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Abstract. Motivated by the question of basing cryptographic protocols
on stateless tamper-proof hardware tokens, we revisit the question of un-
conditional two-prover zero-knowledge proofs for NP. We show that such
protocols exist in the interactive PCP model of Kalai and Raz (ICALP
’08), where one of the provers is replaced by a PCP oracle. This strength-
ens the feasibility result of Ben-Or, Goldwasser, Kilian, and Wigderson
(STOC ’88) which requires two stateful provers. In contrast to previous
zero-knowledge PCPs of Kilian, Petrank, and Tardos (STOC ’97), in our
protocol both the prover and the PCP oracle are efficient given an NP
witness.

Our main technical tool is a new primitive that we call interactive lock-
ing, an efficient realization of an unconditionally secure commitment
scheme in the interactive PCP model. We implement interactive lock-
ing by adapting previous constructions of interactive hashing protocols
to our setting, and also provide a direct construction which uses a min-
imal amount of interaction and improves over our interactive hashing
based constructions.

Finally, we apply the above results towards showing the feasibility of
basing unconditional cryptography on stateless tamper-proof hardware
tokens, and obtain the following results. (1) We show that if tokens
can be used to encapsulate other tokens, then there exist unconditional
and statistically secure (in fact, UC secure) protocols for general secure
computation. (2) Even if token encapsulation is not possible, there are
unconditional and statistically secure commitment protocols and zero-
knowledge proofs for NP. (3) Finally, if token encapsulation is not pos-
sible, then no protocol can realize statistically secure oblivious transfer.
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1 Introduction

What is the minimal amount of trust required for unconditionally secure cryp-
tography? Unconditional cryptography can be based on trusted two-party func-
tionalities such as oblivious transfer [1, 2] or noisy channels [3], on bounded
storage assumptions [4], on the presence of an honest majority [5–7], or even on
the presence of a dishonest majority of non-communicating parties [8]. More re-
cently, there has been a considerable amount of work on cryptographic protocols
in which parties can generate and exchange tamper-proof hardware tokens. In
this model it was shown that unconditionally secure commitments [9] or even
general secure two-party computation [10] are possible, provided that the to-
kens can be stateful. In particular, stateful tokens can erase their secrets after
being invoked. The present work is motivated by the goal of establishing un-
conditional feasibility results for cryptography using stateless hardware tokens.
This question turns out to be related to the classical question of unconditional
multi-prover zero-knowledge proofs, which we revisit in this work. We start with
some relevant background.
Multi-Prover Zero-Knowledge. Since the introduction of zero-knowledge
proofs in the seminal work of Goldwasser, Micali, and Rackoff [11], a large body of
work has been devoted to understanding the capabilities and limitations of such
proofs. A particularly successful line of research studied the power of statistical
zero-knowledge (SZK) proofs — ones which guarantee that even computation-
ally unbounded verifiers can learn nothing from the interaction with the prover.
In contrast to computational zero-knowledge proofs [12], a major limitation of
SZK proofs which restricts their usefulness in cryptography is that they seem
unlikely to cover the entire class of NP [13, 14]. The related goal of obtaining
any kind of unconditional zero-knowledge proofs for NP, which do not rely on
unproven intractability assumptions, seems as unlikely to be achieved (cf. [15])
at least until the elusive P vs. NP question is resolved.

Motivated by the above goals, Ben-Or, Goldwasser, Kilian, and Wigderson [8]
introduced in 1988 the model of multi-prover interactive proofs (MIPs), a natural
extension of the standard model of interactive proofs which allows the verifier to
interact with two or more non-communicating provers. The main result of [8] is
an unconditional two-prover SZK proof for any language in NP (see [16–18] for
subsequent improvements). A direct cryptographic application suggested in [8] is
that of proving one’s identity using a pair of bank cards. We will further discuss
these types of applications later.

In a very surprising turn of events, the initial work on zero-knowledge in the
MIP model led to a rapid sequence of developments that have literally trans-
formed the theory of computer science. This line of research culminated in the
first proof of the PCP Theorem [19, 20].

The notion of probabilistically checkable proofs (PCPs) is very relevant to our
work. In 1988, Fortnow, Rompel, and Sipser [21] suggested an alternative model
for MIPs in which multiple provers are replaced by a single oracle, subsequently
called a PCP oracle or just a PCP. The difference between an oracle and a prover
is that an oracle, like a classical proof, cannot keep an internal state. When a



prover is asked multiple queries, the answer to each query can depend on all
previous queries, whereas the answer of an oracle to each query must depend
on that query alone. The latter difference makes soundness against PCP oracles
easier to achieve than soundness against provers, which explains the extra power
of PCPs over traditional interactive proofs. However, as already observed in [8],
the zero-knowledge property becomes harder to achieve when converting provers
into oracles because oracles have no control over the number of queries made by
a dishonest verifier. In particular, if the verifier may query the entire domain of
the oracle (as in the case of traditional polynomial-length PCPs) then the oracle
can no longer hide any secrets.

