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1 Introduction

On December 12, 2009, we factored the 768-bit, 232-digit number RSA-768 by
the number field sieve (NFS, [19]). RSA-768 is a representative 768-bit RSA
modulus [34], taken from the RSA Challenge list [35]. Our result is a new record
for factoring general integers. Factoring a 1024-bit RSA modulus would be about
a thousand times harder and a 512-bit one was several thousands times easier.
Because the factorization of a 512-bit RSA modulus [7] was first reported in 1999,
it is not unreasonable to expect that 1024-bit RSA moduli can be factored well
within the next decade by a similar academic effort. Thus, it would be prudent
to phase out usage of 1024-bit RSA within the next three to four years.

The previous NFS record was the May 9, 2005, factorization of the 663-bit,
200-digit number RSA-200 [4]. NFS records must not be confused with special
NFS (SNFS) records. The current SNSF record is the May 21, 2007, factorization
of the 1039-bit number 21039 − 1 [2]. Although much bigger than RSA-768, its
special form made 21039 − 1 an order of magnitude easier to factor.

The new NFS record required the following effort. We spent half a year on
80 processors on polynomial selection. This was about 3% of the main task, the
sieving, which took almost two years on many hundreds of machines. On a single
core 2.2 GHz AMD Opteron processor with 2 GB RAM, sieving would have taken
about fifteen hundred years. We did about twice the sieving strictly necessary, to
make the most cumbersome step, the matrix step, more manageable. Preparing
the sieving data for the matrix step took a couple of weeks on a few processors.
The final step after the matrix step took less than half a day of computing.



Sieving is a laid back process that, once running, does not require much
care beyond occasionally restarting a machine. The matrix step is more subtle.
A slight disturbance easily causes major trouble, in particular if the problem
stretches the available resources. Oversieving led to a matrix that could be han-
dled relatively smoothly. More importantly, the extra sieving data allow exper-
iments aimed at getting a better understanding of the relation between sieving
and matrix efforts and the effect on NFS feasibility and overall performance.
That work is in progress. All in all, the extra sieving time was well spent.

In [2] the block Wiedemann algorithm [9] was used, making it possible to pro-
cess the matrix on disjoint clusters. Larger problems (such as 1024-bit moduli)
require wider parallelization. Here we solve some of the challenges by dividing
the workload in a more flexible manner. As a result a matrix nine times harder
than in [2] was solved in less than four months, on clusters in three countries.
Larger matrices are within reach and there can be little doubt about the feasi-
bility by the year 2020 of the matrix for a 1024-bit modulus. We are studying if
our current matrix can be handled by block Lanczos [8] on a single cluster.

The steps taken to factor RSA-768 are described in Section 2. The factors
are given in Section 2.5. Implications for moduli larger than RSA-768 are briefly
discussed in Section 3. Appendix A presents the sieving approach that we used,
and Appendix B describes a new twist of the block Wiedemann algorithm that
makes it easier to share large calculations among different parties.

2 Factoring RSA-768

2.1 Factoring using the Morrison-Brillhart approach

The congruence of squares method factors a composite n by writing it as gcd(x−
y, n) · gcd(x + y, n) for integers x, y with x2 ≡ y2 mod n: for random such
pairs (x, y) the probability of success is at least 1

2 . We explain the Morrison-
Brillhart approach [25] to solve x2 ≡ y2 mod n and, roughly, how NFS works.

A non-zero integer u is b-smooth if the prime factors of |u| are at most b.
Each b-smooth integer u corresponds to the (π(b)+1)-dimensional integer vector
v(u) of exponents of the primes ≤ b in its factorization, where π(b) is the number
of primes ≤ b and the “+1” accounts for the sign. The factor base consists of the
primes at most equal to the smoothness bound.

Let n be a composite integer, b a smoothness bound, and t a positive integer.
Let V be a set of π(b) + 1 + t integers v for which the least absolute remainders
r(v) = v2 mod n are b-smooth. Because the (π(b)+1)-dimensional vectors v(r(v))
are linearly dependent, at least t independent subsets T ⊂ V can be found using
linear algebra such that

∑
v∈T v(r(v)) is an all-even vector. Thus, each T leads

to a solution x =
∏
v∈T v and y =

√∏
v∈T r(v) to x2 ≡ y2 mod n. Overall, this

combining of congruences results in t chances of at least 1
2 to factor n.

In Dixon’s random squares method [11] the set V is generated by randomly
selecting integers v until enough have been found for which r(v) is smooth.
The expected runtime can be proved rigorously. With quadratic residues r(v) of



order n, however, the method is not practical: earlier, Morrison and Brillhart [25]
had already shown how to use continued fractions to generate quadratic residues
of order n1/2. The much higher smoothness probabilities make their method
much faster than Dixon’s, despite the lack of a formal proof. Schroeppel with his
linear sieve was the first, in about 1976, to combine similarly high smoothness
probabilities with fast sieving-based smoothness detection [31, Section 6] and to
analyze the resulting heuristic expected runtime [17, Section 4.2.6]. A variation
led to Pomerance’s quadratic sieve [31,32]. Factoring methods of this sort that
rely on smoothness of residues of order nθ(1) have expected runtimes of the form

e(c+o(1))(lnn)1/2(ln lnn)1/2
(for n→∞)

for positive constants c. The number field sieve [19] was the first, and so far the
only, practical factoring method to break through the barrier of the lnn-exponent
of 1

2 . It uses more contrived congruences that involve smoothness of numbers of
order no(1), for n → ∞, that can, as usual, be combined into a congruence of
squares x2 ≡ y2 mod n. NFS factors a composite integer n in heuristic expected
time

e((64/9)
1/3+o(1))(lnn)1/3(ln lnn)2/3

(for n→∞).

