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Abstract. Gentry proposed a fully homomorphic public key encryption
scheme that uses ideal lattices. He based the security of his scheme on the
hardness of two problems: an average-case decision problem over ideal
lattices, and the sparse (or “low-weight”) subset sum problem (SSSP).
We provide a key generation algorithm for Gentry’s scheme that gener-
ates ideal lattices according to a “nice” average-case distribution. Then,
we prove a worst-case / average-case connection that bases Gentry’s
scheme (in part) on the quantum hardness of the shortest independent
vector problem (SIVP) over ideal lattices in the worst-case. (We can-
not remove the need to assume that the SSSP is hard.) Our worst-case
/ average-case connection is the first where the average-case lattice is
an ideal lattice, which seems to be necessary to support the security of
Gentry’s scheme.

1 Introduction

Recently, Gentry [10] presented a somewhat homomorphic encryption scheme
that uses ideal lattices, and proved its security based on an average-case decision
problem. In this paper, we focus on this somewhat homomorphic scheme and its
security. Our main results are:

– Algorithms for his scheme – most importantly, a KeyGen algorithm for gen-
erating secret and public bases of an ideal lattice – that permit the scheme’s
semantic security to be based on a search problem over ideal lattices having
a nice average-case distribution.

– A quantum worst-case / average-case reduction, which ultimately bases the
security of Gentry’s somewhat homomorphic scheme on the worst-case quan-
tum hardness of the shortest independent vector problem (SIVP) over ideal
lattices.

Gentry also showed that his somewhat homomorphic scheme, after some
modifications, becomes “bootstrappable” and therefore can be used to construct
a fully homomorphic encryption (FHE) scheme [31, 10]. He proved that the FHE
scheme is semantically secure if the original somewhat homomorphic scheme is
semantically secure and the sparse (or “low-weight”) subset sum problem (SSSP)
[11, 25] is hard. Those results are generic enough to work with our instantiation of



KeyGen and the other algorithms. That is, we immediately obtain a FHE scheme
whose security is based on two problems: the SSSP and worst-case quantum
SIVP over ideal lattices.1 Since the SSSP is an average-case problem, it remains
an open problem to base FHE entirely on worst-case hardness. However, the more
“troubling” of Gentry’s two assumptions (in our opinion) is that the average-
case decision problem over ideal lattices is hard. At least we can replace this
assumption with one involving worst-case hardness.

1.1 Related Work

In 1996, Ajtai [1] found a surprising reduction of worst-case lattice problems to
average-case ones. Unlike the random self-reduction of Diffie-Hellman, where the
worst-case and average-case instances are over the same group G, Ajtai’s worst-
case problem is a completely general problem (over lattices) that is unconstrained
by any parameters in the average-case problem. The average-case lattices in
Ajtai’s reduction are of a certain type: those generated by random parity-check
matrices modulo an integer q.

Following Ajtai, improved worst-case / average-case connections were de-
scribed in [8, 22, 23, 28, 24, 26, 20]. Also, various primitives have been based on
worst-case hardness, including collision-resistant hash functions [1, 8, 22, 17, 24,
27], public-key encryption [3, 29, 30, 12, 26, 19], signatures [18, 12], and (hierar-
chical) identity-based encryption [12, 9, 7]. Ajtai [2] showed how to generate his
average-case lattices together with a short secret basis for the lattice that can
be used as a decryption key in an encryption scheme [12]; Alwen and Peikert [4]
tightened this result.

However, as far as we know, previous worst-case / average-case reductions
cannot be used to base Gentry’s somewhat homomorphic scheme on worst-case
hardness. The essential problem is that Gentry’s scheme [10] uses ideal lattices
and relies heavily on the structure of these lattices as algebraic ideals in a ring
to obtain homomorphism. However, in none of the previous reductions is the
average-case lattice an ideal lattice.

Some previous work describes worst-case / average-case reductions where
the worst-case lattice is an ideal lattice, and the average-case instances are de-
rived from ideal lattices, in a fashion somewhat similar to how Ajtai’s average-
case lattices are derived from a worst-case instance. For example, for the ring
R = Z[x]/(xn − 1) and fixed a1, . . . ,am ∈ Rm, Micciancio [22, 23] considered
the lattice formed by solutions v1, . . . ,vm ∈ Rm to

∑
i ai × vi = 0, and showed

that solving the bounded distance decoding problem (BDDP) or SIVP for such
“quasi-cyclic” lattices in the average-case allows one to solve the BDDP or SIVP
for “cyclic lattices” (ideal lattices in R) in the worst-case. While Micciancio’s
worst-case lattices are ideal lattices, the average-case lattices are not; they cor-
respond to modules, rather than ideals. Peikert and Rosen [28] demonstrated a

1 Technically, both in [10] and here, a “circular-security” assumption is also needed to
obtain an FHE scheme whose public key size is independent of the circuit depth of
the functions being homomorphically evaluated.



very tight worst-case / average-case reduction where the worst-case lattices are
ideal lattices, and where the average-case lattices are derived from ideal lattices
in a way similar to that used by Micciancio. Some other results in this line of
work include [27, 17, 20].

However, again, previous work does not provide a worst-case / average-case
“random self-reduction” where both average-case and worst-case lattices are
ideal lattices of the same dimension in the same ring, which seems to be nec-
essary to preserve the algebraic structure used by Gentry’s scheme, and thus
necessary to support the security of Gentry’s somewhat homomorphic scheme.
This suggests that we need an approach fundamentally different from Ajtai’s and
other previous work. We also need a KeyGen algorithm for Gentry’s scheme that
generates an ideal lattice, together with a secret basis of the lattice, according
to the appropriate average-case distribution.

1.2 Our Worst-Case / Average-Case Self-Reduction

We provide the first worst-case / average-case self-reduction where the average-
case lattice is an ideal lattice. We focus on the reduction for BDDP over ideal
lattices, but this reduction can be extended to other ideal lattice problems.
Combining with other results presented here and in prior work, this reduction
bases the security of Gentry’s somewhat homomorphic scheme on worst-case
hardness.