The question of replacing zero-knowledge provers by stateless oracles is mo-
tivated by practical scenarios in which verifiers can “reset” provers to their ini-
tial state, say by cutting off their power supply. (Note that similarly to zero-
knowledge provers, zero-knowledge PCP oracles should be randomized in the
sense that their answer depends both on the query and on a secret source of
randomness which is picked once and for all when the oracle is initialized.) This
motivation led to a recent line of work on resettable zero-knowledge, initiated
by Canetti, Goldreich, Goldwasser, and Micali [22]. The main results from [22]
show that, under standard cryptographic assumptions, there exist resettable
(computational) zero-knowledge proofs for NP. However, results along this line
do not seem relevant to the case of unconditional (and statistical) zero-knowledge
proofs, which are the focus of the present work.

Zero-knowledge PCPs. The question of unconditional zero-knowledge PCPs was
studied by Kilian, Petrank and Tardos [23] (improving over previous results im-
plicit in [18]). Specifically, it is shown in [23] that any language in NEXP admits
a proof system with a single PCP which is statistical zero-knowledge against
verifiers that can make any polynomial number of PCP queries (but are oth-
erwise computationally unbounded). However, as expected from proof systems
for NEXP, the answers of the PCP oracle cannot be computed in polynomial
time. This still leaves hope for scaling down the result to NP and making the
PCP oracle efficient given an NP witness. Unfortunately, such a scaled down
version presented in [23] has the undesirable side effect of scaling down the zero-
knowledge property as well, effectively restricting the number of queries made by
a cheating verifier to be much smaller than the (fixed polynomial) entropy of the
oracle. Thus, compared to typical feasibility results in cryptography, the results
of [23] for NP require us to either make an unreasonable assumption about the
computational capability of the (stateless) prover, or to make an unreasonable
assumption about the limitations of a cheating verifier.

Interactive PCPs. The above state of affairs motivates us to consider the Inter-
active PCP (IPCP) model, which was recently put forward by Kalai and Raz [24]
and further studied in [25]. This model can be seen as lying in between the pure
PCP model and the pure MIP model, thus aiding us in our quest for a “min-
imal” model for efficient unconditional zero-knowledge proofs for NP. In the
IPCP model there is one interactive prover as in the MIP model and one PCP



as in the PCP model. The study of IPCPs in [24] was motivated by the efficiency
goal of allowing shorter PCPs for certain NP languages than in the traditional
PCP model, at the price of a small amount of interaction with a prover. In con-
trast, our use of the IPCP model is motivated by the feasibility goal of obtaining
unconditional zero-knowledge proofs for NP with polynomial-time prover and
PCP oracle. Another difference is that while in the context of [24] a PCP is at
least as helpful as a prover, the zero-knowledge property we consider is harder
to satisfy with a PCP oracle than with a prover (as discussed above). The IPCP
model can be made strictly stronger than the MIP model by requiring soundness
to hold also with respect to stateful PCP oracles. We tackle this stronger variant
as well, but we stick to the basic IPCP model by default.

To meaningfully capture zero-knowledge proofs with polynomial-time provers
in the IPCP model, we extend the original IPCP model from [24] in two natural
ways. First, we allow the PCP to be randomized. Concretely, we assume that
both the prover and the PCP are implemented by polynomial-time algorithms
with three common inputs: an instance x, a witness w, and a random input
r. (This is analogous to earlier models for efficient multi-prover zero-knowledge
proofs for NP.) The length of both w and r is polynomial in |x|. Second, as dis-
cussed above, in order to allow the PCP oracle to hide secrets from the verifier
we need to use PCP oracles with a super-polynomial query domain, and we re-
strict cheating verifiers to make (an arbitrary) polynomial number of queries to
the oracle, but otherwise allow them to be computationally unbounded. Note,
however, that in contrast to the solutions from [23] we cannot use PCP ora-
cles with a super-polynomial entropy since we want our PCP to be efficiently
implementable.

This gives rise to the following feasibility question:

Are there (efficient-prover) statistical zero-knowledge proofs for NP in
the interactive PCP model?

Our Results. We answer the above question affirmatively, presenting an un-
conditional SZK proof for NP in the interactive PCP model with efficient prover
and PCP oracle. Zero-knowledge holds against cheating verifiers which can make
any polynomial (in fact, even sub-exponential) number of PCP queries, but are
otherwise computationally unbounded. Our protocol can be implemented in a
constant number of rounds. We also show how to get a similar protocol (with a
non-constant number of rounds) in the stronger variant of the IPCP model in
which a cheating PCP oracle may be stateful, thus strengthening the previous
feasibility result from [8].

Interactive locking. The main technical tool we use to obtain the above results
(as well as additional applications discussed below) is a new primitive which
we call an interactive locking scheme (ILS). This primitive extends in a natu-
ral way the notion of non-interactive locking schemes which were defined and
implemented in [23]. The original locking primitive can be viewed as a PCP-
based implementation of a non-interactive commitment with statistical hiding



and binding. Roughly speaking, a locking scheme is an oracle which hides a se-
cret that can later be revealed to the receiver by sending it a decommitment
key. Given access to the oracle alone, it is hard for the receiver to learn anything
about the secret. However, it is easy for the receiver to become convinced that at
most one secret can be successfully decommitted even when the oracle is badly
formed.

The locking scheme from [23] requires the oracle to have bigger entropy than
the number of queries against which the hiding property should hold. We prove
the intuitive fact that such a limitation is inherent, and therefore there is no
efficient-oracle non-interactive locking scheme which resists an arbitrary polyno-
mial number of queries. This is because intuitively if the entropy of the oracle is
bounded, then either: (1) the receiver is able to learn all the entropy by making
a polynomial number of queries, and therefore break the hiding property; or (2)
if some entropy is hidden no matter what queries the receiver makes, then a
cheating sender is able to create a “fake” oracle that can cheat on this entropy
and therefore be opened to any value, breaking the binding property.