It is currently the best algorithm to factor numbers without special properties,
such as RSA-768, a 768-bit, 232-digit RSA modulus taken from [35]:

123018668453011775513049495838496272077285356959533479219732245215172640050726
365751874520219978646938995647494277406384592519255732630345373154826850791702
6122142913461670429214311602221240479274737794080665351419597459856902143413.

Similar to Schroeppel’s linear sieve, the most important steps of NFS are
sieving and the matrix step. In the former relations are collected, congruences
involving smooth values similar to the smooth r(v)-values above. In the latter
linear dependencies are found among the exponent vectors of the smooth values.
NFS requires two non-trivial additional steps: a pre-processing polynomial selec-
tion step before the sieving can start, and a post-processing square root step to
convert the linear dependencies into congruences of squares. A rough operational
description of these steps as applied to RSA-768 is given below. For an explana-
tion why these steps work, we refer to the many expositions on NFS [19,20,33].

2.2 Polynomial selection

With n the integer to be factored, let f1(X), f2(X) ∈ Z[X] be two irreducible
integer polynomials of degrees d1 and d2, respectively, with a common root m
modulo n, i.e., f1(m) ≡ f2(m) ≡ 0 mod n. For simplicity we assume that f1
and f2 are monic, even though the actual f1 and f2 are not. With vk(a, b) =
bdkfk(a/b) ∈ Z (k = 1, 2), relations are coprime pairs of integers (a, b) with b > 0
such that v1(a, b) and v2(a, b) are simultaneously smooth, v1(a, b) with respect
to some b1 and v2(a, b) with respect to some b2. Sufficiently many more than
π(b1)+π(b2)+2 relations lead to enough chances to factor n, as sketched below.

Let Q(αk) = Q[X]/(fk(X)) for k = 1, 2 be two algebraic number fields. The
elements a−bαk ∈ Z[αk] have norm vk(a, b) and belong to the first degree prime



ideals in Q(αk) of (prime) norms equal to the prime factors of vk(a, b). These
prime ideals in Q(αk) correspond bijectively to the pairs (p, r mod p) where p is
prime and fk(r) ≡ 0 mod p: excluding factors of fk’s discriminant, such a first
degree prime ideal has norm p and is generated by p and r − αk.

Because fk(m) ≡ 0 mod n, the two natural ring homomorphisms φk : Z[αk]→
Z/nZ for k = 1, 2 map

∑dk−1
i=0 aiα

i
k to

∑dk−1
i=0 aim

i mod n and φ1(a − bα1) ≡
φ2(a− bα2) mod n. Linear dependencies modulo 2 among the exponent-vectors
of the primes in the b1-smooth v1(a, b), b2-smooth v2(a, b) pairs lead to subsets T
such that

∏
(a,b)∈T (a−bαk) is a square σk in Q(αk), for k = 1, 2. With φ1(σ1) ≡

φ2(σ2) mod n it then remains to compute square roots τk =
√
σk ∈ Q(αk) for

k = 1, 2 to find a solution x = φ1(τ1) and y = φ2(τ2) to x2 ≡ y2 mod n.
It is easy to find f1 and f2 so that numbers of order no(1), for n→∞, must be

smooth. Let d1 ∈ N be of order ( 3 lnn
ln lnn )1/3, let d2 = 1, letm be an integer slightly

smaller than n1/d1 , and write n in radix m as n =
∑d1
i=0 nim

i with 0 ≤ ni < m.
Then f1(X) =

∑d1
i=0 niX

i and f2(X) = X −m have common root m modulo n,
the coefficients are no(1) for n→∞, and the values a, b that suffice to generate
enough relations are small enough to keep bd1f1(a/b) and bd2f2(a/b) of order
no(1) as well. Finally, if f1 is not irreducible, it can be used to directly factor n
or, if that fails, one of its factors can be used instead of f1. If d1 > 1 and d2 = 1
we refer to “k = 1” as the algebraic side and “k = 2” as the rational side. With
d2 = 1 the algebraic number field Q(α2) is simply Q, the first degree prime ideals
in Q are the regular primes and, with f2(X) = X −m, the element a − bα2 of
Z[α2] is a− bm = v2(a, b) ∈ Z with φ2(a− bα2) = a− bm mod n.

Although with these polynomials NFS achieves its asymptotic runtime, there
is a lot of freedom in the choices of m, f1, and f2. Exploiting this involves ex-
tensive searches, comparing choices based on smoothness probabilities, and thus
with respect to coefficient size, number of real roots and roots modulo small
primes, smoothness properties of leading coefficients, and sieving experiments.
How the search is best conducted is the subject of active research; current ap-
proaches are guided by experience, helped by luck, and profit from patience.

One method is known that produces two good polynomials of degrees greater
than one (namely, twice degree two [5]). Its results are not competitive with the
current best d1 > 1, d2 = 1 methods which are all based on refinements [15] of
the approach from [24,26] as summarized in [7, Section 3.1]. A search of three
months on a cluster of 80 Opteron cores (i.e., 3

12 ·80 = 20 core years), conducted
at BSI in 2005 already and thus not including the idea from [16], produced three
pairs of polynomials of comparable quality. We used

f1(X) = 265482057982680X
6

+ 1276509360768321888X
5

− 5006815697800138351796828X
4

− 46477854471727854271772677450X
3

+ 6525437261935989397109667371894785X
2

− 18185779352088594356726018862434803054X

− 277565266791543881995216199713801103343120,

f2(X) = 34661003550492501851445829X − 1291187456580021223163547791574810881.



