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Abstract. The problem of password-authenticated key exchange (PAKE)
has been extensively studied for the last two decades. Despite extensive
studies, no construction was known for a PAKE protocol that is secure
in the plain model in the setting of concurrent self-composition, where
polynomially many protocol sessions with the same password may be ex-
ecuted on the distributed network (such as the Internet) in an arbitrarily
interleaved manner, and where the adversary may corrupt any number
of participating parties.
In this paper, we resolve this long-standing open problem. In particular,
we give the first construction of a PAKE protocol that is secure (with
respect to the standard definition of Goldreich and Lindell) in the fully
concurrent setting and without requiring any trusted setup assumptions.
We stress that we allow polynomially-many concurrent sessions, where
polynomial is not fixed in advance and can be determined by an adversary
an an adaptive manner. Interestingly, our proof, among other things,
requires important ideas from Precise Zero Knowledge theory recently
developed by Micali and Pass in their STOC’06 paper.

1 Introduction

The problem of password authenticated key exchange (PAKE) has been studied
since early 1990’s. PAKE involves a pair of parties who wish to establish a high
entropy session key in an authenticated manner when their a priori shared secret
information only consists of a (possibly low entropy) password. More formally,
the problem of PAKE can be modeled as a two-party functionality F involving
a pair of parties P1 and P2; if the inputs (passwords) of the parties match,
then F outputs a uniformly distributed session key, else it outputs ⊥. Hence
the goal of PAKE is to design a protocol that securely realizes the functionality
F . Unfortunately, positive results for secure multi-party computation (MPC) [1,
2] do not immediately translate to this setting; the reason being that known
solutions for secure MPC require the existence of authenticated channels – which
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is in fact the end goal of PAKE. Therefore, very informally speaking, secure
multi-party computation and PAKE can be viewed as complementary problems.

The problem of password authenticated key exchange was first studied by
Bellovin and Meritt [3]. This was followed by several additional works proposing
protocols with only heuristic security arguments (see [4] for a survey). Subse-
quently, PAKE was formally studied in various models, including the random
oracle/ideal cipher model, common reference string (CRS) model, and the plain
model (which is the focus of this work). We briefly survey the state of the art
on this problem. The works of Bellare et al [5] and Boyko et al [6] deal with
defining and constructing PAKE protocols in the ideal cipher model and ran-
dom oracle model respectively. In the CRS model, Katz, Ostrovsky and Yung [7]
gave the first construction for PAKE without random oracles based on the DDH
assumption. Their result were subsequently improved by Gennaro and Lindell [8],
and Genarro [9]. Again in the CRS model, Canetti, Halevi, Katz, Lindell and
MacKenzie [10] proposed new definitions and constructions for a PAKE pro-
tocol in the framework of Universal Composability [11]. They further proved
the impossibility of a Universally Composable PAKE construction in the plain
model.

Goldreich and Lindell [12] formulated a new simulation-based definition for
PAKE and gave the first construction for a PAKE protocol in the plain model.
Their construction was further simplified (albeit at the cost of a weaker secu-
rity guarantee) by Nguyen and Vadhan [13]. Recently, Barak et al [14] gave a
very general construction for a PAKE protocol that is secure in the bounded-
concurrent setting (see below) in the plain model.

To date, [12, 13] and [14] remain the only known solutions for PAKE in the
plain model. However, an important limitation of Goldreich and Lindell [12] (as
well as Nguyen and Vadhan [13]) is that their solution is only relevant to the
stand-alone setting where security holds only if a single protocol session is exe-
cuted on the network. A more natural and demanding setting is where several
protocol sessions may be executed concurrently (a typical example being proto-
cols executed over the Internet). In such a setting, an adversary who controls
parties across different sessions may be able to mount a coordinated attack; as
such, stand-alone security does not immediately translate to concurrent secu-
rity [15]. In the context of PAKE, this problem was was fully resolved assuming
CRS trusted setup (see below) and only partially addressed in the plain model by
Barak, Canetti, Lindell, Pass and Rabin [14] who gave a construction that main-
tains security in the setting of bounded-concurrency. In this setting, an a priori
bound is known over the number of sessions that may be executed concurrently
at any time; this bound is crucially used in the design of the protocol. It is natu-
ral to consider the more general setting of full concurrent self-composition, where
any polynomially many protocol sessions (with no a priori bound) with the same
password may be executed in an arbitrary interleaved manner by an adversary
who may corrupt any number of parties. We stress that although the works of [7,
16, 8, 10, 4] solve this problem (where [7, 8] are secure under self-composition, and
[16] also enjoy forward secrecy, while [10] is secure under general-composition),
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they all require a trusted setup in the form of a common reference string. Indeed,
to date, no constructions are known for a PAKE protocol that is secure in the
plain model in the setting of concurrent self-composition.

Our Contribution. In this paper, we resolve this open problem. In particular, we
give the first construction of a PAKE protocol in the plain model that allows for
concurrent executions of the protocol between parties with the same password.
Our techniques rely on several previous works, most notably the works of Barak,
Prabhakaran and Sahai [17] and Micali and Pass [18].

Our construction is proven secure as per the definition of Goldreich and
Lindell [12] in the concurrent setting. We stress that Lindell’s impossibility re-
sult [19] for concurrent self-composition is not applicable here since (a) Goldreich
and Lindell used a specific definition that is different from the standard paradigm
for defining secure computation4, and (b) further, they only consider the sce-
nario where the honest parties hold fixed inputs (while Lindell’s impossibility
result crucially requires adaptive inputs).