This motivates our notion of an interactive locking scheme. An ILS is a lock-
ing scheme in the IPCP model: the commitment phase can involve, in addition
to oracle queries by the receiver, interaction with the sender from whom the
secret originated. Here the sender and the oracle play the roles of the prover
and PCP oracle in the IPCP model, respectively. Decommitment still involves
a single message from the sender to the receiver. Somewhat surprisingly (and
counter to our own initial intuition), we show that interaction can be used to
disrupt the intuitive argument above.

We present several constructions of efficient interactive locking schemes. We
show how to obtain such schemes from interactive hashing — a primitive which
was introduced by Naor, Ostrovsky, Venkatesan, and Yung [26] for the purpose
of constructing statistically hiding and computationally binding commitment
schemes from any one-way permutation (see also [27–29]). The high level idea
of the transformation from interactive hashing to ILS is to “implement” a one-
way permutation by an oracle which contains a random point function (i.e., a
function that outputs 0 on all but one random point). To ensure the binding
property even when the oracle is badly formed, the receiver should query the
oracle on a small number random points to verify that it is not “too far” from
a point function. The (black-box) proof of security of the interactive hashing
protocol implies (unconditional) proof of security for the ILS.

The above connection allows us to use interactive hashing protocols from the
literature for obtaining interactive locking schemes, but leaves open the question
of minimizing the amount of interaction with the sender. We resolve this question
by presenting a novel direct construction of ILS which requires only a single
round of interaction with the sender.

The high level idea behind our single round ILS is as follows. The oracle
π constructed by the sender will be the zero function over {0, 1}n except for
an “interval” of size 2cn. That is, π(x) = 1 for a ≤ x ≤ a + 2cn and π(x) = 0
elsewhere. Depending on whether the sender commits to zero or one, the interval



will be planted in the first or second half of the oracle π. The position a of the
interval will be revealed to the receiver in the decommitment phase. When c < 1,
the interval size 2cn will be small enough to prevent the receiver from finding the
committed bit during the commitment phase. But now the sender is able to cheat
by planting intervals in both the first and second half of π. To guarantee binding,
we let the receiver ask a “challenge” question about the interval in such a way
that the sender cannot find a pair of planted intervals in the first and second
half of π with the same challenge answer. A natural idea is to use a pairwise
independent function h : {0, 1}n → {0, 1}dn and ask the sender to reveal h(a).
The sender is able to plant at most 2(1−c)n separate intervals in each half of π.
Each of the intervals in the first and second half of π will have the same hashes
with probability 2−dn. Therefore if 2(1 − c) < d, then with high probability
over the choice of h the sender is not able to find two intervals with the same
hash value h(a) and thus gets committed to a fixed bit. But now the information
revealed by h(a) might help the receiver find a non-zero point in π and break the
hiding property. We show how to modify the a known construction of pairwise
independent hash functions to get another function which is still almost pairwise
independent but has the additional property that the preimages of any hash value
are “scattered” in the domain of the hash function. The latter property prevents
the receiver from taking advantage of the knowledge of h(a) to find where the
interval is planted. Using this approach we simultaneously guarantee binding
and hiding.

Cryptography using hardware tokens. The above study of zero-knowledge in-
teractive PCPs and interactive locking schemes is motivated by a recent line
of research on the capabilities of cryptographic protocols in which parties can
generate tamper-proof hardware tokens and send them to each other. Katz [30]
shows that, under computational assumptions, general universally composable
(UC) secure two-party computation [31] is possible in this model if the tokens
are allowed to be stateful, and in particular can erase their secrets after being in-
voked. It was subsequently shown that even unconditional security is possible in
this model, first for the case of commitment [9] and then for general tasks [10].
See [32–34] and references therein for other applications of stateful tokens in
cryptography.

Obtaining similar results using stateless tokens turns out to be more chal-
lenging. Part of the difficulty stems from the fact that there is no guarantee on
the functionality of tokens generated by malicious parties — they may compute
arbitrary functions of their inputs and may even carry state information from
one invocation to another. It was recently shown in [10], improving on [35], that
any one-way function can be used for basing (computationally) UC-secure two-
party computation on stateless tokens. More practical protocols which satisfy
weaker notions of security were given in [36]. These works leave open the ques-
tion of obtaining a similar result unconditionally, and with statistical security.
(To get around impossibility results in the plain model, the number of queries to
a token should be polynomially bounded, but otherwise malicious parties may
be computationally unbounded.) In fact, the constructions from [35, 10, 36] may



lead to a natural conjecture that achieving statistical security in this setting is
impossible, since in these constructions all the “useful information” contained
in tokens can be learned by a computationally unbounded adversary using a
polynomial number of queries.

However, similar to the case of ILS discussed above, the combination of state-
less tokens and interaction turns out to be surprisingly powerful. As already
alluded to in [8], MIP protocols can naturally give rise to protocols in the hard-
ware token model. In our case, we implement the ILS (or IPCP) by having a
single sender (prover) create a stateless tamper-proof hardware token which im-
plements the PCP oracle and send it to the receiver (verifier). Applying this to
our results, this directly gives rise to the first unconditionally secure commitment
protocols and SZK proofs for NP using stateless tokens.