Our reduction makes heavy use of the algebraic properties of ideals. Interest-
ingly, and quite unlike other worst-case / average-case reductions, our reduction
uses an integer factoring oracle to factor ideals in the ring. This integer factoring
oracle can be instantiated efficiently with quantum computation [32], and hence
we get an efficient quantum reduction. The reduction is also meaningful in the
classical setting, since there are known sub-exponential factoring algorithms for
factoring (e.g., the number field sieve). If solving average-case problems over ideal
lattices is easy, our reduction implies that there are surprising sub-exponential
algorithms for solving worst-case problems over ideal lattices.

Since our worst-case and average-case instances involve ideal lattices of the
same dimension within the same ring R, one may prefer to think of our reduction
as a “random self-reduction”. It is an “imperfect” self-reduction in that the
approximation factor is larger in the worst-case problem than in the average-
case problem by a poly(n) factor (for the rings R that we use). However, as far
as we know, the BDDP is hard even for sub-exponential approximation factors
– i.e., for factors much larger than our reduction’s poly(n) lossiness.

Roughly speaking, the reduction works as follows. We are given the basis
BM of a worst-case ideal lattice M that corresponds to an ideal in the ring R,
together with a vector t ∈ Rn that is close to some vector u ∈ M ; the BDDP is
to output u. To generate an average-case instance, we first sample a “random”
vector v from the inverse ideal M−1 according to a particular distribution. We
multiply (in the ring R) each of the basis elements of BM by v to obtain a basis
BL of the lattice for the ideal L = M · (v), and set u′ ← v × u. L will be an
ideal in R that is not divisible by M , since v ∈ M−1 and thus “cancels” M .



However, due to v’s distribution, L’s geometry will be very closely related to M ;
in particular, solving BDDP for (L,u′) will help solve BDDP for (M,u). Toward
solving BDDP for (L,u′), we use our factoring oracle to find a “suitable” ideal
J that divides L (restarting if no suitable one exists), and output the instance
(J,u′) to our average-case BDDP solver. Note that L is a subset of J . As long
as L is not an overly sparse subset, and for suitable parameters, the closest
vector in J to u′ will also be in L. Hence, a BDDP solution to average-case
instance (J,u′) leads to a BDDP solution to the worst-case instance (M,u).
We show that J comes from our desired average-case distribution – i.e., that
it is uniformly random among regular prime ideals in R whose norms are in a
prescribed interval. Of course, the target vector u′’s distribution is not random
– i.e., is not independent of the worst-case instance – but we also show how to
randomize the target vector’s distribution. See Section 3 for details and proofs.

1.3 How to Generate an Average Ideal Lattice, and Other Results

In [10], Gentry mentions some ad hoc ways of generating an ideal lattice, together
with a secret basis for it. Here, we show how to generate ideal lattices (together
with a secret basis) according to the average-case distribution used in our worst-
case / average-case connection. Generating an ideal lattice according to this
distribution is easy, but generating it together with a “good” secret basis is
surprisingly difficult. Our solution to this problem is provided in Section 4.

Although the worst-case / average-case connection for BDDP over ideal lat-
tices (Section 3) and the key generation algorithm (Section 4) are our main
results, several other reductions are necessary to base our version of Gentry’s
somewhat homomorphic scheme on worst-case SIVP over ideal lattices. We sum-
marize these reductions in Section 5.

2 Preliminaries

2.1 Ideal Lattices

By an ideal lattice, we mean an ideal in the ring of integers R = OF , where f(x)
is a monic, irreducible polynomial of degree n, and F is the field Q[x]/(f(x)). A
good example to keep in mind is f(x) = xn + 1, where n is a power of 2. Then,
the ring of integers is simply Z[x]/(f(x)), integer polynomials modulo f(x). In
the full version, we address the general case Z[x]/(f(x)) ⊆ R ⊆ OF .

Each element of R is associated to a coefficient vector in Qn (in Zn in our
example). Since an ideal I ⊂ R is additively closed, the coefficient vectors asso-
ciated to elements of I form a lattice. The term “ideal lattice” emphasizes this
object’s dual nature as an algebraic ideal and a lattice.2

Ideals have additive structure as lattices, but they also have multiplicative
structure. The product of two ideals I and J is IJ = {∑v×w : v ∈ I,w ∈ J},
where ‘×’ is ring multiplication. Let F = Q[x]/(f(x)) be the field containing R.
2 Alternative representations of an ideal lattice are possible – e.g., see [28, 20].



The inverse of a ideal I is I−1 = {w ∈ F : ∀v ∈ I,v×w ∈ R}. For example, the
inverse of (2) is (1/2) = {r/2 : r ∈ R}. (The inverse of any principal ideal (v)
is given by (v−1), where the inverse v−1 is taken in F , but for a non-principal
ideal the inverse is not always so simple.) We say that ideal I divides ideal J if
JI−1 ⊂ R. I is a prime ideal if I dividing A · B implies I divides A or B. The
ideal I−1 or JI−1 is sometimes called a fractional ideal, particularly when it is
not a subset of R.

Ideals in R have many of the nice properties of integers, especially when R
is the ring of integers. For example, in this case, ideals in R factor uniquely as
a product of prime ideals. Also, all ideals in R are invertible – i.e., I · I−1 = R.
Furthermore, one can define the norm of a fractional ideal Nm(I) as the index
[R : I], and this map is multiplicative: Nm(IJ) = Nm(I) ·Nm(J).

Just as the prime number theorem states that the number of primes less than
x is approximately x/ ln x, we have Landau’s prime ideal theorem [15]:

Theorem 1 (Theorem 8.7.2 from [5]). Let F be an algebraic number field
of degree n. Let πF (x) denote the number of prime ideals in OF whose norm is
≤ x. Let λ(x) = (ln x)3/5(ln ln x)−1/5. There is a c > 0 (depending on F ) such
that

πF (x) = x/ ln x + O(xe−cλ(x))

With the Generalized Riemann Hypothesis, one can make a stronger statement.