In fact, our security definition is somewhat stronger than the one by Goldreich
and Lindell [12]. The definition in [12], for example, does not consider the case
where the adversary may have some a priori information on the password of
the honest parties in a protocol execution. We consider an improved simulation-
based security model similar to that proposed by [6]. More specifically, in our
model, the simulator in the ideal world is empowered to make a constant number
of queries per (real world) session to the ideal functionality (as opposed to just
one). Our security definition then requires computational indistinguishability
of the output distributions of real and ideal world executions in keeping with
the standard paradigm for secure computation. As noted in [20], this improved
definition implies the original definition of Goldreich and Lindell (see full version
for a proof).

In our main construction, we consider the setting where the honest parties
across the (polynomially-many) concurrent executions hold the same password
or independently chosen passwords5. An example of the same password case is

4 Note that in the standard simulation paradigm, the output distributions of the
“real” and “ideal” worlds must be computationally indistinguishable; in contrast,
the definition of Goldreich and Lindell [12] allows these distributions to be O(1/|D|)
apart (where D is the password dictionary).

5 A more general question is to consider the setting where the passwords of honest
parties in different sessions might be correlated in any arbitrary way. Towards this
end, we note that our construction can be easily extended to this setting. However,
in this case we require the ideal simulator to be able to query the ideal functionality
an expected constant number of times per session. Jumping ahead, in case the honest
parties were using the same password or fully independent passwords, the simulator
is able to “trade” ideal functionality calls in one session for another. Hence, the
simulator is able to even out the number of calls to a fixed constant in each session.
This in turn means that for the setting of correlated passwords, our construction
will satisfy a security definition which is slightly weaker (in that the number of ideal
functionality calls are constant only in expectation). Obtaining a construction for
correlated (in an arbitrary way) passwords where the number of calls are not just
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when a server expects a specific password for authentication and several parties
are trying to authenticate simultaneously.

We note that our techniques and constructions are quite general. Our con-
struction can be instantiated with a basic semi-honest secure computation pro-
tocol for any PPT computable functionality. This would lead to a concurrently
secure protocol for that functionality as per the security definition where we
allow the simulator to make an expected constant number of calls to the ideal
function per (real world) session. The meaningfulness of such a definition is
shown in the case of password based key exchange which is the focus of this
work (more precisely, by comparing it with the definition of [20]). However we
anticipate that the above general construction with such security guarantees
might be acceptable in many other settings as well.

A related model is that of resettably secure computation proposed by Goyal
and Sahai [21]. In resettably secure computation, the ideal simulator is given the
power to reset and query the trusted party any (polynomial) number of times.
However there are important differences. Goyal and Sahai [21] consider only the
“fixed role” setting and only one of the parties can be thought of as accepting
concurrent sessions. This means that the key technical problems we face in the
current work (arising out of the possibility of mauling attacks in the concurrent
setting) do not arise in [21]. Secondly, [21] do not try to optimize (or even bound)
the number of queries the ideal simulator makes to the trusted party per session.

Overview of Main Ideas. Note that in the setting of concurrent self-composition,
an adversary may corrupt different parties across the various sessions. Consider
for instance two different sessions where one of the parties is corrupted in each
session. We can view one of these sessions as a “left” session and the other as a
“right session”, while the corrupted parties can be jointly viewed as an adversar-
ial man-in-the-middle. An immediate side-effect of this setting is that it allows
an adversary to possibly “maul” a “left” session in order to successfully estab-
lish a session key with an honest party (say) P in a “right” session without the
knowledge of P ’s secret password. Clearly, in order to provide any security guar-
antee in such a setting, it is imperative to achieve independence between various
protocol sessions executing on the network. Note that this is akin to guarantee-
ing non-malleability across various sessions in the concurrent setting. Then, as
a first step towards solving this problem, we borrow techniques from the con-
struction of concurrent non-malleable zero knowledge argument due to Barak,
Prabhakaran and Sahai [17] (BPS-CNMZK). In fact, at a first glance, it might
seem that compiling a semi-honest two-party computation protocol (that emu-
lates the PAKE functionality in the stand-alone setting) with the BPS-CNMZK
argument or some similar approach might fully resolve this problem. However,
such an approach fails on account of several reasons. We highlight some impor-
tant problems in such an approach.

We first note that the simulation of BPS-CNMZK is based on a rewinding
strategy. In a concurrent setting, the adversary is allowed to control the schedul-

constant in expectation but always bounded by a constant is left as an interesting
open question.
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ing of the messages of different sessions. Then for a given adversarial scheduling,
it is possible that the simulator of BPS-CNMZK may rewind past the beginning
of a session (say) s when “simulating” another session. Now, every time session
s is re-executed, an adversary may be able to change his input (i.e., make a new
password guess possibly based on the auxiliary information it has). In such a
case, the simulator would have to query the ideal functionality for that session
more than once; therefore, we need to allow the simulator to make extra (i.e.,
more than one) queries per session to ideal functionality. In order to satisfy our
definition, we would need to limit the number of queries to a constant per ses-
sion. However, the simulator for BPS-CNMZK, if used naively, may require large
polynomially many queries per session to the ideal functionality, and therefore,
fail to satisfy our definition.