The leading coefficients factor as 23 · 32 · 5 · 72 · 11 · 17 · 23 · 31 · 112 877 and
13 · 37 · 79 · 97 · 103 · 331 · 601 · 619 · 769 · 907 · 1 063, respectively. The discriminant
of f1 equals 212 · 32 · 52 · 13 · 17 · 17 722 398 737 · c273, for a 273-digit composite
integer c273 that is most likely free of squares and of factors less than 1040. The
discriminant of f2 equals one. A renewed search at EPFL in the spring of 2007
(also not using the idea from [16]) produced a couple of candidates of similar
quality, again after spending about 20 core years.

Following [15], during the search, the leading coefficient of f2 allowed 11
(search at BSI) or 10 (search at EPFL) prime factors equal to 1 mod 6 and
at most one other factor < 215.5. The leading coefficient of f1 was a multiple
of 258 060 = 22 · 3 · 5 · 11 · 17 · 23. At least 2 · 1018 pairs (f1, f2) were considered.

2.3 Sieving

To be able to profit from near misses during the search for relations an inte-
ger x is defined to be (bk, b`)-smooth if with the exception of, say, four prime
factors between bk and b`, all remaining prime factors of |x| are at most bk. We
thus change the definition of a relation into a coprime pair of integers (a, b) with
b > 0 such that bd1f1(a/b) is (b1, b`)-smooth and bd2f2(a/b) is (b2, b`)-smooth. Al-
though large primes speed up the sieving, they make it harder to decide whether
enough relations have been found, as the criterion that more than π(b1)+π(b2)+2
are needed is no longer adequate. The decision requires duplicate and singleton
removal. It is briefly touched upon at the end of Section 2.3.

We used b1 = 11 · 108, b2 = 2 · 108 and b` = 240 on cores with at least 2 GB
RAM (the majority) and b1 = 4.5 · 108, b2 = 108 on others (preferably with at
least a GB RAM). Based on sieving experiments it was expected that it would
suffice to use as sieving region the subset S of Z×Z>0 of about 11 ·1018 coprime
pairs (a, b) with |a| ≤ 3 ·109 ·κ1/2 ≈ 6.3 ·1011 and 0 < b ≤ 3 ·109/κ1/2 ≈ 1.4 ·107.
Here κ = 44 000 approximates the skewness of f1. It is used to approximately
minimize the largest norm v1(a, b) encountered in the sieving region. Although
prime ideal norms up to 240 were accepted, the parameters were optimized for
norms up to 237. Most jobs attempted to factor after the sieving algebraic and
rational cofactors up to 2140 and 2110, respectively, only considering the most
promising candidates [14]. As far as we know, this was the first NFS factorization
allowing more than three algebraic large primes.

Disregarding factors of fk’s discriminant, a prime p dividing fk(r) is equiva-
lent to (r mod p) being a root of fk modulo p. Because d2 = 1, the polynomial f2
has one root modulo p for each prime p not dividing its leading coefficient, and
each such p divides f2(j) once every p consecutive j-values. For f1 there may be
between zero to d1 roots modulo p: some primes p do not divide f1(j) for any j,
whereas other p may divide f1(j) a total of d1 times for every p consecutive
j-values. The (p, r) pairs with p ≤ b1 for f1 and p ≤ b2 for f2 are precomputed.

Early implementations of NFS used line sieving : for some b-value and k, one
marks for each precomputed (p, r) pair for fk the a-values of the form rb + ip
for i ∈ Z with “p,” since for those a-values p divides bdkf(a/b) = vk(a, b). The
locations hit by many different p’s are remembered, and the process is repeated



for the other k. Relations may be found at locations that were hit twice. With
many lines (b-values) to be processed, line sieving can easily be parallelized.

For RSA-768 we did not use line sieving but a more efficient approach that has
gained popularity since the mid 1990s: the lattice sieve as described in [30]. For a
(prime,root) pair q = (q, s) define Lq as the lattice of integer linear combinations
of the 2-dimensional integer (row-)vectors (q, 0), (s, 1) ∈ Z2. Let Sq = S∩Lq. Fix
a (prime,root) pair q = (q, s) for, say, f1. The special prime q (as it was referred
to in [30]) is chosen smaller than b`, and it divides bd1f1(a/b) for (a, b) ∈ Sq.
Lattice sieving consists of marking, for each precomputed (prime,root) pair p
for f1, the points in the intersection Lp ∩ Sq. Locations that are hit often are
remembered, and the process is repeated for the precomputed (prime,root) pairs
for f2. Relations may be found at locations that were hit twice. For each relation
thus found, q divides v1(a, b). The process is repeated for other q until enough
relations have been found. Because relations may be found for each special prime
occurring in v1(a, b), duplicates will be found when lattice sieving.

In practice one fixes bounds I and J independent of q and defines Sq =
{iu + jv : i, j ∈ Z,−I/2 ≤ i < I/2, 0 < j < J}, where u, v form a basis for
Lq that minimizes the norms v1(a, b) for (a, b) ∈ Sq. Such a basis is found by
partially reducing the basis (q, 0), (s, 1) for Lq such that the first coordinate is
roughly κ times bigger than the second, cf. skewness of S. Sieving is carried out
over the set {(i, j) ∈ Z× Z>0 : −I/2 ≤ i < I/2, 0 < j < J}, interpreted as Sq.

We used I = 216 and J = 215, i.e., a lattice sieving area of size roughly
231 ≈ 2·109. With b1 = 11·108 and b2 = 2·108, the majority of the sieving-primes
can be expected to hit Sq only a few times. Thus, for any sieving-p, only a few of
the j-values (the lines) will be hit, unlike line sieving where each line will be hit
several times by each prime. Therefore, when lattice sieving, a more sophisticated
sieving method must be used that avoids looking at all lines 0 < j < J for
each p. This sieving by vectors [30] was first implemented in [13] and used for
many factorizations in the 1990s [10,7]. We used the implementation from [12],
described in Appendix A. Most of the about 0.48 billion (prime,root) pairs (q, s)
for special primes q between 0.45 and 11.1 billion (and some special primes
below 0.45 billion, with a smaller b1-value) were processed by eight contributing
parties (cf. Table 1) during the period August 2007 until April 2009. Scaled to
a 2.2 GHz Opteron core with 2 GB RAM, a single Lq was processed in less
than 100 seconds on average and produced about 134 relations, for an average
of about four relations every three seconds. This average rate varies by a factor
of about two between both ends of the special primes range that we used.