Theorem 2 (Theorem 8.7.4 from [5]). Assume GRH. Let F be an algebraic
number field of degree n and discriminant ∆F . For x ≥ 2, we have

|πF (x)− x/ ln x| = O(
√

x(n ln x + ln |∆F |))
The constant implied by the “O” symbol is absolute.

Regarding Theorem 2, ∆F is upper-bounded by ∆(f), the discriminant of the
polynomial f . Since ∆(f) is the determinant of the Sylvester matrix formed by
f(x) and its derivative f ′(x), it is upper bounded by nn‖f‖2n, where ‖f‖ is the
Euclidean length of the coefficient vector of f(x) [33]. As in [10], we will always
use f(x) such that ‖f‖ = poly(n), which implies that ln |∆F | = poly(n).

We let γf denote the minimal value such that ‖u × v‖ ≤ γf · ‖u‖ · ‖v‖ for
all u,v ∈ Q[x]/(f(x)). For the values of irreducible f(x) recommended in [10],
we have γf = poly(n). A nice property of ideal lattices in such rings is that they
are never too “oblong.” In particular, trivially, λn(I)/λ1(I) ≤ γf , where λk(I)
is the k-th minimum of the ideal lattice I.

Again, a good choice for f(x) is xn + 1, where n is a power of 2. This poly-
nomial has the virtues of being irreducible, satisfying R = OF = Z[x]/(f(x)),
and having small values of ∆(f), ‖f‖, and γf .

2.2 Gaussian Distributions and Other Preliminaries

For any real s > 0, define the Gaussian function on Rn centered at c with
parameter s as ρs,c(x) = exp(−π‖x − c‖2/s2) for all x ∈ Rn. The associated



discrete Gaussian distribution over lattice L is

∀ x ∈ L,DL,s,c(x) =
ρs,c(x)
ρs,c(L)

,

where ρs,c(A) for set A denotes
∑

x∈A ρs,c(x). In other words, the probability
DL,s,c(x) is simply proportional to ρs,c(x), the denominator being a normaliza-
tion factor.

As in [24], for lattice L and real ε > 0, we define the smoothing parameter
ηε(L) to be the smallest s such that ρ1/s(L∗ \ {0}) ≤ ε. We say that s “exceeds
the smoothing parameter” of L if s ≥ ηε(L) for negligible ε. In particular, this
is true when s ≥ λn(L) · ω(

√
log n). Some useful lemmas are the following.

Lemma 1 (Lemma 4.4 of [24]). For any n-dimensional lattice L, vector c ∈
Rn, and reals 0 < ε < 1, s ≥ ηε(L), we have

Pr
x←DL,s,c

{‖x− c‖ > s
√

n} ≤ 1 + ε

1− ε
· 2−n

Lemma 2. Let I, J be ideal lattices in R. Then for any ε ∈ (0, 1/2), and s ≥
max{ηε(I), ηε(J)}, and any c ∈ Rn, ρs,c(I)/ρs,c(J) equals Nm(J)/Nm(I), up to
a multiplicative factor of between (1 + ε)2/(1− ε) and its inverse.

Proof. See full version.

We use ei to refer to the vector (0, . . . , 0, 1, 0, . . . , 0) with ‘1’ in the ith posi-
tion. We say that an equality a ≈ b holds “up to negligible error” if a = (1±ε) ·b
for some negligible ε.

3 Random Self-Reduction of Ideal Lattice Problems

In this section, we present our worst-case / average-case “random self-reduction”
for problems over ideal lattices, focusing on the bounded distance decoding prob-
lem (BDDP) [19, 30]. We describe our average-case distribution, and specify our
average-case and worst-case versions of BDDP. Then we show how to “random-
ize” worst-case ideal lattices into ideal lattices from our average-case distribu-
tion. In Section 4, we establish that the average-case distribution is suitable for
KeyGen – i.e., we can efficiently (classically) sample an ideal lattice and a good
basis for it according to this distribution.

3.1 Our Average-Case Distribution and Hard Problem

Our average-case distribution is simple: uniform over prime (non-fractional) ide-
als in R that have norms in some specified interval [a, b].

Our average-case problem is really a “hybrid” of worst-case and average-case.



Definition 1 (Hybrid Bounded Distance Decoding Problem (HBDDP)).
Fix ring R and algorithm IdealGen that samples ideals in R, outputting the Her-
mite normal form basis of the sampled ideal lattice. Fix a positive real sHBDDP.
The challenger sets BJ

R← IdealGen(R). The challenger sets x subject to the
constraint that ‖x‖ < sHBDDP and sets t ← x mod BJ . The problem is: given
(BJ , t) (and the fixed values), output x.

The ideal lattice is generated according to an average-case distribution induced
by an algorithm IdealGen. However, the vector t is “worst-case”, in that t is only
required to be within a certain distance of the lattice; it need not be chosen
according to any known (or even samplable) distribution.

The worst-case BDDP (WBDDP) is identical, except the ideal lattice is not
necessarily chosen from an efficiently samplable distribution. For both of the
BDDPs, we assume that the s parameter is chosen so that the solution is unique.

We base the security of our version of Gentry’s scheme on HBDDP in the
full version (and sketch this result in Section 5). As part of this result, we reduce
HBDDP to a “purely” average-case BDDP where t is sampled according to a
Gaussian distribution. In the full version, we also provide more reductions that
(quantumly) reduce worst-case SIVP to WBDDP. We choose to focus on our
techniques for randomizing the lattice since they are more interesting.

3.2 Statement of the Reduction

Our reduction is stated in the following theorem. It uses parameters that must
satisfy certain conditions that we will specify momentarily.