We show how this can be extended to general unconditionally secure (in fact,
UC-secure) two-party computation if parties are allowed to build tokens which
encapsulate other tokens: namely, the receiver of a token A is allowed to build
another token B which internally invokes A. The high level idea is the following.
By the completeness of oblivious transfer (OT) [2, 37], it suffices to realize OT
using stateless tokens. This is done as follows. The OT sender’s input is a pair of
strings (s0, s1) and the OT receiver’s input is a selection bit b. The OT receiver
commits b using an ILS. Applying our best construction, this involves sending
a token A to the OT sender and responding to a random challenge message
received from the OT sender. The OT sender now prepares and sends to the
receiver a token B with the following functionality. Token B accepts a selection
bit b along with a corresponding decommitment message. It checks that the
decommitment is valid (this involves invocations of the token A, which token
B encapsulates) and then returns the string sb if decommitment was successful.
The binding property of the ILS guarantees that the OT receiver can learn at
most one string sb. The hiding property of the ILS guarantees that the sender
cannot learn b.

Interestingly, we also show a matching negative result: if token encapsulation
is not allowed, then statistically secure OT is impossible. This holds even if
both parties are guaranteed to follow the protocol except for making additional
queries to tokens in order to learn information about the other party’s input. The
proof of this negative result employs a variant of the recent notion of accessible
entropy from [38] and has the following high level intuition: In the standard
model without tokens, one way to explain why statistical OT is not possible is
to consider the randomness rR of the receiver conditioned on the transcript τ
of the protocol. If this conditional distribution reveals information about the
receiver’s choice b, then an unbounded sender can cheat by sampling from this
distribution. But if not, then an unbounded receiver can cheat by sampling from
this distribution for both values of b, and using the result to obtain both strings
s0 and s1 of the sender.

In the token model, however, this situation is not symmetric, since the sender
might not know what queries the receiver has asked from the tokens it holds (or
vice versa). Informally, we define a protocol (A,B) to have accessible entropy



if the parties can nevertheless (information theoretically) sample their random-
ness conditioned on the other party’s view. If an OT protocol did have accessible
entropy, then essentially the above impossibility argument would apply. (In con-
trast, the original definition of accessible entropy of [38] required that the parties
could efficiently sample, since the focus in that work was on analyzing protocols
secure against computationally bounded parties.)

The technical core of our impossibility result is the following technical lemma:
For any protocol (A,B) in the stateless token model, there is another protocol
(A′, B′) that differs from (A,B) only in that the parties ask (a polynomial num-
ber) more queries to the tokens that they hold. Furthermore, almost all the
entropy of the new protocol (A′, B′) is accessible. This lemma allows us to carry
out the intuition above and rule out statistically secure OT in the stateless token
model.

Organization. In Section 2, we define the notions of zero-knowledge IPCPs and
ILS, and show how to use ILS to build unconditional zero-knowledge IPCPs for
NP. We also show that interaction is required for efficient ILS. In Section 3, we
show how to construct ILS. In Section 4, we show the implications of our work
on (unconditionally secure) cryptography with tamper-proof hardware tokens.

2 Statistically Zero-Knowledge IPCP for NP

Interactive PCPs (Definition 1 below) were first introduced in [24] and combine
the notion of oracle algorithms with interactive algorithms. Here we define IPCPs
in a general way, not only for the purpose of a proof system, but rather as a
model of interaction consisting of two interactive algorithms and a prover. (This
way we can define our notion of interactive locking schemes as a protocol in the
IPCP model implementing the commitment functionality.)

Definition 1. (Adapted from [24]) An interactive probabilistically checkable
proof (IPCP) Γ = (P, π, V ) consists of an interactive algorithm P (the prover),
an oracle π (the PCP oracle), and an interactive algorithm V (the verifier) such
that:

– P and π share common randomness rP , and V is given the randomness rV .
– P , π, and V will be given an input x of length |x| = n. P and π may also

receive a common private input w.5

– The PCP oracle π is a function of (rP , x, w, q) where q is a query of the
verifier V . Since (rP , x, w) is fixed at the beginning of the protocol, we might
simply use π(q) to denote the answer to the query q.

– P and V π engage in an interactive protocol during which V can query the
PCP oracle π and at the end V accepts or rejects.

By an efficient IPCP we mean one in which the prover P , the PCP oracle π,
and the verifier V run in polynomial time over the input length |x| = n.
5 For example when (P, π) are efficient and L ∈ NP, w could be a witness for x ∈ L.



By the round complexity of an IPCP we mean the number of rounds of
interaction between the verifier and the prover (and not the PCP oracle) where
each round consists of a message from the verifier followed by a message from the
prover. (See the full version of the paper for more discussion on this definition
and a comprehensive elaboration on the IPCP model.)

Now we define the notion of a proof system in the IPCP model which di-
rectly incorporates the statistical zero-knowledge feature. We use a quantitative
definition allowing us to speak about exponential zero-knowledge (rather than
just super-polynomial security).