We collected 64 334 489 730 relations in total, each requiring about 150 bytes.
Compressed they occupied about 5 terabytes of disk space, backed up at various
locations. The 27.4% duplicates were removed using hashing. This was done
mostly during the sieving, overall taking less than 10 days on a 2.66 GHz Core2
processor with ten 1TB hard disks. After including 57 223 462 free relations [19],
we ended up with 47 762 243 404 relations involving 35 288 334 017 prime ideals.

Given the set of unique relations, those that involve a prime ideal that does
not occur in any other relation, the singletons, cannot be part of a dependency.



Table 1: Percentages contributed.
contributor relations matrix stages, % of matrix effort

contribution 1 (60%) 2 (0%) 3 (40%) total
Bonn (University and BSI) 8.14%
CWI 3.44%
EPFL 29.78% 34.3% 100% 78.2% 51.9%
INRIA LORIA (ALADDIN-G5K) 37.97% 46.8% 17.3% 35.0%
NTT 15.01% 18.9% 4.5% 13.1%
Scott Contini (Australia) 0.43%
Paul Leyland (UK) 0.69%
Heinz Stockinger (Enabling Grids for E-sciencE) 4.54%

Singletons were removed using hashing. Doing this once reduced the set of re-
lations to 28 984 986 047 elements with 14 498 007 183 prime ideals. Removal of
singletons usually creates new singletons, and the process must be repeated until
no new singletons are created. After a few more singleton removals 24 615 168 385
relations involving at most 9 976 671 468 prime ideals were left.

Further singleton removal was combined with clique removal [6], i.e., search
of combinations with matching first degree prime ideals of norms larger than bk.
Ultimately, this led to 2 458 248 361 relations with 1 697 618 199 prime ideals, still
containing an almost insignificant number (604 423) of free relations. Since there
are more relations than prime ideals (so that dependencies exist), we had done
enough sieving and lots of flexibility to create a matrix. Singleton and clique
removal took less than 10 days on the same platform as above.

2.4 The matrix step

Current best methods to find dependencies among the rows of a sparse matrix
take time proportional to the product of the dimension and the weight (i.e.,
number of non-zero entries) of the matrix. Merging is a generic term for the set
of strategies developed to build a matrix for which close to optimal dependency
search can be expected. It is described in [6]. We ran about 10 separate merging
jobs, aiming for various optimizations (low dimension, low weight, best-of-both,
etc.), which each took a couple of days on a single core per node of a 37-node 2.66
GHz Core2 cluster with 16 GB RAM per node, and a not particularly fast inter-
connection network. The best alternative was a 192 796 550×192 795 550-matrix
of total weight 27 797 115 920 (on average 144 non-zeros per row), requiring about
105 GB. It was generated in 5-days on two to three cores on the 37-node cluster,
where the long duration was probably due to the large communication overhead.
When we started the project, we expected dimension about a quarter billion and
density per row of about 150, which would have been about 7

4 times harder.
To find dependencies we used block Wiedemann [9,38] as described in [2,

Section 5.1] . We give a high level description [18, Section 2.19]. Given a non-
singular d×d matrix M over the finite field F2 and b ∈ Fd2, we wish to solve the
system Mx = b. The minimal polynomial F of M on the vector space spanned
by b, Mb, M2b, . . . has degree at most d, so that F (M)b =

∑d
i=0 FiM

ib = 0.
From F0 = 1 it follows that x =

∑d
i=1 FiM

i−1b, so it suffices to find the Fi’s.



Denoting by mi,j the jth coordinate of the vector M ib, it follows that for
each j with 1 ≤ j ≤ d the sequence (mi,j)∞i=0 satisfies a linear recurrence relation
of order at most d defined by the coefficients Fi: for any t ≥ 0 and 1 ≤ j ≤ d
we have that

∑d
i=0 Fimi+t,j = 0. Given 2d + 1 consecutive terms of an order d

linear recurrence, its coefficients can be computed using the Berlekamp-Massey
method [22,38]. Each j may lead to a polynomial of smaller degree than F , but
taking, if necessary, the least common multiple of the polynomials found for a
few different indices j, the correct minimal polynomial will be found.

Summarizing the above, there are three major stages: a first iteration consist-
ing of 2d matrix×vector steps to generate 2d+ 1 terms of the linear recurrence,
the Berlekamp-Massey stage to calculate the Fi’s, and a second iteration consist-
ing of d matrix×vector steps to calculate the solution using the Fi’s. For large
matrices the first and the final stage are the most time consuming.

In practice it is common to use blocking, to take advantage of the fact that on
64-bit machines 64 different vectors b over F2 can be processed simultaneously,
at little or no extra cost compared to a single vector [9], while using the same
three main stages. If the vector b̄ is 64 bits wide and in the first stage the first
64 coordinates of each of the generated 64 bits wide vectors M ib̄ are kept, the
number of matrix (M) times vector (b̄) multiplications in both the first and the
final stage is reduced by a factor of 64 compared to the number of M times b
multiplications, while making the central Berlekamp-Massey stage a bit more
cumbersome. It is less common to take the blocking a step further and run both
iteration stages spread over a small number n′ of different sequences, possibly
run on disjoint clusters; in [2] this was done with n′ = 4 sequences run on three
clusters. If for each sequence one keeps the first 64 ·n′ coordinates of each of the
64 bits wide vectors they generate during the first stage, the number of steps to
be carried out (per sequence) is further reduced by a factor of n′, while allowing
independent and simultaneous execution on possibly n′ disjoint clusters. After
the first stage the data generated for the n′ sequences have to be gathered at a
central location where the Berlekamp-Massey stage will be carried out.