Theorem 3. Let R be the ring of integers for field F = Q(x)/(f(x)). Let M ,
N , sWBDDP, t, a, and b satisfy the conditions. Suppose that there is an algorithm
A that solves sHBDDP-HBDDP with overwhelming probability (over the random
coins chosen by A) for a ε fraction of prime ideals J of R having norm in [a, b].
Then, there is an algorithm B, which given access to a factoring oracle, solves
with overwhelming probability the sWBDDP-WBDDP for any (worst-case) ideal
M of R with norm in [N, 2N ] when 2t · sWBDDP ≤ sHBDDP. Regarding running
times, time(B) = time(A) · poly(n)/ε.

The conditions are as follows (s refers to sWBDDP):

– log N and log b are only polynomial in the lattice dimension n
– s = ω(

√
log n),

– s = γf · (b/N)1/n · ω(
√

log n),
– t ≥ γf · n1.5 · s,
– |Ia,b|/b is non-negligible, where Ia,b is the set of prime ideals with norm in

[a, b],
– a/b is non-negligible,
– a2 > 2N · etn0 where e is Euler’s constant and t0 = t + s · √n.

Remark 1. Asymptotically, the requirement that |Ia,b|/b be non-negligible will
be satisfied if (b− a)/b is non-negligible. See Theorems 1 and 2.



To make the conditions more comprehensible, let us consider a concrete choice
of parameters. Set N = b = 2a. Then, for any g(n) = ω(

√
log n), we can set

s = γf · g(n) and t = γf
2 · n1.5 · g(n). The condition a2 = N2/4 > 2N · etn0 is

met when N/8 > etn0 ≈ etn = e · γf
2n · n1.5n · g(n)n. This is a very mild lower

bound for N , considering that N is related to the norm of M . In particular, the
condition a2 > 2N · etn0 can be met even when λn(M) is small – e.g., polynomial
in n.

A “deficiency” of the reduction is that, according to the conditions, the norm
of the output average-case ideal is lower-bounded in terms of the norm of the
worst-case ideal. It would be preferable to remove this constraint. In a reduction
described in the full version, we show that ideals with “small” norms are the
“hard case” when one is given access to a factoring oracle, and therefore our
reductions ultimately apply even to average-case ideals with fairly small norms.

3.3 The RandomizeIdeal Algorithm

Toward proving Theorem 3, we present an algorithm RandomizeIdeal that, assum-
ing the conditions are met, “randomizes” a worst-case lattice into our average-
case distribution. In Section 3.4, we show that one can solve WBDDP by using
RandomizeIdeal in combination with a HBDDP-solver.

RandomizeIdeal(R,M,N, s, t, a, b):

1. Outputs ⊥ if the parameters do not satisfy the conditions.
2. Generates a vector v per the distribution DM−1,s,t·e1 ; sets L ← M · (v).
3. Uses a factoring oracle to compute lattice bases of the prime ideal divisors
{pi} of L.

4. Sets J to be an ideal in {pi} with norm in [a, b]; if none exists, it aborts.
5. With probability Nm(J)/b, outputs a basis BJ of J , along with the vector

v; otherwise, it aborts.

Regarding Step 2, one can sample from DM−1,s,t·e1 by using the GPV algo-
rithm [12] with the independent set {ei} in M−1.

Regarding Step 3, let R′ = Z[x]/(f(x)) and consider the following theorem.

Theorem 4 (Kummer-Dedekind, as given in [33]). Consider the factor-
ization f(x) =

∏
i gi(x)ei mod p for prime integer p. The prime ideals pi ∈

Z[x]/(f(x)) of R′ whose norms are powers of p are precisely

pi = (p, gi(x))

There are polynomial time algorithms for factoring polynomials in Zp[x] – e.g.,
by Kaltofen and Shoup [14]. Therefore, in R′, if we have an integer factoring
algorithm to factor Nm(L), we can efficiently discover all of the prime ideals that
divide L. See [33] for details on how to extend this approach to rings R ⊃ R′.
Note that since R = OF , the factorization in Step 3 is unique.

Regarding Step 4, there will be at most one ideal in {pi} with norm in [a, b].
If there were two such ideals pi, pj , the norm of their product would be at least



a2 > 2N · etn0 , where we will show the latter term exceeds the norm of L, a
contradiction.

Before proving the reduction, we must establish that RandomizeIdeal outputs
J according to our desired average-case distribution. We prove this in Lemma
6. Lemmas 3, 4 and 5 establish some preliminary facts.

Lemma 3. Suppose the conditions are met. The probability that the ideal L has
a divisor in Ia,b is non-negligible.

Proof. See full version.

Lemma 4. Suppose v = e1+u for ‖u‖ ≤ 1/(2γf ). Then, e−2n·γf ·‖u‖ ≤ Nm((v)) ≤
en·γf ·‖u‖. In particular, when v ∈ t · e1 + B(s

√
n), Nm((v)) ≤ e · tn0 .

Proof. (Lemma 4) See full version.

Lemma 5. Suppose the conditions are met. RandomizeIdeal(R, M,N, s, t, a, b)
aborts with non-overwhelming probability.

Proof. (Lemma 5) For Step 5, the probability of aborting is non-overwhelming,
since a/b is non-negligible and Nm(J) ≥ a. Regarding Step 4, we use Lemma
3, which establishes that, for our choice of parameters, there is a non-negligible
probability that M · (v) has a prime ideal divisor with norm in [a, b] when v is
sampled according to the above distribution. ut
Lemma 6. Suppose the conditions are met. Then, RandomizeIdeal samples J as
a statistically uniform prime ideal (independent of M) subject to the constraint
that Nm(J) ∈ [a, b].