Definition 2 (SZK-IPCP for languages). We say that Γ = (P, π, V ) is an
SZK-IPCP for the language L with SZK (u(n), ε(n)) and soundness 1− δ(n) if
the following holds:

– Completeness: If x ∈ L, then Pr[〈P, V π〉(x) = 1] = 1.
– Soundness: Γ has soundness 1 − δ if for all x 6∈ L and for any arbitrary

prover P̂ and oracles π̂ it holds that Pr[〈P̂ , V bπ〉(x) = 1] ≤ δ(n).
– Statistical zero-knowledge (SZK): We say that the IPCP Γ is (u, ε)-

SZK for L with a straight-line6 simulator if there is a simulator Sim as
follows. The (straight-line) simulator Sim interacts with a (potentially ma-
licious) verifier V̂ , while the simulator Sim receives all the queries of the
the verifier (including both the queries asked from the prover and from the
oracle) and responds to them. Since an unbounded verifier can ask arbitrary
number of queries from its oracle, here we put a bound u on the number of
oracle queries asked by V̂ and demand the following to hold: For any v ≤ u,
if V̂ asks at most v oracle queries, then Sim runs in time poly(n, v) and
produces a view for V̂ which is ε-close to the view of V̂ when interacting
with (P, π).

We simply call Γ an SZK-IPCP for L with security u, if Γ is (1 − 1/u)-
(adaptively)-sound and (u, 1/u)-SZK.

Note that when u(n) is super-polynomial, Definition 2 implies zero-knowledge
against polynomial-time verifiers.

We prove that 2Ω(n)-secure constant-round SZK-IPCPs exist for any lan-
guage L ∈ NP where both the prover and the PCP oracle in our construction
can be implemented efficiently given a witness w for x ∈ L.

Theorem 3 (Constant-round SZK-IPCP for NP). For any language L ∈
NP there exists a 2-round efficient SZK-IPCP Γ2R for L with security 2Ω(n).

The simulator of Γ2R in Theorem 3 is straight-line and therefore by a result
of [39], for a small enough constant c, a 2cn-fold concurrent composition of Γ2R

remains (2Ω(n), 2−Ω(n))-SZK if the inputs to the instances of Γ2R are fixed in the
beginning.
6 Since all of our simulators in this paper are straight-line, for sake of simplicity here

we only describe how to define SZK for IPCPs with straight-line simulators.



Ideas of the proof of Theorem 3. Our main step to prove Theorems 3 is to
construct an “interactive locking scheme” (ILS) (Definition 5), a primitive cor-
responding to commitment schemes in the IPCP model. In Theorem 6 we present
an ILS with optimal round complexity (i.e. one round). Then we feed our ILS
(as a commitment scheme) into the well-known construction of [12] to achieve
zero-knowledge for NP with non-negligible soundness. A classical way to am-
plify the soundness of proof systems (while keeping the round-complexity) in the
standard model of interaction is to use parallel composition. Firstly we define
parallel composition of IPCPs (see the full version) in a careful way and prove
an optimal bound on how the soundness amplifies in such a parallel composition.
The latter result is interesting on its own since the IPCP model lies in between
the single-prover and the multi-prover models and it is known [21] that the par-
allel repetition does not amplify the soundness in a simple exponential form
(as one would wish). Secondly, we show that although the parallel composition
might hurt the zero-knowledge in general, by crucially using a special feature
of our ILS called “equivocability” (see Definition 5) one can prove that SZK is
preserved under parallel composition. Roughly speaking, an ILS is equivocable,
if a malicious sender can efficiently decommit to any desired value by changing
the content of the oracle after the commitment phase. See the full version for
the full proof of Theorem.

We also show how to achieve a 2Ω(n)-secure SZK-IPCP for any L ∈ NP
where the security holds even against stateful oracles. A stateful oracle can
save a state and behave as maliciously as an interactive algorithm. Namely, the
answers returned by a (malicious) stateful oracle can depend on the previous
queries asked to the oracle as well as the other queries asked in the same “round”
of queries. We call such IPCPs (secure against stateful oracles) adaptively-sound.

Theorem 4 (Adaptively-secure SZK-IPCP for NP). There exists a (poly(n)-
round) efficient SZK-IPCP Γadap for any L ∈ NP with adaptive-security 2Ω(n).

Ideas of the proof of Theorem 4. To prove Theorem 4, we use ideas from [40]
about converting multi-prover proof systems into an equivalent two-prover one
(with non-negligible soundness) where the second prover is asked only one query.
When a prover is asked only one query, it can be considered as an oracle. In our
transformation to achieve adaptive security in the IPCP model, we use a similar
compiler to that of [40] over the IPCP Γ2R of Theorem 3 and crucially use the
fact that Γ2R is “public-coin” (i.e. the soundness holds even if the prover gets to
see which oracle queries are asked). A public-coin IPCP is one which is sound
even if the prover gets to see the oracle queries asked by the verifier. Finally we
use sequential composition to amplify the soundness. See the full version of the
paper for the full proof of Theorem.

3 Interactive Locking Schemes

An Interactive locking scheme is a commitment scheme implemented in the IPCP
model. A similar definition appeared in [23] without the interaction (i.e. only with



an oracle), but as we will see in Theorem 6 non-interactive locking schemes are
inherently inefficient and therefore not as applicable in cryptographic settings.

