0.28 0.35 0.44 0.50 0.24 0.21

time < 1s . . . < 1s 3.7s 23s 25s 3m

For error rates δ ≤ 0.15 we can easily achieve better success probabili-
ties by using a slightly larger t , e.g., for δ = 0.15 we experimentally achieved
Pr[success] ≈ 82% with a modified choice t = 15 and C = 56.

For each run, we also recorded the total number of partial solutions examined
by Error-Correction. The following boxplot diagram represents the statistics
of the total number of candidates. The thick horizontal line marks the median,
the gray boxes describe the region bounded by the lower quartile Q1 and the
upper quartile Q3, i.e., half of the candidate numbers fall in this intervall. The
dashed lines mark the sample minimum and maximum, respectively.

In our experiments for error rates δ ≤ 0.15, we always examined around
300 candidates on the average and the maximum number of candidates never



exceeded 1000 candidates. We omit the box plot for error rates δ ≥ 0.18 since
the number of candidates increases rapidly beyond this bound. This is where
the exponential dependence of our running time O

(
n2+

ln(2)
5ε2

)
on the parameter

ε comes into play.

δ

Y

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

Fig. 1. Box plot diagram for 1024 bit key size and sk = (p, q , d , dp , dq)

Table 3. Experimental results for n = 1024 and sk = (p, q , d)

δ 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

t 3 5 7 9 11 13 16 20 26 29
C 7 12 17 22 27 32 39 49 64 71

Pr theoretical 0.24 0.34 0.38 0.36 0.30 0.23 0.33 0.26 0.21 0.17
experimental 0.24 0.34 0.38 0.36 0.30 0.25 0.34 0.24 0.21 0.15

time < 1s . . . < 1s 1.7s 4.1s 32.2s 3m

Table 4. Experimental results for n = 1024 and sk = (p, q)

δ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

t 4 7 7 11 15 20 24 28
C 7 12 12 19 26 35 42 49

Pr theoretical 0.70 0.83 0.56 0.61 0.58 0.45 0.34 0.24
experimental 0.71 0.84 0.57 0.62 0.58 0.47 0.35 0.22

time < 1s . . . < 1s 2s 12.7s

Acknowledgement. The authors thank the anonymous CRYPTO reviewers
for their comments, in particular for suggesting a way to approximate the error
rate δ.
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A Mounting the attack

Recall that for generating the initial Slice(0) one has to determine the correct
k in (3). We proposed in Sect. 3 to compute the e − 1 candidates d(k ′) for
0 < k ′ < e as defined in (6) and chose the k whose corresponding d(k) has
minimal Hamming distance to the error prone d̃ .

We now give a formal justification for our claim that the Hamming distance
between the error prone key d̃ and one of the candidates d(k ′) is minimized
for the correct d(k) with probability close to 1. Therefore, we define random
variables X (k ′) counting the number of matching bits between d̃ and a fixed
d(k ′) on their α := bn/2c − 2 most significant bits. For every k ′ 6= k let

D(k ′) := X (k)−X (k ′)

denote the gap of matching bits for the correct d(k) and a fixed d(k ′) in their
window of α most significant bits. We aim to derive a lower bound for Pr[D(k ′) >
0] for arbitrary k ′ 6= k .



The main observation is that for the correct k and balanced p and q , we have
0 ≤ d(k) < p + q < 3

√
N . This implies that d(k) agrees with the correct d on at

least α most significant bits. On the contrary, for k ′ 6= k one obtains that d(k ′)
and d agree on at most log(e) most significant bits. Notice that one can consider
D(k ′) as a sum of α random variables D(k ′)n−i where i = 1, . . . , α, each taking
values in {−1, 0, 1} representing the following three cases.