Proof. (Lemma 6) Consider the probability that a particular prime ideal J0 with
norm in [a, b] is chosen as the ideal J in Step 4 in a single trial if there is no
abort. (By Lemma 5, the probability of abort is non-overwhelming.) Assuming
v ∈ t · e1 + B(s · √n) (which is indeed the case with overwhelming probability
by Lemma 1), we claim that J0 is chosen iff v ∈ J0M

−1.
For the ‘if’ direction of our claim, if v ∈ J0M

−1, then J0 divides (is a super-
lattice of) L ← M · (v). Since Nm((v)) ≤ etn0 when v ∈ t · e1 + B(s · √n) by
Lemma 4, we have that Nm(L) = Nm(M) ·Nm((v)) ≤ 2N ·etn0 < a2 ≤ Nm(J0)2.
Consequently, besides J0, L cannot have any other prime ideal divisors with norm
in [a, b], and J0 is chosen. For the ‘only if’ direction, that J0 is chosen implies
that J0 divides (is a super-lattice of) L = M · (v). But then J0M

−1 is a super-
lattice of M−1M ·(v) = (v). Therefore, (v) is contained in J0M

−1; in particular,
v ∈ J0M

−1.
Given our claim, for fixed M , the probability that J0 is chosen in Step 4 is:

Pr[J0] ≈
∑

v∈J0M−1 Pr[v]∑
v∈M−1 Pr[v]

=
ρs,t·e1(J0M

−1)
ρs,t·e1(M−1)

(The approximate equality holds up to negligible error, since it relies on v ∈
t · e1 + B(s · √n).)



We claim that s exceeds the smoothing parameters of J0M
−1 and M−1.

Assuming this claim, Lemma 2 implies that

ρs,t·e1(J0M
−1)

ρs,t·e1(M−1)
≈ Nm(M−1)/Nm(J0M

−1) = 1/Nm(J0)

up to negligible error. Step 5 uses rejection to adjust this probability from
1/Nm(J0) to 1/b, making the distribution statistically uniform (and statistically
independent of M) over all prime ideals with norms in [a, b].

It remains to prove our claim that s exceeds the smoothing parameters of
J0M

−1 and M−1. This is clearly true for M−1, which contains Zn as a sub-
lattice. Regarding J0M

−1, we have

s = γf · (b/N)1/n · ω(
√

log n)

≥ γf ·Nm(J0)1/n/Nm(M)1/n · ω(
√

log n)

≥ γf ·Nm(J0)1/n ·Nm(M−1)1/n · ω(
√

log n)

≥ γf ·Nm(J0M
−1)1/n · ω(

√
log n)

≥ γf · λ1(J0M
−1) · ω(

√
log n)

≥ λn(J0M
−1) · ω(

√
log n)

and the claim follows. ut

3.4 Proof of The Reduction

Finally, we prove Theorem 3, showing how to use the procedure RandomizeIdeal
to reduce WBDDP to HBDDP.

Intuitively, RandomizeIdeal samples a vector v that is “nearly parallel” to e1

(since t À s), so that multiplying the basis vectors in BM by v is similar (from a
geometric perspective) to multiplying by t. Thus, L is geometrically similar to a
simple scaling of M , and it is easy to see how a solution to a lattice problem over
L (e.g., to BDDP or SIVP) yields a solution to a lattice problem over M . As long
as L is not an overly sparse subset of J – e.g., suppose that (Nm(L)/Nm(J))1/n

is poly(n) – then λ1(J) will be only poly(n) less than λ1(L), and the BDDP
solution to (L,u′) will be the same as to (J,u′) as long as u′ is sufficiently close
to L.

Proof. (Theorem 3) B wants to solve the WBDDP instance (M,u). It does the
following:

1. Runs (BJ ,v) R← RandomizeIdeal(R,M,N, s, t, a, b).
2. Sets u′ ← (u× v) mod BJ .
3. RunsA on the instance (J,u′), receiving back a vector y such that u′−y ∈ J .

(If A does not solve this instance, restart.)
4. Outputs x ← y/v.



First, we verify that (J,u′) is a valid HBDDP instance that should be solvable
by A. By Lemma 6, RandomizeIdeal outputs the basis of an ideal J that is
statistically uniform among invertible prime ideals with norm in [a, b].

Now let us check that u′ is also valid. By assumption, there exist m ∈ M and
z with ‖z‖ ≤ sWBDDP such that u = m+z. So, u′ = m′+z′, where m′ ∈ M · (v)
and z′ = z×v. Assuming v ∈ t ·e1 +B(s ·√n), which occurs with overwhelming
probability, we have

‖z′‖ = ‖z× v‖ ≤ t · ‖z‖+ γf · s ·
√

n · ‖z‖ ≤ 2t · sWBDDP ≤ sHBDDP

Since M · (v) is a sub-lattice of J , we have that u′ = j + z′ for some j ∈ J .
By the analysis above, A should solve the instance (J,u′) with probability at

least ε. If A solves this instance – i.e., B receives from A the unique vector y with
‖y‖ < sHBDDP such that u′−y ∈ J . It must be that y = z′. Thus x = z′/v = z,
and B solves its WBDDP instance.

The probability that RandomizeIdeal does not abort and A succeeds is at
least ε/poly(n). These probabilities are independent over trials, and the claimed
running time of B follows. ut

4 KeyGen According to the Average-Case Distribution

4.1 Our Approach at a High Level

For KeyGen, we want an algorithm IdealGen that generates a random ideal J
together with a short vector in w ∈ J−1 to be used as the secret key. Recall
how decryption works in Gentry’s somewhat homomorphic scheme, and suppose
that R = Z[x]/(f(x)) in this subsection for simplicity. A ciphertext is an integer
vector of the form c = j+e, where j ∈ J and e is a short noise vector containing
the message. Decryption involves computing the fractional part [w × c], which
equals [w × e] since w × j is in R and thus an integer vector. If w and e are
short enough – in particular, if we have the guarantee that all of the coefficients
of w×e have magnitude less than 1/2 – then [w×e] equals w×e exactly. From
w × e, the decrypter can recover e and the message.