Definition 5 (Interactive locking scheme). Let Λ = (S, σ,R) be an efficient
IPCP (where we call S the sender, σ the locking oracle and R the receiver). Λ
is called an interactive locking scheme (ILS) for the message space Wn if it of
the following form:

The common input is 1n where n is the security parameter. (S, σ) receive
a private input w ∈ Wn which is called the committed message as well as the
private randomness rS. The receiver R gets the randomness rR. The receiver R
gets oracle access to the locking oracle σ and Rσ interacts with S in two phases:
(1) commitment phase and (2) decommitment phase. The decommitment phase
consists of only one message from the sender S to the receiver R which includes
the committed message w and the private randomness rS used by S. Following
this message the receiver R (perhaps after asking more queries from the oracle
σ) accepts or rejects. We demand the following properties to hold:

– Completeness: For any w ∈Wn if all parties are honest the receiver always
accepts.

– Binding: We define Λ to be (1−δ)-binding if for any sender Ŝ and any oracle
σ̂, with probability at least 1−δ over the interaction of the commitment phase
there is at most one possible w such that Ŝ can decommit to successfully.

– Hiding: Let R̂ be any malicious receiver who asks at most u oracle queries
from σ, and let τw be the random variable which consists of the transcript
of the interaction of R with (S, σ) till the end of the commitment phase
when the committed message is w ∈ W . Λ is (u, ε)-hiding if for every such
malicious receiver R̂ and every {w1, w2} ⊆W it holds that SD(τw1 , τw2) ≤ ε.

– Equivocability: Λ is equivocable if there is an efficient sampling algorithm
Sam that given (τ, w) where τ is the transcript (including the oracle queries)
of the commitment phase of 〈S, R̂σ〉 (for an arbitrary receiver R̂) and any
w ∈W , Sam(τ, w) outputs r according to the distribution (rS | τ, w). Namely
r is sampled according to the distribution of the private randomness rS of
(S, σ) conditioned on w being the committed message and τ being the tran-
script of the commitment phase.

We simply call the ILS Λ u-secure if it is (1− 1/u)-binding and (u, 1/u)-hiding.
If W = {0, 1}, we call Λ a bit-ILS.

The following theorem presents an ILS with optimal round complexity.

Theorem 6. (A round-optimal ILS) Let `(n) = poly(n), then

1. There exist an efficient ILS Λ1R = (S, σ,R) for the message space {0, 1}`
with security 2Ω(n) which has a commitment phase of only one round.

2. Any ILS with a noninteractive commitment phase needs an inefficient oracle
σ and thus Λ has optimal round-complexity (as an efficient ILS).



In the full version of the paper we give a general construction of ILS from any
interactive hashing scheme with some minimal properties. Unfortunately non-
trivial interactive hashing needs at least two rounds of interaction and thus this
approach is incapable of giving us a round-optimal ILS. Due to space limit we
refer the reader for this connection to the full version and here will only present
the optimal construction.

Before proving Theorem 6 we need the following lemma whose proof is im-
mediate.

Lemma 7. For n > m let A be the family of n×m Boolean matrices as follows.
To get a uniform member of A, choose the first n−m rows all at random, and take
the last m rows to be an independently chosen at random conditioned on having
full rank m. Then for any 0 6= x ∈ {0, 1}n, it holds that PrA←A[xA = 0] ≤ 2−m

(and equivalently for any x1 6= x2 ∈ {0, 1}n and y ∈ {0, 1}m, it holds that
PrA←A[x1A = x2A] ≤ 2−m).

Construction 8 (A 1-round ILS) Suppose b ∈ {0, 1} is the private message
given to sender and the oracle (S, σ), and suppose R is the receiver. Let m =
3n/4. Below we associate {0, 1}n with the integers [0, 2n) and all additions and
subtractions below are modulo 2n.

The commitment phase of Λ1R:

1. Sender S chooses a ← {0, 1}n at random. Let fb be the function: fb(x) = 1
iff a ≤ x < a+2m, and let f1−b be the zero function over {0, 1}n. The locking
oracle will be the combination of the two functions σ = (f0|f1) (indexed by
the first bit of the query to σ).

2. Receiver R samples A ← A from the family of matrices of Lemma 7 condi-
tioned on the last m rows of A being independent7 and sends A to S.

3. Sender S checks that the last m rows of A are independent, and if so he
sends h = aA to the receiver R.

The decommitment phase of Λ1R:

1. Sender S sends (b, a) to the receiver R.
2. Receiver R does the following checks and rejects if any of them does not hold.

(a) Check that aA = h.
(b) Check that f1−b(a) = 0, and fb(a) = 1.
(c) For each i ∈ [0,m], sample 10n random points from [a, a+ 2i) and check

that fb(x) = 1 for all of them, and also sample 10n random points from
(a− 2i, a− 1] and check that fb(x) = 0 for all of them

Proof (of Theorem 6).
Now we study the properties of the ILS Λ1R.
Completeness and Equivocability are immediate.

7 Note that the last rows of A are independent with probability 1− 2−m = 1− 2−n.



Binding. As a mental experiment we pretend that the randomness used during
the decommitment phase by R is chosen in the decommitment phase (rather
than in the beginning of the commitment phase).

For a fixed locking oracle σ, Let X0 (resp. X1) be the set of possible values of
a that sender S can send to the receiver R as the decommitment of b = 0 (resp.
b = 1) and get accepted in the decommitment phase with probability at least
2−2n. We prove that by the end of the commitment phase, with probability at
least 1− 2−n/8, it holds that |X0| = 0 or |X1| = 0 which means that the sender
has only one way to decommit the value b and get accepted with probability more
than 2−2n. But now if we choose the receiver’s randomness in the commitment
phase, since there are at most 2n+1 possible values for (b, a), it follows by a
simple average argument that with probability at least 1 − 22n−n−1 over the
commitment phase, the prover gets committed to only one possible value for
(b, a) which he can use to pass the decommitment phase successfully.