In order to overcome this problem, we build on the techniques of precise sim-
ulation, introduced by Micali and Pass [18] in the context of (stand-alone) zero
knowledge and later extended to the setting of concurrent zero knowledge by
Pandey, Pass, Sahai, Tseng, and Venkitasubramaniam [22]. Specifically, Pandey
et. al. [22] use a time-oblivious rewinding schedule that (with a careful choice
of system parameters) ensures that the the time spent by the simulator in the
“look-ahead” threads6 is only within a constant factor of the time spent by the
simulator in the “main” thread. We remark that we do not require this precision
in simulation time; instead we require that the number of queries made by the
simulator in the look-ahead threads is only within a constant factor of the num-
ber of queries made in the main thread. For this purpose, we employ the precise
Zero-Knowedlge paradigm of Micali and Pass and consider an imaginary experi-
ment in which our adversary takes a disproportionately large amount of time in
generating the message after which the simulator has to query the trusted party.
Our rewinding strategy is determined by running the PPSTV [22] simulator us-
ing the next message generation timings of such an (imaginary) adversary (even
though our simulator is fully black-box and does not even measure the timings
for the real adversary) in order to bound the number of queries.

We further note that in the security proof of the above approach, the simu-
lator must be able to extract the inputs of the adversary in all the sessions in
order to simulate its view. However, the extractor of [17] is unsuitable for this
task since it can extract adversary’s inputs (in the setting of BPS-CNMZK) only
on a session-by-session basis. To further elaborate, let us first recall the setting
of BPS-CNMZK, where an adversary is interacting with some honest provers as
well as some honest verifiers. Now, in order to extract the input of an adversarial
prover in a particular session s, the extractor in [17] honestly runs all the un-
corrupted verifiers except the verifier in session s. We stress that the extractor
is able to run the honest verifiers by itself since they do not possess any secret

6 Very roughly speaking, a “thread of execution” between the simulator and the ad-
versary is a simulation of a prefix of an actual execution. The simulator may run
multiple threads of execution, and finally output a single thread, called the main
thread. Any other thread is referred to as a look-ahead thread.
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inputs; clearly, such an extraction technique would fail in our setting since the
simulator does not know the inputs of the honest parties.

To address this problem, we require each party in our protocol to commit to
its input and randomness inside a separate preamble [22, 23] that allows extrac-
tion of the committed values in a concurrent setting. However, we note that such
a preamble requires a complicated rewinding strategy for extraction of commit-
ted value, and so is the case for simulating the BPS-CNMZK argument. Indeed,
it seems that we might need to compose the (possibly conflicting) individual
rewinding strategies of BPS-CNMZK and the additional preamble into a new
uniform rewinding strategy. Fortunately, by ensuring that we use the same kind
of preamble (for committing to the input of a party) as the one used inside
BPS-CNMZK, we are able to avoid such a scenario, and crucially, we are able
to use the BPS-CNMZK strategy as a single coherent rewinding strategy. The
above idea also gives us a new construction of a concurrent non-malleable zero-
knowledge protocol where the extraction can be automatically done in-line along
with the simulation. We believe this implication to be of independent interest.

Finally, the construction in [17] is only analyzed for the setting where the
theorems to be proven by the honest parties are fixed in advance before any
session starts (in keeping with the impossibility results of Lindell [19]). Towards
that end, our protocol only makes use of BPS-CNMZK in the very beginning
of the protocol to prove a statement which could be generated by the honest
parties before the start of any session.

2 Definitions and Preliminaries

2.1 Our Model

We first summarize the main differences in our model with respect to [12]. We
first note that even in the stand-alone setting, if an adversary A controls the
communication link between two honest parties, then A can execute separate
“left” and “right” executions with the honest parties. Therefore, these executions
can be viewed as two concurrent executions where A is the common party. In
keeping with this observation, in our model, the adversary A is cast as a party
participating in the protocol instead of being a separate entity who controls the
communication link (as in [12], see full version for more details). We stress that
this modeling allows us to assume that the communication between protocol
participants takes place over authenticated channels. Furthermore, in contrast
to [12], we allow the adversary to have a-priori information on the password.
More details follow.
Description of F . We model the problem of password-authenticated key ex-
change as a two-party functionality F involving parties P1 and P2 (where either
party may be adversarial). If the inputs (password from a dictionary D) of P1

and P2 match, then F sends them a uniformly distributed session key (whose
length is determined by the security parameter), else it sends ⊥.

Further, in contrast to the stand-alone setting of [12] (where security holds
only if a single protocol session is executed on the network), we consider the
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more general setting of concurrent self-composition, where polynomially many
(in the security parameter) protocols with the same password may be executed
on the network in an arbitrarily interleaved manner. In this setting, an adversary
A may corrupt several parties across all the different sessions.

To formalize the above requirements and define security, we extend the stan-
dard simulation paradigm for defining secure computation. In particular, we
allow the adversary in the ideal world to make a constant number of (output)
queries to the trusted party for each protocol session. In the definition below,
we focus only on the case where the honest parties hold the same password p.
However it can be extended to the case of arbitrarily correlated passwords (or,
in fact, general secure computation) in a natural way where the simulator in
the ideal world might make an expected constant number of calls to the ideal
functionality for every session in the real world.

We consider the static corruption model and probabilistic polynomial time
(PPT) adversaries only. We denote computational indistinguishability by

c≡, and
the security parameter by κ. Let D be the dictionary of passwords.

Ideal model. In the ideal model, there is a trusted party that computes the
password functionality F (described above) based on the inputs handed to it
by the players. Let there be n parties P1, . . . , Pn where different pairs of parties
are involved in one or more sessions, such that the total number of sessions
is polynomial in the security parameter κ. Let M ⊂ [n] denote the subset of
corrupted parties controlled by an adversary. An execution in the ideal model
with an adversary who controls the parties M proceeds as follows:

I. Inputs: The honest parties hold a fixed input which is a password p chosen
from a dictionary D. The input of a corrupted party is not fixed in advance.