How short should w be? Since λn(J−1) is at least Nm(J)−1/n, we cannot
expect w to be much shorter than this. (Recall that we choose R such that
λn(I)/λ1(I) is polynomial in n.) So, we will consider w to be a “good” secret key
with respect to ideal J if ‖w‖ ≤ g(n)·Nm(J)−1/n for some small polynomial g(n).
Now, how do we generate a random ideal J together with a “good” w ∈ J−1?

Our first step is to generate a “small” random ideal K – “small” in the sense
that its norm is in [ncn, 2ncn] for some small constant c, which guarantees that
λn(K) = poly(n). Since the norm of K is so small, e1 ∈ K−1 is trivially a
good secret key for K according to our definition. K is not useful as the ideal in
Gentry’s scheme, since even very small errors e make ciphertexts indecipherable.

But suppose, as a thought experiment, that we simply set J = K · (v) where
v = T · e1 for some large integer T . That is, J is simply a scaling of K. Then,



w ← e1/T is a vector in J−1 that satisfies our definition of a good secret key.
And J is “large” enough to handle larger error vectors.

However, the simple scaling approach is obviously unsatisfactory for a few
reasons. First, it does not generate J according to our desired average-case dis-
tribution. Also, it may not even be secure: all of the coefficients of J ’s vectors are
divisible by T , and thus a ciphertext c leaks the value of e mod T . Obviously,
we want to avoid these deficiencies.

Instead, as our second step, we sample v ← DK−1,S,T ·e1 where T/S =
poly(n). Then, as before, we set J = K · (v), and w ← e1/v. That is, we
do the same thing as in the simple scaling approach, except that we sample v
from K−1 rather than from R, and we choose it to be very close to T · e1 rather
than being exactly equal. It turns out that, if v is very close to T ·e1, then 1/v is
very close to e1/T . In particular, w will be a good secret key for J . Fortunately,
this approach avoids the deficiencies of simple scaling. We can prove that, by
including a couple of rejection steps – to output J only if it is prime, to fine-tune
the output distribution, etc. – the J sampled using this approach has the correct
average-case distribution.

Intuitively, why does this approach induce a random distribution on J? At a
very high level, we can ask: is J random geometrically (e.g., when one considers
the “shape” of the parallelepiped formed by J ’s shortest independent set), and
is J random algebraically (e.g., when one considers J ’s norm)? Geometrically, J
inherits K’s shape, since (up to some perturbation in the sampling of v) it is a
simple scaling of K. We choose K from a large enough space so that its shape,
and hence J ’s shape, is quite “random”. Algebraically, the fact that v is sampled
from K−1 “randomizes” J algebraically – in particular, J is not divisible by K.
But these are only intuitions. Before providing a more precise explanation, we
need to describe our IdealGen algorithm in more detail.

4.2 IdealGen: The Details

IdealGen uses parameters s = ω(
√

log n), t such that t ≥ 42 · γf · s · n1.5 and
t > 8 · γf · s · n1.5 · ‖f‖2, and α ≥ 1; let S = s · α and T = t · α. It invokes an
algorithm TempIdeal(R, i, j), described in Section 4.3, that outputs a uniformly
random ideal K with norm in [i, j] (but not a nontrivial “good” key for K).
IdealGen ultimately outputs a uniformly random prime ideal J with norm in
[2, 3] · t2nTn.

IdealGen:

1. Runs BK
R← TempIdeal(R, t2n, 4t2n).

2. Samples v R← DK−1,S,T ·e1 and sets w ← 1/v; aborts if v /∈ T ·e1 +B(2S
√

n).
3. Sets J ← K · (v); aborts if J is not prime or Nm(J) /∈ [2, 3] · t2nTn.
4. Continues to Step 5 with probability Nm(K)/4t2n; otherwise, aborts.

5. Continues to Step 6 with probability β · ρS/T2,(1/T )·e1 (w)

ρS,T ·e1 (v) , where β will be
defined later; otherwise, aborts.



6. With probability 2t2nTn/Nm(J), outputs w and the Hermite normal form
of J ; otherwise, aborts.

Remark 2. IdealGen is precisely what we outlined above, aside from the prob-
ability of aborting in Steps 2-6. We will show that the probability of aborting
is non-overwhelming, and that these steps fine-tune the distribution so that J
is a uniformly random prime ideal with norm in the prescribed interval. The
algorithm can be re-run until it completes successfully.

Remark 3. In Step 2, one can sample from the distribution DK−1,S,T ·e1 by using
the GPV algorithm [12] with the independent set {ei} in K−1.

Remark 4. By Lemma 1, the vector v is in T · e1 + B(S
√

n) with overwhelming
probability. Note that we only abort in Step 2 if v /∈ T ·e1 +B(2S

√
n). We use a

ball of radius 2S
√

n instead of S
√

n in Step 2 for technical reasons – specifically,
Corollary 2 below and its use in the proof of Theorem 7.

Remark 5. Regarding Step 5, we must ensure that the “probability” is a number
in [0, 1]. We show that ρS/T 2,(1/T )·e1(w)/ρS,T ·e1(v) ∈ [e−6π

√
1/n, e6π

√
1/n]. (See

Lemma 10.) Therefore, we can take β ← e−6π
√

1/n.

To begin analyzing our IdealGen algorithm, we state some useful lemmas
about the vector v sampled in Step 2. Omitted proofs can be found in the full
version. The theme of these lemmas is that since v is very close to T · e1, it
behaves in many respects like T · e1.

Lemma 7. If v ∈ T · e1 + B(2S
√

n), then Nm((v)) ∈ [Tn/1.1, 1.1 · Tn].

Lemma 8. If v ∈ T ·e1 +B(2S
√

n), then it is the only vector in (v) inside that
ball.

Lemma 9. If ‖u‖ < 1/γf , then

e1/(e1 − u) = e1 + u + x for ‖x‖ ≤ γf · ‖u‖2
1− γf · ‖u‖

Corollary 1. If v ∈ T · e1 + B(2S
√

n), then w ∈ e1/T + B(4S
√

n/T 2).