Claim. X0 ∩X1 = ∅.

Proof. If a ∈ X0 ∩X1. Then when a is used as the decommitment of 0, in Step
2b of the decommitment phase the receiver R checks that f0(a) = 1, f1(a) = 0.
On the other hand in the case of decommitting to 1, receiver R checks that
fb(a) = 0, f1−b(a) = 1, but they can’t both hold at the same time.

Claim. It holds that |X0| ≤ 2n−m and |X1| ≤ 2n−m.

Proof. We show that if {a, a′} ⊂ X0 then |a − a′| ≥ 2m (and this would show
that X0 ≤ 2n/2m). Assume on the contrary that a′ < a and a − a′ < 2m. Let
i ∈ [1,m] be such that 2i−1 ≤ a − a′ < 2i. Then by the pigeonhole principle
ether at least half of σ([a′, a]) are zero or at least half of the values σ([a′, a]) are
one. Without loss of generality let assume that at least half of σ([a′, a]) is zero.
In this case at least 1/4 of the values σ([[a′, a′+ 2i)]) are zero. But then by Step
2c of the decommitment phase (0, a′) will be accepted with probability at most
(3/4)10n < 2−2n, and therefore a′ 6∈ X0 which is a contradiction.

Claim. With probability at least 1 − 2Ω(n) over the choice of A, it holds that
|X0| = 0 or |X1| = 0.

Proof. Fix any pair a0 ∈ X0 and a1 ∈ X1, we know that a0 6= a1. Therefore,
PrA[a0A = a1A] = PrA[(a0 − a1)A = 0] ≤ 2−m. Claim 3 yields that there are at
most 2n−m2n−m such pairs, so by using a union bound, with probability at least
1−2−m22n−2m = 1−22n−3m over the choice of A, it holds that X0A∩X1A = ∅
which implies that if the sender sends any hash value h, the consistency check
of Step 2a of the decommitment phase either makes |X0| = 0 or |X1| = 0.

As we said before Claim 3 implies that with probability 1−poly(n)·22n−3m =
1−poly(n) ·2−n/4 ≥ 1−2−n/8 over the interaction in the commitment phase the
sender gets bound to a fixed b ∈ {0, 1} to which he can decommit successfully.



Hiding. Suppose receiver R can ask at most u ≤ 2n/8 queries from the locking
oracle σ. We claim that before sending the matrix A, all of receiver R’s queries to
σ are answered zero with probability at least 1−2−n/4. To see why, think of Z2n

as being divided into 2n−m = 2n/4 equal intervals such that a is the beginning of
one of them. Since receiver R asks up to 2n/8 queries, before sending the matrix
Z, he will ask a query from the interval beginning with a with probability at most
2n/8/2n/4 = 2−n/8. Therefore (up to 2−n/8 statistical distance in the experiment)
we can assume that the matrix A is chosen by receiver R independently of a.

After receiving h, the information that the receiver R knows about a is that
it satisfies the equation aA = h. If we choose and fix the first n −m bits of (a
potential) a, then the remaining bits are determined uniquely because the last
m rows of A are full rank. It means that for every y ∈ [0, 2n−m) there is a unique
solution for a in the interval [y2m, y2m + 2m), and they are all equally probable
to be the true answer from the receiver’s point of view.

Now again we claim that (although there are 2m nonzero points in fb) all the
queries that the receiver R asks from fb are answered 0 with probability at least
1−2−n/8. Let Z = {z | zA = h} be the set of possible values for a. For z ∈ Z, let
I(z) = [z, z+2m). We claim that no x ∈ {0, 1}n can be in I(z) for three different
z’s from Z. To see why, let z1 < z2 < z3 and that x ∈ I(z1) ∩ I(z2) ∩ I(z3).
But now the interval [y2m, y2m + 2m), containing z2 separates z1 and z3, and so
z3 − z1 > 2m. Therefore I(z1) ∩ I(z3) = ∅ which is a contradiction. So, if the
receiver R asks u queries from fb, he can ask queries from I(z)’s for at most 2u
different z’s (out of 2n−m many of them). As a mental experiment assume that a
is chosen from Z after the receiver R asked his queries, it holds that I(a) will be
an interval that the receiver R never asked any query from with probability at
least 1− u/2n−m ≥ 1− ·2−n/8. Therefore with probability at least 1− 2−n/9 all
of receiver R’s queries during the commitment phase will be answered zero. But
putting the oracle queries aside, the hash value h does not carry any information
about the bit-message b and therefore the scheme is (1− 2n/8)-hiding.

Now we turn to proving Part 2 of Theorem 6.
By a noninteractive locking scheme (NLS), we mean an ILS where the com-

mitment phase is noninteractive and sender S only participates in the decom-
mitment phase. Note that an efficient locking scheme by definition uses poly(n)-
sized circuits to implement the locking oracle σ, and therefore σ can have at
most poly(n) entropy. In this section we show that there exist no efficient NLS
with super-polynomial security.

Since we are going to prove that NLS’s cannot be efficient, we need to deal
with unbounded senders. Thus we can no longer assume that the decommitment
phase is only a message (b, rS) sent to the receiver, because the randomness rS
used by the sender can be exponentially long. Therefore to prove the strongest
possible negative result, we allow the decommitment phase of a NLS to be in-
teractive.