II. Session initiation: If a party Pi wishes to initiate a session with another
party Pj , it sends a (start-session, i, j) message to the trusted party. On
receiving a message of the form (start-session,i, j), the trusted party sends
(new-session, i, j, k) to both Pi and Pj , where k is the index of the new session.

III. Honest parties send inputs to trusted party: Upon receiving (new-
session,i, j, k) from the trusted party, an honest party Pi sends its real input
along with the session identifier. More specifically, Pi sets its session k input
xi,k to be the password p and sends (k, xi,k) to the trusted party.

IV. Corrupted parties send inputs to trusted party: A corrupted party
Pi sends a message (k, xi,k) to the trusted party, for any xi,k ∈ D of its
choice.

V. Trusted party sends results to adversary: For a session k involving par-
ties Pi and Pj , when the trusted party has received messages (k, xi,k) and
(k, xj,k), it computes the output F(xi,k, xj,k). If at least one of the parties is
corrupted, then the trusted party sends (k,F(xi,k, xj,k)) to the adversary7.
On the other hand, if both Pi and Pj are honest, then the trusted party
sends the output message (k,F(xi,k, xj,k)) to them.

7 Note that here, the ideal functionality does not restrict the adversary to a fixed
constant number of queries per session. However, in our security definition, we will
require that the ideal adversary only makes a constant number of queries per session.
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VI. Adversary instructs the trusted party to answer honest players: For
a session k involving parties Pi and Pj where exactly one party is honest, the
adversary, depending on its view up to this point, may send the (output, k)
message in which case the trusted party sends the most recently computed
session k output (k,F(xi,k, xj,k)) to the honest party. (Intuitively, for each
session k where exactly one party is honest, we allow the adversary to choose
which one of the λ output values would be received by the honest party.)

VII. Adversary makes more queries for a session: The corrupted party Pi,
depending upon its view up to this point, can send the message (new-query, k)
to the trusted party. In this case, execution of session k in the ideal world
comes back to stage IV. Pi can then choose its next input adaptively (i.e.,
based on previous outputs).

VIII. Outputs: An honest party always outputs the value that it received
from the trusted party. The adversary outputs an arbitrary (PPT com-
putable) function of its entire view (including the view of all corrupted
parties) throughout the execution of the protocol.

Let S be a probabilistic polynomial-time ideal-model adversary that controls
the subset of corrupted parties M ⊂ [n]. Then the ideal execution of F (or the
ideal distribution) with security parameter κ, password p ∈ D and auxiliary
input z to S is defined as the output of the honest parties along with the output
of the adversary S resulting from the ideal process described above. It is denoted
by idealFM,S(κ, p, z).

Real model. We now consider the real model in which a real two-party password-
based key exchange protocol is executed.

Let F , P1, . . . , Pn,M be as above. Let Σ be the password-based key exchange
protocol in question. Let A be probabilistic polynomial-time (ppt) machine such
that for every i ∈M , the adversary A controls the party Pi.

In the real model, a polynomial number (in the security parameter κ) of
sessions of Σ may be executed concurrently, where the scheduling of all messages
throughout the executions is controlled by the adversary. We do not assume that
all the sessions have a unique session index. We assume that the communication
between the parties takes place over authenticated channels8. An honest party
follows all instructions of the prescribed protocol, while an adversarial party may
behave arbitrarily. At the conclusion of the protocol, an honest party computes
its output as prescribed by the protocol. Without loss of generality, we assume
the adversary outputs exactly its entire view of the execution of the protocol.

The real concurrent execution of Σ (or the real distribution) with security
parameter κ, password p ∈ D and auxiliary input z to A is defined as the
output of all the honest parties along with the output of the adversary resulting
from the above process. It is denoted as realΣM,A(κ, p, z).

We now give our definition of concurrently-secure password-authenticated
key exchange protocol.
8 As mentioned earlier, this is a reasonable assumption since in our model, the ad-

versary is a protocol participant instead of being a separate entity that controls the
communication links (as in [12]).
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Definition 1 Let F and Σ be as above. Let D be the dictionary of passwords.
Then protocol Σ for computing F is a concurrently secure password authenticated
key exchange protocol if for every probabilistic polynomial-time adversary A in
the real model, there exists a probabilistic expected polynomial-time adversary S
such that S makes a constant number of queries to the ideal functionality per
session, and, for every z ∈ {0, 1}∗, p ∈ D, M ⊂ [n],{

idealFM,S(κ, p, z)
}
κ∈N

c≡
{
realΣM,A(κ, p, z)

}
κ∈N

We note that our security definition implies the original definition of Goldreich
and Lindell [12] (adapted to the concurrent setting). We refer the reader to the
full version for a formal proof. We now state our main result.

Theorem 1 (Main Result) Assume the existence of 1-out-of-2 oblivious transfer
protocol secure against honest but curious adversaries9. Let F be the two-party
PAKE functionality as described above. Then, there exists a protocol Σ that
securely realizes F as per Definition 1.

We prove the above theorem by constructing such a protocol Σ in section 3. If
the underlying primitives are uniform (resp., non-uniform), then the protocol Σ
is uniform (resp., non-uniform) as well. A polynomial time adversary against Σ
translates to a polynomial time adversary against one of the underlying primi-
tives.