While keeping the first 64 · n′ coordinates per step for each sequence results
in a reduction of the number of steps per sequence by a factor of 64 ·n′, keeping
a different number of coordinates while using n′ sequences results in another
reduction in the number of steps for the first stage. Following [2, Section 5.1], if
the first 64 ·m′ coordinates are kept of the 64 bits wide vectors for n′ sequences,
the numbers of steps become d

64·m′ + d
64·n′ = ( n

′

m′ + 1) d
64·n′ and

d
64·n′ for the first

and third stage, respectively and for each of the n′ sequences. The choices of
m′ and n′ should be weighed off against the cost of the Berlekamp-Massey step
with time and space complexities proportional to (m′+n′)3

n′ d1+o(1) and (m′+n′)2

n′ d,
respectively and for d→∞, and where the exponent “3” may be replaced by the
matrix multiplication exponent (our implementation uses “3”).

When running the first stage using n′ sequences, the effect of non-identical
resources used for different sequences quickly becomes apparent: some locations
finish their work faster than others (depicted in Fig. 1). To keep the fast con-
tributors busy and to reduce the work of the slower ones (thereby reducing the



wall-clock time), a quickly processed first stage sequence may continue for s
steps beyond ( n

′

m′ + 1) d
64·n′ while reducing the number of steps in another first

stage sequence by the same s. As described in Appendix B, this can be done
in a very flexible way, as long as the overall number of steps over all first stage
sequences adds up to n′ · ( n

′

m′ + 1) d
64·n′ . The termination points of the sequences

in the third stage need to be adapted accordingly. This is easily arranged for,
since the third stage allows much easier and much wider parallelization anyhow
(assuming checkpoints from the first stage are kept). Another way to keep all
parties busy is swapping jobs, thus requiring data exchanges, synchronization,
and more human interaction, making it a less attractive option altogether.

For our matrix with d ≈ 193 · 106 we used, as in [2], m′ = 2n′. But where
n′ = 4 was used in [2], we used n′ = 8. This quadrupled the Berlekamp-Massey
runtime and doubled its memory compared to the matrix from [2], on top of the
increased runtime and memory demands caused by the larger dimension of the
matrix. On the other hand, the compute intensive first and third stages could
be split up into twice as many independent jobs as before. For the first stage
on average ( 8

16 + 1) 193·106

64·8 ≈ 565 000 steps needed to be taken per sequence (for
8 sequences), for the third stage the average was about 193·106

64·8 ≈ 380 000 steps.
The actual numbers of steps varied, approximately, between 490 000 and 650 000
for the first stage and between 300 000 and 430 000 for the third stage. The
calculation of these stages was carried out on a wide variety of clusters accessed
from three locations: a 56-node cluster of 2.2GHz dual hex-core AMD processors
with Infiniband at EPFL (installed while the first stage was in progress), a variety
of ALADDIN-G5K clusters in France accessed from INRIA LORIA, and a cluster
of 110 3.0GHz Pentium-D processors on a Gb Ethernet at NTT.

On 12 nodes of a 12-cores-per-node cluster of 2.2 GHz AMD processors with
16 GB RAM per node and an Infiniband network, one multiplication step (of
the matrix times a 64 bits wide vector) took between 4.3 and 4.5 seconds for
the first stage and about 4.8 seconds for the slightly more involved third stage.
Per-iteration timings for stage one on the Pentium cluster are 11.6 seconds per
iteration when two sequences are run in parallel (thus, effectively, 5.8 seconds
per sequence), and 6.4 seconds if one sequence is processed. For the third stage
it was 7.8 seconds per iteration, for a single sequence. For the ALADDIN-G5K
clusters the per-iteration timings for stages one and three varied between 2.3
and 4.1 seconds, and between 2.6 and 17.9 seconds, respectively. It follows that
doing the entire first and third stage would have taken 98 days on 48 nodes (576
cores) of the 56-node EPFL cluster.

The first stage was split up into eight independent jobs run in parallel on
those clusters, check-pointing once every 214 steps. Running a first (or third)
stage sequence required 180 GB RAM, a single 64 bits wide b̄ took 1.5 GB, and
a single mi matrix 8 KB, of which 565 000 were kept, on average, per first stage
sequence. Each partial sum during the third stage evaluation required 12 GB.

The central Berlekamp-Massey stage was done in 17 hours and 20 minutes on
the 56-node EPFL cluster (with 16 GB RAM per node), while using just 4 of the
12 available cores per node. Most of the time the available 896 GB RAM sufficed,



(a) First stage contributions. (b) Final shot of third stage bookkeeping.

Fig. 1: Contributions to sequences 0-7: blue=INRIA, orange=EPFL, pink=NTT.

but during a central part of the calculation more memory was needed (up to
about 1 TB) and some swapping occurred. The third stage started right after
completion of the second stage, running as many jobs in parallel as possible. The
actual bookkeeping sheet used is pictured in Fig. 1b. Fig. 1a pictures the first
stage contributions apocryphally but accurately. Calendar time for the entire
block Wiedemann step was 119 days, finishing on December 8, 2009.

2.5 That’s a bingo7

As expected the matrix step resulted in 512 = 64 · 8 linear dependencies mod-
ulo 2 among the exponent vectors, more than enough to include the quadratic
characters at this stage [1]. This reduced the solution space to 460 elements,
giving us that many independent chances of about 1

2 to factor RSA-768. In the
52 = 512−460 difference, a dimension of 46 can be attributed to prime ideals not
included in the matrix that divide the leading coefficients or the discriminant.