Corollary 2. If w ∈ e1/T + B(S
√

n/T 2), then v ∈ T · e1 + B(2S
√

n).

Lemma 10. If v ∈ T · e1 + B(2S
√

n), then

ρS,T ·e1(v)/ρS/T 2,(1/T )·e1(w) ∈ [e−6π
√

1/n, e6π
√

1/n]

Our main results about IdealGen are captured in Theorems 5, 6, and 7 –
namely, that it outputs a good secret key for J , it does not abort very often
(and therefore can be efficiently re-run until it outputs a result), and it outputs
J according to the desired average-case distribution.



Theorem 5. The vector w output by IdealGen is a “good” key for J . Specifically,
‖w‖ < 6t2 ·Nm(J)−1/n.

Proof. (Theorem 5) By Corollary 1, w ∈ e1/T +B(4S
√

n/T 2). So, clearly, ‖w‖ <
2/T . On the other hand, Nm(J)−1/n ≥ 1/(31/nt2T ). The result follows. ut
Theorem 6. The probability of aborting in Steps 2-6 is non-overwhelming.

Proof. (Theorem 6) For Steps 4 and 6, the claim is clearly true. For Step 2, it
follows from Lemma 1.

For Step 5, we invoke Lemma 10, which implies we can set β ← e−6π
√

1/n, and
the algorithm will continue to Step 6 with at least (non-negligible) probability
e−12π

√
1/n.

For Step 3, an abort occurs if J is not prime or Nm(J) /∈ [2, 3] · t2nTn.
Asymptotically, Theorems 1 and 2 imply that, for an interval [cx, x] with con-
stant c < 1, prime ideals are a O(1/ log x) fraction of ideals. Given that Nm(J) =
Nm(K) · Nm((v)) and Nm((v)) ∈ [Tn/1.1, 1.1 · Tn] (by Lemma 7), Nm(J) falls
outside the interval only if Nm(K) falls outside of [2 · 1.1, 3/1.1] · t2n. By the
distribution of ideals (see Theorems 1 and 2) and the claimed distribution of
TempIdeal, this occurs only with only constant probability, in which case the
probability of aborting in Step 2 is a constant. ut

Before getting to the last theorem, we state one more lemma.

Lemma 11. Let J be an ideal such that Nm(J) ∈ [2, 3] · t2nTn. Then S/T 2

exceeds the smoothing parameter of J−1.

Proof. (Lemma 11) We have

S

T 2
=

s

tT
≥ s · γf

21/nt2T
≥ s · γf

Nm(J)1/n
≥ s · γf · λ1(J−1) ≥ s · λn(J−1) .

Since s = ω(
√

log n), the result follows. ut
Theorem 7. For any α ≥ 1, IdealGen with parameter α efficiently outputs a
prime ideal J that is statistically uniform subject to the constraint that Nm(J) ∈
[2, 3] · t3nαn.

Proof. (Theorem 7) Let K be the sets of ideals with norms in [1, 4] · t2n, and let
J be the sets of prime ideals with norms in [2, 3] · t2nTn. For convenience, we
define some sets of ideals associated to J ∈ J . Let

SJ = {K ∈ K : ∃v s.t. J = K · (v) and v ∈ T · e1 + B(2S
√

n)}
VJ = {w : J · (w) ∈ K and 1/w ∈ T · e1 + B(2S

√
n)}

WJ = {w : J · (w) ∈ K and w ∈ (1/T ) · e1 + B(S
√

n/T 2)}

Define S ′J identically to SJ , except they include only those K for which there is
exactly one such v. Lemma 8 implies that SJ = S ′J .



Consider the probability Pr[J0] that a particular ideal J0 is chosen as J in
Step 3. We have

Pr[J0] =
∑

K∈SJ0

Pr[J0 ∧K] = c1 ·
∑

K∈SJ0

Pr[J0|K] = c1 ·
∑

K∈S′J0

Pr[J0|K],

for some universal constant c1, where the second inequality follows from the fact
that K is chosen uniformly by TempIdeal.

For a particular candidate pair (K0, J0) with K0 ∈ S′J0
, let v0 be the unique

vector in J0K
−1
0 ∩ (T · e1 + B(2S

√
n)). We claim that, at Step 3,

Pr[J0|K0] = ρS,T ·e1(v0)/ρS,T ·e1(K
−1
0 )

This follows because the latter quantity is Pr[v0|K0], and from the fact that J0

and v0 determine each other once K0 is fixed.
Now, consider the denominator ρS,T ·e1(K

−1
0 ); we claim that, for fixed (S, T ),

this sum is proportional to Nm(K0), up to negligible error. This follows from
Lemma 2, and the fact that S exceeds the smoothing parameter of K−1

0 (since
Zn is a sub-lattice of K−1

0 ). So, after Step 3, we have

Pr[J0|K0] = c2 · ρS,T ·e1(v0)/Nm(K0)

up to negligible error for some universal constant c2. After Steps 4 and 5, we
have

Pr[J0|K0] = c3 · ρS/T 2,(1/T )·e1(w0)

up to negligible error for some universal constant c3, where w0 = 1/v0 and thus

Pr[J0] = c4 ·
∑

K0∈S′J0

ρS/T 2,(1/T )·e1(w0)

We claim that
∑

K0∈S′J0

ρ S
T2 ,

e1
T

(w0) =
∑

w0∈VJ0

ρ S
T2 ,

e1
T

(w0) = ρ S
T2 ,

e1
T

(J−1
0 ) = c5 ·Nm(J0) (1)

up to negligible error for some universal constant c5. This claim lets us complete
the proof. The abort in Step 6 adjusts this probability so that it becomes c5 ·
2t2nTn, independent of J0, and thus makes Pr[J0] statistically uniform across
all J0 ∈ J .