The following theorem clearly implies Part 2 of Theorem 6.

Theorem 9. Let Λ = (S, σ,R) be any NLS for message space {0, 1} in which the
function σ of the locking oracle has Shannon entropy at most H(σ) ≤ uq

1000 when



the committed bit b is chosen at random b← {0, 1}. Let u be an upper bound on
the number of oracle queries to σ asked by the receiver R in the decommitment
phase. Then either of the following holds:

– Violation of binding: There is a fixed locking oracle σ̂, and a sender strat-
egy Ŝ such that when σ̂ is used as the locking orale, for both b = 0 and b = 1,
Ŝ can decommit successfully with probability at least 4/5.

– Violation of hiding: There exists an unbounded receiver R̂ who can guess
the random bit b ← {0, 1} used by (S, σ) with probability at least 4/5 by
asking at most u queries to the locking oracle σ.

Ideas of the proof of Theorem 9. Our main tool in proving Theorem 9 is the
notion of “canonical entropy learner” (EL). Roughly speaking, EL is an efficient-
query (computationally unbounded) algorithm which learns a randomized func-
tion f (with an oracle access to f) under the uniform distribution assuming that
f has a bounded amount of entropy. EL proceeds by choosing to ask one of the
“unbiased” queries of f at any step and stop if such queries do not exist. An
unbiased query x is one whose answer f(x) is not highly predictable with the
current knowledge gathered about f by EL. Whenever EL chooses to ask a query
it learns non-negligible entropy of f , and thus the process will stop after poly(n)
steps. On the other hand, when EL stops, all the remaining queries are biased
and thus will have a predictable answer over the randomness of f . We prove that
either the receiver is able to find out the secret message of the sender (in an NLS)
by running the EL algorithm, or otherwise if by the end of the learning phase
still part of the entropy left in the locking oracle is hiding the secret message,
then a malicious prover can plant at least two different messages in the locking
oracle in such a way that it can decommit to successfully.

4 On Oblivious Transfer from Stateless Hardware Tokens

In this section we prove that in the stateless hardware token model, there is no
statistically secure protocol for oblivious transfer (OT), when the only limitation
on malicious parties is being bounded to make polynomially many queries to the
tokens.

The stateless token model. In the stateless (tamper-proof hardware) token model,
two (computationally unbounded) interactive algorithms A and B will interact
with the following extra feature to the standard model. Each party at any time
during the protocol can construct a circuit T and put it inside a “token” and
send the token T to the other party. The party receiving the token T will have
oracle access to T and is limited to ask poly(n) number of queries to the token.
The parties can exchange poly(n) number of tokens during the interaction. The
stateless token model clearly extends the IPCP model in which there is only
one token sent from the prover to the verifier in the beginning of the game.
Therefore proving any impossibility result in the stateless token model clearly



implies the same result for the the IPCP model. It is easy to see that without
loss of generality the parties can avoid sending “explicit messages” to each other
and can only use tokens (with messages planted inside the tokens) to simulate
all the classical communication with the tokens.

Oblivious transfer by semi-honest parties. If one of the parties is semi-honest
(i.e. runs the protocol honestly, and only remember’s its view for further off-line
investigation), then in fact unconditionally secure OT is possible in the stateless
token model. If the receiver is honest, then the protocol is simply a token T sent
from the sender which encodes T (0) = x0, T (1) = x1. The receiver will read T (i)
to learn xi. Moreover it is well known that secure OT in one direction implies
the existence of secure OT in the other direction, so if the sender is semi-honest
unconditionally secure OT is possible in the stateless token model.

We prove that unconditionally secure OT is impossible in the stateless token
model, if both parties are slightly more malicious than just being semi-honest.
Roughly speaking, we define the notion of “curious” parties who run the original
protocol (honestly), but will ask more queries from the tokens along the way.8

We will prove that for any protocol (A,B) aiming to implement OT, there are
curious extensions of the original parties (Acur, Bcur) who break the security of
the protocol. We prove the following theorem.

Theorem 10 (No unconditional OT from stateless tokens). Let (S,R) be
any protocol for the oblivious transfer in the stateless token model. Then there
are curious extensions (Scur, Rcur) to the original algorithms where (Scur, Rcur)
(and thus (S,R)) is not a secure protocol for oblivious transfer even when the
inputs are random. More formally either of the following holds:

– Violation of sender’s security: When the sender S chooses x0 and x1 at
random from {0, 1} and interacts with Rcur, then Rcur can find out both of
x0 and x1 with probability at least 51/100.

– Violation of receiver’s security: When the receiver R chooses i← {0, 1}
at random and interacts with Scur, then Scur can guess i correctly with prob-
ability at least 51/100.

For a high level description of the ideas behind Theorem 10 we refer the
reader to the discussion in the Introduction.

Perhaps surprisingly we show that if the parties are allowed to build tokens
around the tokens received from the other party, then unconditional (UC) secure
computation is possible by using stateless tokens.

UC secure OT by encapsulation. For a discussion on ideas behind our UC secure
OT by token encapsulation we refer the reader to the Introduction and for more
details to the full version of the paper.

8 The term “honest but curious” is sometimes used equivalent to “semi-honest”. Our
notion is different from both of them because a curious party deviates from the
protocol slightly by learning more but emulates the original protocol honestly.
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