The square roots of the algebraic numbers were calculated by means of the
method from [23] (see also [29]), which uses the known factorization of the al-
gebraic numbers into small prime ideals of known norms. The implementation
based on [3] turned out to have a bug when computing the valuations for the
free relations of the prime ideals lying above the divisor 17 722 398 737 > 232 of
the discriminant of f1. Along with a bug in the quadratic character calculation,
this delayed completion of the square root step by a few (harrowing) days.

Once the bugs were located and fixed, it took two hours using the hard disk
and one core on each of twelve dual hex-core 2.2GHz AMD processors to compute
the exponents of all prime ideals for eight solutions simultaneously. Computing
a square root using the implementation from [3] took one hour and forty minutes
on such a dual hex-core processor. The first one (and four of the other seven)
led to the factorization p · q, found at 20:16 GMT on December 12, 2009:

7 “Is that the way you say it? “That’s a bingo?” ”
“You just say “bingo”.” [37]



p = 3347807169895689878604416984821269081770479498371376856891

2431388982883793878002287614711652531743087737814467999489,

q = 3674604366679959042824463379962795263227915816434308764267

6032283815739666511279233373417143396810270092798736308917,

where p and q are 384-bit, 116-digit primes. With “pk” a k-digit prime, we found:

p − 1 = 28 · 112 · 13 · 7193 · 160378082551 · 7721565388263419219 ·
111103163449484882484711393053 · p47,

p + 1 = 2 · 3 · 5 · 31932122749553372262005491861630345183416467 · p71,

q − 1 = 22 · 359 · p113, q + 1 = 2 · 3 · 23 · 41 · 47 · 239875144072757917901 · p90.

3 Concluding remarks

It is customary to conclude a paper reporting a new factoring record with a
preview of coming attractions. Our main conclusion was summarized in the
introduction and was already announced in [2, Section 7]: at this point factoring
a 1024-bit RSA modulus looks more than five times easier than a 768-bit RSA
modulus looked back in 1999, when we achieved the first public factorization of
a 512-bit RSA modulus. Nevertheless, a 1024-bit RSA modulus is still about a
thousand times harder to factor than a 768-bit one. It may be possible to factor
a 1024-bit RSA modulus within the next decade by means of an academic effort
on the same scale as the effort presented here. Recent standards recommend
phasing out such moduli by the end of the year 2010 [28]. See also [21].

Another conclusion from our work is that we can confidently say that if we
restrict ourselves to an open community, academic effort such as ours and unless
something dramatic happens in factoring, we will not be able to factor a 1024-bit
RSA modulus within the next five years [27]. After that, all bets are off.

The ratio between sieving and matrix time was almost 10. This is probably
not optimal if one wants to minimize the overall runtime. But the latter may not
be the most important criterion. Sieving is easy, and doing more of it may be a
good investment if that leads to an easier matrix step. The relations collected
for RSA-768 will give us a better insight in the trade-off between sieving and
matrix efforts, where also the choice of the large prime bound b` may play a role.
This is a subject for further study that may be expected to lead, ultimately, to
a recommendation for close to optimal parameter choices – depending on what
one wants to optimize – for NFS factorizations in the 700- to 800-bit range.

Our computation required more than 1020 operations. With the equivalent
of almost 2000 years of computing on a single core 2.2GHz AMD Opteron, on
the order of 267 instructions were carried out. The overall effort is sufficiently
low that even for short-term protection of data of little value, 768-bit RSA
moduli can no longer be recommended. This conclusion is the opposite of the
one on [36], which is based on a hypothetical factoring effort of six months on
100 000 workstations, i.e., about two orders of magnitude more than we spent.
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A Sieving by vectors

We briefly describe the lattice sieve implementation from [12] which was used
for most NFS factorization records of the last decade.

Let vk(a, b) = bdkfk(a/b). Lattice sieving, introduced by Pollard [30], in-
creases the smoothness probability of v1(a, b) by looking at (a, b)-pairs for which
v1(a, b) is divisible by a large special prime q. Let s mod q be a residue class
such that this is the case for a ≡ sb mod q. One constructs a reduced basis (u, v)
of the lattice of all (a, b) ∈ Z2 with a ≡ sb mod q. A scalar product adapted
to the skewness of the polynomial pair is used for this reduction. The problem
is then to find all coprime pairs (i, j), −I/2 ≤ i < I/2, 0 < j < J , such that
v1(a, b)/q and v2(a, b) are smooth, with (a, b) = iu+jv. We assume I to be even.
As mentioned in Section 2.3, for practical values of the parameters, I is much
smaller than the smoothness bounds b1 and b2, and it is non-trivial to efficiently
sieve such regions.

Pollard proposed to do this by using, for each (prime,root) pair p with prime
p bounded by the relevant smoothness bound bk, a reduced base of the lattice
Γp of pairs (i, j) for which vk(a, b) for the corresponding (a, b)-pair is divisible
by p. In [13] that approach was used for p larger than a small multiple of I,
while avoiding storage of “even, even” sieve locations (and using line sieving for
the other primes). Our approach uses a truncated continued fraction expansion
to determine a basis B =

(
(α, β), (γ, δ)

)
of Γp with the following properties:

a The numbers β and δ are positive.
b We have −I < α ≤ 0 ≤ γ < I and γ − α ≥ I.