2.2 Building Blocks

We now briefly mention some of the main cryptographic primitives that we use
in our construction. We refer the the reader to the full version of the paper for
more details.
Statistically Binding Commitments. In our protocol, we shall use the 2-round sta-
tistically binding commitment scheme of Naor [25] based on one-way functions.
Given a random string z from the receiver, let comz(·) denote the commitment
function of the scheme.
Preamble from PPSTV [22]. A PPSTV preamble is a protocol between a commit-
ter and a receiver that consists of two main phases, namely, (a) the commitment
phase, and (b) the challenge-response phase. Let k be a parameter that deter-
mines the round-complexity of the protocol. Then, in the commit phase, very
roughly speaking, the committer commits to a secret string σ and k2 pairs of its
2-out-of-2 secret shares. The challenge-response phase consists of k iterations,
where in each iteration, very roughly speaking, the committer “opens” k shares,
one each from k different pairs of secret shares as chosen by the receiver.

The goal of this protocol is to enable the simulator to be able to rewind
and extract the “preamble secret” σ with high probability. In the concurrent
setting, rewinding can be difficult since one may rewind past the start of some
9 Note that 1-out-of-2 oblivious transfer (OT) secure against honest but curious ad-

versaries implies 1-out-of-2 OT secure against malicious adversaries [24].
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other protocol [26]. However, as it has been demonstrated in [22] (see also [23,
27]) there is a “time-oblivious” rewinding strategy that the simulator can use
to extract the preamble secrets from every concurrent cheating committer, with
high probability. In the sequel, we will refer to the preamble simulator as CEC-
Sim. For our purpose, we will use PPSTV preambles with linear (in the security
parameter κ) number of rounds. Then, the simulation strategy in [22] guarantees
a linear precision in the running time of the simulator. Specifically, the running
time of the simulator is only a constant multiple of the running time of the
adversarial committer in the real execution.
Concurrent Non-Malleable Zero Knowledge Argument. We shall use a concurrent
non-malleable zero knowledge (CNMZK) argument for every language in NP
with perfect completeness and negligible soundness error. In particular, we will
use a slightly modified version of the CNMZK protocol of Barak, Prabhakaran
and Sahai [17], henceforth referred to as mBPS-CNMZK. In the modified version,
we replace the PRS [23] preamble used in the original construction with a PPSTV
preamble with linear (in the security parameter) number of rounds. We will
also require that the non-malleable commitment scheme used in the protocol is
public-coin [28].
Statistically Witness Indistinguishable Arguments. In our construction, we shall
use a statistically witness indistinguishable argument (sWI) for proving mem-
bership in any NP language with perfect completeness and negligible soundness
error. Such a scheme can be constructed by using ω(log n) copies of Blum’s
Hamiltonicity protocol [29] in parallel, with the modification that the prover’s
commitments in the Hamiltonicity protocol are made using a statistically hid-
ing commitment scheme. Statistically hiding commitments were constructed by
Naor, Ostrovsky, Venkatesan and Yung [30] in O(k/log(k)) rounds using a one
way permutation ([30] in turn builds on the interactive hashing technique in-
troduced in [31]). Constructions based on one way functions were given in [32,
33].
Semi-Honest Two Party Computation. We will also use a semi-honest two party
computation protocol Πsh-pake that emulates the PAKE functionality F (as de-
scribed in section 2.1) in the stand-alone setting as per the standard definition
of secure computation. The existence of such a protocol Πsh-pake follows from [1,
34].

3 Our Construction

In this section, we describe our two-party protocol Σ that securely realizes the
password functionality F in the setting of concurrent self-composition as per
Definition 1.
Notation. Let P1 and P2 be two parties with private inputs (password from dic-
tionary D) x1 and x2 respectively. Given a random string z (from the receiver),
let comz(·) denote the commitment function of Naor’s commitment scheme [25].
By mBPS-CNMZK, we will refer to the modified version of the CNMZK proto-
col of [17] described in section 2.2. Let Πmbps,Pi→Pj

denote an instance of the
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mBPS-CNMZK protocol where Pi and Pj play the roles of prover and verifier
respectively. Let Πsh-pake be any semi-honest two party computation protocol
that emulates the functionality F in the stand-alone setting. Let Uη denote the
uniform distribution over {0, 1}η, where η is a function of the security parameter.

The protocol Σ proceeds as follows.

I. Trapdoor Creation Phase.

1. P1 ↔ P2 : P1 sends a random string z2 (of appropriate length) to P2 as the
first message of Naor’s commitment scheme. Similarly, P2 sends a random
string z1 to P1.

2. P1 → P2 : P1 creates a commitment com1 = comz1(0) to bit 0 and sends it
to P2. P1 and P2 now engage in the execution of a mBPS-CNMZK argument
Πmbps,P1→P2 where P1 proves that com1 is a commitment to 0.

3. P2 → P1 : P2 now acts symmetrically. Specifically, it creates a commitment
com2 = comz2(0) to bit 0 and sends it to P1. P2 and P1 now engage in the
execution of a mBPS-CNMZK argument Πmbps,P2→P1 where P2 proves that
com2 is a commitment to 0.

II. mPPSTV Preamble Phase. In this phase, each party Pi engages in the
execution of a modified PPSTV preamble (henceforth referred to as mPPSTV)
with Pj where it commits to its input and randomness. In our modified ver-
sion of the PPSTV preamble, for a given receiver challenge, the committer
does not “open” the commitments, but instead simply reveals the committed
value (without the randomness) and proves its correctness by using a sWI. Let
Πmppstv,Pi→Pj denote an instance of the mPPSTV protocol where Pi plays the
role of the committer. We now describe the steps in this phase.