1. D(k ′)n−i = 1 if d(k)[n−i ] and d̃ [n−i ] do match but d(k ′)[n−i ] and d̃ [n−i ]
do not match.

2. D(k ′)n−i = 0 if both d(k)[n − i ] and d(k ′)[n − i ] match with d̃ [n − i ].
3. D(k ′)n−i = −1 if d(k)[n − i ] and d̃ [n − i ] do not match but d(k ′)[n − i ] and

d̃ [n − i ] do match.

Assuming that in the case k ′ 6= k every bit of d(k ′) and d̃ except for the (n −
log(e))th most significant bits matches with probability 1

2 , we obtain

E[D(k ′)n−i ] = (1− δ)1
2
− δ 1

2
=

1
2

(1− 2δ)

for i = log(e) + 1, . . . , α. Summing over all i yields

E[D(k ′)] ≥ (α− log(e))(1− 2δ)
2

.

An application of the generalized Hoeffding inequality from (1) yields

Pr[D(k ′) > 0] = 1−Pr[D(k ′) ≤ 0] ≥ 1− exp
(
− (α− log(e))2(1− 2δ)2

8α

)
for arbitrary k ′ 6= k . Hence, we can lower bound the probability of the event that
D(k ′) > 0 for every k ′ 6= k by taking this expression to the (e − 2)th power. For
fixed e and δ � 1

2 we asymptotically achieve probability 1 since the exponent
converges to −∞. We calculated the probability for our experimental parameters
n = 1024, e = 216 + 1} and the theoretical upper bound δ = 0.237. In this case
the probability is very close to 1.

B Estimating the error rate

Recall the definition of δ̃ := 2
n

∑n−1
i=n/2 d̃ [i ]⊕ d(k)[i ] from (7). We estimate the

quality of δ̃ + ε as an upper bound for δ, when we allow for an arbitrary small
buffer ε > 0. This can easily be done by regarding δ̃ as a sum of n

2 random
variables

D [i ] := d̃ [i ]⊕ d(k)[i ].

Notice that Pr[D [i ] = 1] = δ since d(k) coincides with the correct secret key d
on its n

2 most significant bits. Applying Hoeffdings inequality yields

Pr[δ < δ̃ + ε] = 1−Pr[δ̃ ≤ δ − ε] ≥ 1− exp
(
−2ε2

n
2

)
= 1− exp(−nε2),

i.e., for arbitrary fixed ε > 0 and large enough n we can use δ̃+ ε as a reasonable
upper bound for δ.



C Practical choice of t

We give a slightly refined analysis of the parameter t in order to obtain some
flexibility in tuning the success probability p of Error-Correction. Therefore,
we define a scaling parameter α := −5/ ln(p) and modify the choice of t to

t :=
lnα+ ln n − ln ln n + 2 ln ε

10ε2
, (15)

while keeping C := 5t( 1
2 + γ0) as proposed in Lemma 3. The following calcula-

tion which follows the proof of Lemma 5 derives a lower bound for the success
probability depending on the additional parameter α.

Pr[success] ≈ (1−Pr[Xc < C ])n/2t ≥
(

1− e−10tε2
)n/2t

=
(

1− ln n
α · n · ε2

)n/2t

≈ e−
5 ln n

α(lnα+ln n−ln ln n+2 ln ε)
n→∞−−−−→ e−5/α = p

The above approximation should be taken with some care for very small ε.
Notice that our approximation gets tight for fixed ε and sufficiently large n.
However, when we use it with realistic RSA values of n ∈ [1024, .., 8192] the
asymptotics of the Hoeffding bound do not yet apply for very small ε.
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Fig. 2. Choice of tn,p for different n and p according to Eq. (15)

As one can see, the denominator in the exponent of e yields a non-negativity
restriction ln n + lnα− ln ln n + 2 ln ε > 0. This restriction simplifies to

ε >

√
ln n
n · α

,

e.g. for n = 1024 and p = 0.1 one obtains ε > 0.056. Concerning our experiments,
we modified our choice of t manually when δ ≥ 0.18, i.e., when ε fell below 0.06.