Let us assume that Γp consists of all (i, j) for which i ≡ ρj mod p, where 0 <
ρ < p. The case ρ = 0 and the case where Γp consists of all (i, j) for which p
divides j are not treated, because they produce just (0, 1) and (1, 0), respectively,
as only coprime pairs. We also assume p ≥ I, as smaller primes are better
treated by line sieving. To construct a basis with the above properties, one takes
(i0, j0) = (−p, 0), (i1, j1) = (ρ, 1) and puts (i`+1, j`+1) = (i`−1, j`−1) + r(i`, j`)
with r =

⌊
− i`−1

i`

⌋
. Note that (−1)`+1i` ≥ 0, that r is positive and that the j` thus

form an increasing sequence of non-negative numbers. The process is stopped at
the first ` with | i` |< I. If ` is odd, we put (α, β) = (i`−1, j`−1) + r(i`, j`),
where r is the smallest integer for which α > −I. If ` is even, we put (γ, δ) =



(i`−1, j`−1) + r(i`, j`), where r is the smallest integer such that γ < I. In both
cases, the element of B =

(
(α, β), (γ, δ)

)
not yet described is given by (i`, j`).

To explain how to efficiently sieve using a basis with these properties, let
(i, j) ∈ Γp such that −I/2 ≤ i < I/2. We want to find the (uniquely determined)
(i′, j′) ∈ Γp such that −I/2 ≤ i′ < I/2, j′ > j, and j′ is as small as possible. As
B is a basis of Γp, there are integers d and e with

(i′, j′)− (i, j) = d(α, β) + e(γ, δ).

If d · e < 0, then condition b on B would force the first component of the right
hand side to have absolute value ≥ I, whereas our constraints on i and i′ force it
to have absolute value < I. Since j′ − j, β, and δ are all positive, we have d ≥ 0
and e ≥ 0. It is now easy to see that the solution to our problem is:

(d, e) =


(0, 1) if i < I/2− γ
(1, 1) if I/2− γ ≤ i < −I/2− α
(1, 0) if i ≥ −I/2− α.

The minimality of j′ follows because d = 0 leads to a violation of i′ < I/2 unless
i < I/2−γ (i.e., save for the first of the above cases) and e = 0 leads to i′ < −I/2
unless i ≥ −I/2− α (i.e., save for the third of the above cases).

To implement this process on a modern CPU, it seems best to take I = 2ι

for some natural number ι. It is possible to identify pairs (i, j) of integers with
−I/2 ≤ i < I/2 with integers x by putting x = j ·I+i+I/2. If x′ = j′ ·I+i′+I/2
with (i′, j′) as above, then x′ = x + C, x′ = x + A + C and x′ = x + A in the
three cases above, with A = α+ I · β and C = γ + I · δ. The first component of
a pair (i, j), (α, β) or (γ, δ) is extracted from these numbers by using a bitwise
logical operation, and the selection of the appropriate one of the above three
cases is best done using conditional move instructions.

For cache efficiency, the sieving region Sq was split into areas At, 0 ≤ t <
T , of size equal to the L1-cache size. For primes p larger than that size (or
a small multiple thereof), sieving is not done directly. Instead, the numbers x
corresponding to elements of Sq∩Γp were calculated ahead of the sieving process,
and their offsets into the appropriate region At stored in the corresponding
element of an array S of T stacks. To implement the trial division sieve efficiently,
the corresponding factor base index was also stored. Of course, this approach
may also be used for line sieving, and in fact was used in [3]. A similar approach
has been described by T. Oliveira e Silva in connection with his implementation
of the Odlyzko-Lagarias-Lehmer-Meissel method.

Parallelization is possible in several different ways. A topology for splitting
the sieving region among several nodes connected by a network is described
in [12]. If one wants to split the task among several cores sharing their main
memory, it seems best to distribute the regions At and also the large factor base
primes among them. Each core first calculates its part of S, for its assigned part
of the large factor base elements, and then uses the information generated by
all cores to treat its share of regions At. A lattice siever parallelized that way
was used for a small part of the RSA-576 sieving tasks, but the code fell out of



use and was not used for the current project. The approach may be more useful
today, with many cores per processor being a standard.

B Unbalanced sequences in block Wiedemann

Before describing the modification for unbalanced sequence lengths we give an
overview of Coppersmith’s block version of the Berlekamp-Massey algorithm. To
avoid a too technical description we simplify the presentation of Coppersmith’s
algorithm and refer to [9] for details. The modification was also be applied to
Thomé’s subquadratic algorithm [38]. Below m and n are as in [9], and the terms
“+O(1)” are constants depending on m and n. We assume that m and n, which
play the role of 64 ·m′ and 64 · n′ in Section 2.4, are much smaller than d.

Let M be a d× d matrix over F2, m ≥ n, xk ∈ Fd2, 1 ≤ k ≤ m and yj ∈ Fd2,
1 ≤ j ≤ n satisfying certain conditions. Set a(i)

j,k = xTkM
iyj and

A =
∑
i

(a(i)
j,k)Xi ∈ Matn,m[X].

In the first step we calculate the coefficients of A up to degree d
m + d

n +O(1).
The goal of the Berlekamp-Massey step is to find polynomials of matrices

F ∈ Matn,n[X], G ∈ Matn,m[X] with deg(F ) ≤ d
n + O(1), deg(G) ≤ d

n + O(1)
and

FA ≡ G (mod X
d
m + d

n +O(1)).

Intuitively, we want to produce at least d zero rows in the higher coefficients of
FA up to degree d

m + d
n + O(1). Writing F =

∑dF

i=0(f (i)
j,k)Xi, dF = deg(F ) the

jth row of coefficient dF + b of G being zero corresponds to

(M bxh)T vj = 0 for 1 ≤ h ≤ m, 0 ≤ b < d

m
+O(1) where

vj =
n∑
k=1

dF∑
i=0

f
(dF−i)
j,k ·M iyk.