1. P1 ↔ P2 : Generate a string r1
$← Uη and let β1 = {x1, r1}. Here r1 is the

randomness to be used (after coin-flipping with P2) by P1 in the execution
of the protocol Πsh-pake in Phase III. We assume that |r1| = η is sufficiently
long for that purpose. Now P1 and P2 engage in the execution of a mPPSTV
preamble Πmppstv,P1→P2 in the following manner.
Let k be a polynomial in the security parameter κ. P1 first prepares 2k2 secret
shares {α0

i,j}ki,j=1, {α1
i,j}ki,j=1 such that α0

i,j ⊕ α1
i,j = β1 (= {x1, r1}) for all

i, j. Using the commitment function comz1(·), P1 commits to β1 and all its
secret shares. Denote these commitments by B1, {A0

i,j}ki,j=1, {A1
i,j}ki,j=1. P1

now engages in the execution of a sWI with A in order to prove the following
statement: either
(a) the above commit phase is “valid”, i.e., there exist values β̂1, {α̂0

i,j , α̂
1
i,j}ki,j=1

such that (a) α̂0
i,j ⊕ α̂1

i,j = β̂1 for all i, j, and, (b) commitments B1,
{A0

i,j}ki,j=1, {A1
i,j}ki,j=1 can be decommitted to β̂1, {α̂0

i,j , α̂
1
i,j}ki,j=1, or,

(b) com1 in phase I is a commitment to bit 1.
It uses the witness corresponding to the first part of the statement. P1 and
P2 now execute a challenge-response phase. For j = 1, . . . , k:
(a) P2 → P1 : Send challenge bits z1,j , . . . , zk,j

$← {0, 1}k.
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(b) P1 → P2 : Send α
z1,j

1,j , . . . , α
zk,j

k,j . Now, P1 and P2 engage in the execu-
tion of a sWI, where P1 proves the following statement: either (a) com-
mitments Az1,j

1,j , . . . , A
zk,j

k,j can be decommitted to αz1,j

1,j , . . . , α
zk,j

k,j respec-
tively, or (b) com1 in Phase I is a commitment to bit 1. It uses the
witness corresponding to the first part of the statement.

2. P2 ↔ P1 : P2 now acts symmetrically.

III. Secure Computation Phase. In this phase, the parties run an execution
of the semi-honest two party protocol Πsh-pake “compiled” with sWI.

Coin Flipping. P1 and P2 first engage in a coin-flipping protocol. More specif-
ically, P1 (resp., P2) generates r′2

$← Uη (resp., r′1
$← Uη) and sends it to P2

(resp., P1). Define r′′1 = r1⊕ r′1 and r′′2 = r2⊕ r′2. Now r′′1 and r′′2 respectively are
the random coins that P1 and P2 will use in the execution of protocol Πsh-pake.

Protocol Πsh-pake. Let the protocol Πsh-pake have t rounds where one round is
defined to have a message from P1 to P2 followed by a reply from P2 to P1.
Let transcript T1,j (resp., T2,j) be defined to contain all the messages exchanged
between P1 and P2 before the point party P1 (resp., P2) is supposed to send a
message in round j. Now, each message sent by either party in protocol Πsh-pake

is compiled into a message block in Σ. For j = 1, . . . , t:

1. P1 → P2 : P1 sends the next message ∆1,j(= Πsh-pake(T1,j , x1, r
′′
1 )) as per

protocol Πsh-pake. Now, P1 and P2 engage in the execution of a sWI where
P1 proves the following statement: either
(a) there exists a value β̂1 = {x̂1, r̂1} such that (a) the commitment B1

in phase II.1 can be decommitted to β̂1 = {x̂1, r̂1}, and (b) the sent
message ∆1,j is consistent with input x̂1 and randomness r̂1 ⊕ r′1 (i.e.,
∆1,j(= Πsh-pake(T1,j , x̂1, r̂1 ⊕ r′1)), or

(b) com1 in Phase I is a commitment to bit 1.
It uses the witness corresponding to the first part of the statement.

2. P2 → P1 : P2 now acts symmetrically.

This completes the description of the protocol Σ. Note that Σ consists of several
instances of sWI where the proof statement in each instance consists of two parts.
Specifically, the second part of the statement states that prover committed to
bit 1 in the trapdoor creation phase. In the sequel, we will refer to the second
part of the proof statement as the trapdoor condition. Further, we will call the
witness corresponding to the first part of the statement as real witness and that
corresponding to the second part of the statement as the trapdoor witness.

4 Proof of Security

Theorem 2 The proposed protocol Σ is a concurrently secure PAKE protocol
as per Definition 1.
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Let there be n parties in the system where different pairs of parties are involved in
one or more sessions of Σ, such that the total number of sessions m is polynomial
in the security parameter κ. Let A be an adversary who controls an arbitrary
number of parties. In order to prove theorem 2, we will first construct a simulator
S that will simulate the view of A in the ideal world. We will then show that S
makes only a constant number of queries per session while simulating the view of
A. Finally, we will argue that the output distributions of the real and ideal world
executions are computationally indistinguishable. For simplicity of exposition,
we will assume that exactly one party is corrupted in each session. We note that
if the real and ideal distributions are indistinguishable for this case, then by
using standard techniques we can easily remove this assumption. Due to lack of
space, in this version, we only give the description of the simulator and bound
its output queries. We refer the reader to the full version of the paper for a
complete proof.

Notation. In the sequel, for any session ` ∈ [m], we will use the notation H to
denote the honest party and A to denote the corrupted party. Let Πmbps,H→A
(resp., Πmbps,A→H) denote an instance of mBPS-CNMZK where H (resp., A)
plays the role of the prover and A (resp., H) plays the verifier. Similarly, let
Πmppstv,H→A (resp., Πmppstv,A→H) denote an instance of mPPSTV where H
(resp., A) plays the role of the committer and A (resp., H) plays the receiver.
Wherever necessary, we shall augment our notations with a super-script that
denotes the session number.

Consider any session between H and A. Consider the last message from A
before H sends a message to A during the coin-flipping sub-phase in the secure
computation phase. Note that this message could either be the first message of
the coin-flipping phase or the last message of the mPPSTV phase, depending
upon whether A or H sends the first message in the coin-flipping phase. In the
sequel, we will refer to this message from A as the special message. Intuitively,
this message is important because our simulator will need to query the ideal
functionality every time it receives such a message from A. Looking ahead, in
order to bound the number of queries made by our simulator, we will be counting
the number of special messages sent by A during the simulation.

4.1 Description of Simulator S

The simulator S consists of two parts, Scec and Score. Informally speaking, Scec

is essentially the simulator CEC-Sim (see section 2.2) whose goal is to extract
the preamble secret in each instance of the PPSTV preamble where A acts as
the committer. These extracted values are passed on to Score, who uses them
crucially to simulate the view of A. We now give more details.

Description of Scec. Scec is essentially the main simulator in that it handles
all communication with A. However, for each session ` ∈ [m], Scec by itself only
answers A’s messages in those instances of the PPSTV preamble where A plays
the role of the committer; Scec in turn communicates with the core simulator
Score to answer all other messages from A.
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Specifically, recall that our protocol consists of two instances of the PPSTV
preamble where A plays the role of the committer. Consider any session ` ∈ [m].
The first instance is inside the mBPS-CNMZK instance Π`

mbps,H→A in the trap-
door creation phase, while the second instance is in fact the mPPSTV preamble
Π`
mppstv,A→H in the second phase. Then, Scec is essentially the simulator CEC-

Sim that interacts with A in order to extract the preamble secret in each of the
above instances of the PPSTV preamble. Specifically, in order to perform these
extractions, Scec employs the time-oblivious rewinding strategy of CEC-Sim for
an imaginary adversary (see next paragraph). During the simulation, whenever
Scec receives a message from A in any of the above instance of the PPSTV
preamble, then it answers it on its own in the same manner as CEC-Sim does
(i.e., by sending a random challenge string). However, on receiving any other
message, it simply passes it to the core simulator Score (described below), and
transfers its response to A. Whenever Scec extracts a preamble secret from A at
any point during the simulation, it immediately passes it to Score. If Scec fails
to extract any of the preamble secrets from A, then it outputs the abort symbol
⊥.
Message generation timings of A. We note that in order to employ the time-
oblivious rewinding strategy of CEC-Sim, Scec needs to know the amount of
time that A takes to send each message in the protocol (see [22]). We remark
that we do not seek precision in simulation time (guaranteed by the rewinding
strategy of CEC-Sim); instead we only require that the number of queries made
by the simulator in the look-ahead threads is only within a constant factor of
the number of the number of sessions. To this end, we consider an imaginary
experiment in which A takes a disproportionately large amount of time in gen-
erating the message after which our simulator has to query the trusted party.
Then the rewinding strategy of Scec is determined by running CEC-Sim using
the next message generation timings of such an (imaginary) adversary, explained
as follows.

Consider all the messages sent by A during a protocol execution. We will
assign q time units to the special message, where q is the round complexity
(linear in the security parameter) of our protocol; any other message from A is
simply assigned one time unit. Intuitively, by assigning more weight to the special
message, we ensure that if the running time of our simulator is only within a
constant factor of the running time of A in the real execution, then the number
of special messages sent by A during the simulation must be a constant as well.
Looking ahead, this in turn will allow us to prove that the number of queries
made by the simulator are only a constant.

Description of Score. We describe the strategy of Score in each phase of the
protocol, for each session ` ∈ [m]. We stress that Score uses the same strategy in
the main-thread as well as all look-ahead threads (unless mentioned otherwise).
Trapdoor Creation Phase. Score first sends a commitment to bit 1, instead of
committing to bit 0. Now, recall that Scec interacts with A during the preamble
phase in Π`

mbps,H→A and extracts the preamble secret σ`mbps,H→A from A at the
conclusion of the preamble. Then, on receiving σ`mbps,H→A from Scec, Score sim-
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ulates the post-preamble phase of Π`
mbps,H→A (see [17] for protocol description)

in a “straight-line” fashion, as described below.
Let y` be the proof statement inΠ`

mbps,H→A. Then, in phase II ofΠ`
mbps,H→A,

Score creates a statistically hiding commitment (sCOM) to σ`mbps,H→A (instead
of a string of all zeros) and follows it up with an honest execution of statisti-
cal zero knowledge argument of knowledge (sZKAOK) to prove knowledge of
the decommitment. In phase IV of Π`

mbps,H→A, Score creates a non-malleable
commitment (NMCOM) to an all zeros string (instead of a valid witness to y`).
Finally, in phase V, Score proves the following statement using sZKAOK: (a) the
value committed to in phase IV is a valid witness to y`, or (b) the value com-
mitted to in phase II is σ`mbps,H→A. Here it uses the witness corresponding to
the second part of the statement.