Coppersmith’s algorithm produces a sequence of matrices (of m + n rows)
Ft ∈ Matm+n,n[X] and Gt ∈ Matm+n,m[X] for t = t0, . . . ,

d
m + d

n +O(1) (where
t0 = O(1)) such that

FtA ≡ Gt (mod Xt)

and the degrees of Ft and Gt are roughly m
m+n t. In a first step t0 and Ft0 are

chosen such that certain conditions are satisfied, in particular that deg(Ft0) =
O(1) and deg(Gt0) = O(1). To go from t to t + 1 a polynomial of degree 1
of matrices Pt ∈ Matm+n,m+n[X] is constructed and we set Ft+1 = PtFt and
Gt+1 = PtGt. This construction is done as follows. We have FtA ≡ Gt + EtX

t

(mod Xt+1) for some matrix Et. Respecting a restriction involving the degrees
of the rows of Gt (essentially we avoid destroying previously constructed zero



rows in the G’s) we perform a Gaussian elimination on Et, i.e., we obtain P̃t
such that

P̃tEt =
(

0
1m

)
.

Then we set

Pt =
(

1n 0
0 1mX

)
· P̃t.

In this way the degrees of at most m rows are increased when passing from Gt to
Gt+1 (due to the restriction mentioned above P̃t does not increase the degrees),
so the total number of zero rows in the coefficients is increased by n. Due to the
restriction mentioned above the degrees of the rows of Ft and of Gt grow almost
uniformly, i.e., they grow on average by m

m+n when going from t to t+ 1.
After t = d

m + d
n +O(1) steps the total number of zero rows in the coefficients

of Gt is m+n
m d + O(1) such that we can select m rows that produce at least d

zero rows in the coefficients. These m rows form F and G.
We now consider unbalanced sequence lengths. Let `j be the length of se-

quence j, i.e., a(i)
j,k has been computed for all k and 0 ≤ i ≤ `j . Without loss

of generality we can assume `1 ≤ `2 ≤ · · · ≤ `n = `. The sum of the lengths
of all sequences has to satisfy again

∑
j `j ≥ d · (1 + n

m ) + O(1). Moreover we
can assume that `1 ≥ d

m , otherwise we could drop sequence 1 completely, thus
facilitating our task. In this setting our goal is to achieve

FA ≡ G (mod X`+O(1))

with dF = deg(F ) ≤ `− d
m , deg(G) ≤ `− d

m and

X`−`k | F·,k (this denotes the kth column of F ).

The latter condition will compensate our ignorance of some rows of the higher
coefficients of A. Indeed, setting for simplicity dF = `− d

m , the vectors

vj =
n∑
k=1

`k− d
m∑

i=0

f
(dF−i)
j,k ·M iyk

satisfy for 1 ≤ h ≤ m, 0 ≤ b < d
m

(M bxh)T vj =
n∑
k=1

`k− d
m∑

i=0

f
(dF−i)
j,k a

(i+b)
k,h = g

(dF +b)
j,h = 0.

If i+b > `k (thus a
(i+b)
k,h not being computed), we have dF−i < dF+b−`k ≤ `−`k,

so f (dF−i)
j,k = 0 and the sum computes g(dF +b)

j,h .
Our new goal is achieved as before, but we will need ` steps and the con-

struction of Pt has to be modified as follows. In step t we have FtA ≡ Gt+EtX
t



(mod Xt+1). Let a ≤ n be maximal such that
a−1∑
i=1

(m+ i)(`n−i+1 − `n−i) ≤ mt

(a will increase during the computation). In the Gaussian elimination of Et we
do not use the first n−a rows for elimination. As a consequence, P̃t has the form

P̃t =
(

1n−a ∗
0 ∗

)
.

Then we set

Pt =

1n−aX 0 0
0 1a 0
0 0 1mX

 · P̃t.
Therefore the sum of the degrees of Ft will be increased by m + n − a and the
number of zero rows in Gt will be increased by a when passing from t to t + 1.
For a fixed a, (m+a)(`n−a+1−`n−a)

m steps will increase the average degree of the
last m+ a rows from `− `n−a+1 to `− `n−a. At this point a will be increased.

To see why X`−`k | F·,k holds we have to describe the choice of Ft0 (and t0).
Let c be the number of maximal `j , i.e., `n−c < `n−c+1 = `n. Then Ft0 will be
of the form

Ft0 =
(

1n−cXt0 0
0 ∗

)
.

The last m + c rows will be chosen such that they are of degree at most t0 −
1 and such that the conditions in Coppersmith’s algorithm are satisfied. This
construction will lead to a value of t0 near m

c instead of the lower value near m
n

in the original algorithm.
Let k be such that `k < `. As long as n − a ≥ k the kth column of Ft will

have the only non-zero entry at row k and this will be Xt. Since n−a ≥ k holds
for t ≤ `− `k this column will be divisible by X`−`k for all t ≥ `− `k.

For RSA-768 we used the algorithm as described above in the subquadratic
version of Thomé. The following variant might be useful in certain situations,
e.g., if one of the sequences is much longer than the others.

If `n−1 < `n, then for t < (m+1)(`n−`n−1)
m we have a = 1 and Pt is of the form

Pt =
(

1n−1X ∗
0 ∗

)
.

A product of several of these Pt will have a similar form, namely an (n−1)×(n−1)
unit matrix times a power of X in the upper left corner and zeros below it.

The basic operations in Thomé’s subquadratic version are building a binary
product tree of these Pt and doing truncated multiplications of intermediate
products with Ft0A or similar polynomials. If we split the computation into two
stages, first computing the product of all Pt for t <

(m+1)(`n−`n−1)
m and then the

remaining product, the matrix multiplications in the first stage become easier
due to the special form of the Pt and its products.

Obviously this can be done in as many stages as there are different `j-values.