Now, consider the mBPS-CNMZK instance Π`
mbps,A→H , where H plays the

role of the verifier. Here, Score simply uses the honest verifier strategy to interact
with A.
mPPSTV Preamble Phase. Consider the execution of the mPPSTV instance
Π`
mppstv,H→A. Here, Score commits to a random string and answers A’s chal-

lenges with random strings. Note that the trapdoor condition is true for each
instance of sWI in Π`

mppstv,H→A since Score committed to bit 1 (instead of 0) in
the trapdoor creation phase. Therefore, Score uses the trapdoor witness in order
to successfully simulate each instance of sWI in Π`

mppstv,H→A.
Now consider the mPPSTV instance Π`

mppstv,A→H . Note that in this pream-
ble, Scec interacts with A without the help of Score. As explained earlier, Scec

extracts the preamble secret (that contains the input and randomness of A in
session `) and passes it to Score.
Secure Computation Phase. Let SΠsh-pake

denote the simulator for the semi-honest
two-party protocol Πsh-pake used in our construction. Score internally runs the
simulator SΠsh-pake

on adversary’s input in session `. SΠsh-pake
starts executing,

and, at some point, it makes a call to the trusted party in the ideal world with
some input (say) x. Score uses the following strategy to manage queries to the
trusted party.

Score maintains a counter c to count the total number of queries (including
all sessions) made to the trusted party on the look-ahead threads so far in the
simulation (note that there will be exactly m queries on the main thread). Now,
when SΠsh-pake makes a call to the trusted party, Score computes a session index s
in the following manner. If the query corresponds to the main thread, then Score

sets s = `, else it computes s = c mod m. Now, if Score has already queried
the trusted party at least once for session s, then it first sends the (new-query, s)
message to the trusted party. Otherwise, it simply sends the message (s, x) to the
trusted party.1011 The response from the trusted party is passed on to SΠsh-pake

. If
10 We stress that the simulator is able to “trade” the ideal functionality calls in one

session for another since the inputs of the honest parties are the same across all the
sessions.

11 Note that by choosing the session index for the output query in the above fashion,
Score is able to equally distribute the queries across all the sessions. Looking ahead,
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the query corresponds to the main thread, Score sends the message (output, s) to
the trusted party, indicating it to send the output to the honest party in session
s.12

Having received the trusted party’s response from Score, SΠsh-pake runs fur-
ther, and finally halts and outputs a transcript ∆`

1,1, ∆
`
2,1, . . . ,∆

`
1,t, ∆

`
2,t of the

execution of Πsh-pake, and an associated randomness r`A. Let r̂`A be the random-
ness that S extracted from A in phase II. Now, Score computes a random string
r̃`A such that r`A = r̃`A ⊕ r̂`A.

Now, in order to force A to use randomness r`A during the execution of
Πsh-pake, Score sends r̃`A to A during the coin-flipping phase prior to the exe-
cution of Πsh-pake. Finally, Score forces the transcript ∆`

1,1, ∆
`
2,1, . . . ,∆

`
1,t, ∆

`
2,t

onto A during the execution of Πsh-pake. This is done as follows. Without loss
of generality, let us assume that the honest party sends the first message in
this instance of Πsh-pake. Then, in round j, 1 ≤ j ≤ t, Score sends ∆`

1,j to A
(instead of sending a message as per the input and randomness committed to
in the preamble in Phase II). Score uses the trapdoor witness to complete the
associated sWI. If the reply of A is different from the (expected) message ∆`

2,j ,
then Score outputs the abort symbol ⊥.

This completes the description of our simulator S = {Scec, Score}.

4.2 Total Queries by S

Lemma 1. Let m be the total number of sessions of Σ being executed concur-
rently. Then, the total number of queries made by S to the trusted party is within
a constant factor of m.

Proof. Let T be the total running time of the adversary in the real execution, as
per the time assignment strategy described in section 4.1. Now, since S employs
the time-oblivious rewinding strategy of CEC-Sim (see section 2.2), it follows
that the total running time of S is within a constant factor of T . Let us now
assume that our claim is false, i.e., the total number of queries made by S is a
super-constant multiple of m. We will show that in this case, the running time
of S must be super-constant multiple of T , which is a contradiction. We now
give more details.

Let q be the round complexity of Σ. Then, as per the time assignment strat-
egy given in section 4.1, T = (q − 1 + q) ·m (recall that the special message is
assigned a weight of q time units, while each of the remaining q − 1 messages
is assigned one time unit). Now, let λ be a value that is super-constant in the

in the next subsection, we will argue that the total number of queries across all
the sessions are only within a constant factor of the number of sessions. Then, this
strategy of distributing the queries will ensure that the queries per session are also
a constant.

12 Note that s = ` in this case. We stress that by setting s = ` for a query on the main
thread, Score ensures that the honest party in session ` receives the correct output.
(Note that an honest party does not receive any output for an output query on a
look-ahead thread.)
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security parameter such that S makes λ ·m total queries during the simulation.
Note that each output query corresponds to a unique special message. Let T ′ be
the total running time of S. We calculate T ′ as follows:

T ′ ≥ q · (λ ·m) + (q − 1) ·m
> q · (λ ·m)

>
λ · q

(q − 1 + q)
· T

Since λ·q
(q−1+q) is a super-constant in the security parameter, we have that T ′ is a

super-constant multiple of T , which is a contradiction. Hence the claim follows.

The corollary below immediately follows from lemma 1 and the description
of S in section 4.1.

Corollary 1 S makes a constant number of queries per session to the trusted
party.
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