In Equation 1, the second sum is just a syntactic rewriting of the first sum.
To prove the second equality in Equation 1, first note that WJ0 ⊂ VJ0 ⊂ J−1

0 .
The first inclusion follows from the fact that, by Lemma 2, for every w0 ∈
(1/T ) · e1 + B(S

√
n/T 2), it is the case that 1/w0 ∈ T · e1 + B(2S

√
n). The

second inclusion follow from the fact that each w0 satisfies (w0) = J−1K for
some K ∈ K; in particular, w0 ∈ J−1

0 . Now, we claim that
∑

w0∈WJ0

ρ S
T2 ,

e1
T

(w0) = ρ S
T2 ,

e1
T

(J−1
0 )



up to negligible error, which would establish the second equality (up to negligi-
ble error). This equality holds because WJ0 contains all of the w0’s in J−1

0 that
contribute substantially to the sum. Specifically, since S/T 2 exceeds the smooth-
ing parameter of J−1

0 (by Lemma 11), the sum ρ S
T2 ,

e1
T

(J−1
0 ) is only negligibly

affected when restricted to the set J−1
0 ∩ ((1/T ) · e1 +B(S

√
n/T 2)) (Lemma 1).

However, this set is contained in WJ , since if we set K0 ← J0 · (w0), then K0

is indeed in K, since Nm(K0) = Nm(J0) · Nm((w0)), which is in the interval
[2/1.1, 3 · 1.1] · t2n ⊂ [1, 4] · t2n.

The third equality in Equation 1 follows from Lemma 11 and Lemma 2. ut
One aspect of the proof may seem a bit mysterious. Why did we use Step 5 to

convert Pr[J0] from a sum of ρ(v)’s to a sum of ρ(1/v)’s? Note that v ∈ J0K
−1

for some K, and w = 1/v ∈ J−1
0 K. Summing over ρ(w)’s is more natural, since

all of the points are in a single ideal – namely, J−1
0 . In contrast, summing over

vectors in J0K
−1 for different K’s is not a sum we know how to evaluate.

4.3 The TempIdeal Algorithm

Here, we construct an efficient algorithm TempIdeal(R, i, j) that outputs a uni-
formly random ideal K ⊂ R with norm in [i, j]. TempIdeal only needs to output
some basis of K, not necessarily a “good” basis. Let us begin at a high level by
considering some possible approaches.

Suppose we sample random v from R, and set K ← (v), re-sampling if
Nm(K) /∈ [i, j]. Then, K is a principal ideal, and unfortunately the probability
that a “random” ideal from R is principal is typically negligible in n. (More
accurately, the field F = Q(x)/(f(x)) has an associated class group, where each
member of the group consists of an equivalence class of ideals. The set of principal
ideals is only one class, whereas the class group size is typically exponential in
n.) Clearly, this approach does not sample a “random” ideal.

A more promising approach is to use Kummer-Dedekind (Theorem 4), which
can actually be used to sample a uniformly random prime ideal, as follows.
Sample a uniform prime power pe ∈ [i, j], and use Kaltofen and Shoup [14]
to (efficiently) compute the factorization f(x) =

∏
i gi(x)ei mod p. Kummer-

Dedekind tells us that all prime ideals of Z[x]/(f(x)) having norm pe are of
the form (p, gi(x)), where gi(x) is an irreducible degree-e factor of f(x) modulo
p. There can be at most n ideals of norm pe. If there are r ≤ n such factors
gi(x), restart with probability 1 − r/n. Otherwise, sample one of these gi(x)’s
uniformly and output K ← (p, gi(x)). (It it is straightforward to extend this
method recover all prime ideals with norm pe in rings Z[x]/(f(x)) ⊂ R ⊆ OF

[33].) This works, but unfortunately we require TempIdeal to sample K from all
ideals with norm in [i, j], not just from prime ideals.

Consider the following modification to the above approach: sample a uniform
(possibly composite) integer N ∈ [i, j], and compute the factorization f(x) =∏

i gi(x)ei mod N , etc. But computing this factorization is hard in general when
N is composite. In fact, we do not see a way to generate a random ideal K
without knowing the factorization of its norm.



These considerations lead us to construct an algorithm for generating a ran-
dom factored ideal whose norm is in the prescribed interval, even though, in
principle, we do not need the factorization. For this task, a good place to start
is to look at existing algorithms for generating a random factored integer – es-
pecially Kalai’s elegantly simple algorithm [13].

Kalai’s Algorithm for Generating a Random Factored Number:

Input: Integer b > 0.

Output: A uniformly random number 1 ≤ N ≤ b, with its factorization.

1. Generate a sequence b ≥ s1 > s2 > · · · > s` = 1 by uniformly choosing
si+1 ∈ {1, . . . , si − 1}. (Use b as s0.) Put all prime si’s in a list L.

2. For each si ∈ L, put si into L at least k additional times with probability
1/sk

i .
3. Let N be the product of the numbers in L (with repetition).
4. If N > b, restart.
5. Output N and the prime si’s with probability N/b; otherwise, restart.

Remark 6. Kalai presents his algorithm somewhat differently.

As Kalai highlights, the reason this algorithm works is because a prime p ≤ b
is in the sequence independently with probability exactly 1/p, since it occurs iff
it is chosen before any number in {1, . . . , p − 1}. That is, we could replace the
first step of Kalai’s algorithm with this alternative step without affecting the
output distribution:

1. For each prime number si ∈ [1, b], put si in a list L with probability 1/si.

Of course, the algorithm with this alternative step is grossly inefficient; Kalai’s
main insight is a way to obtain the same output efficiently. After this insight, the
remainder of the analysis is relatively straightforward. The prime p appears at
least e times in L independently with probability 1/pe through Step 2, and thus
the probability that a b-smooth number N is selected in Step 3 is proportional
to 1/N . The final two rejection steps ensure uniformity across numbers in [1, b].
By Mertens’ theorem, the algorithm will not restart in Step 4 with probability
θ(1/ log b). See Kalai’s one page paper for more details.

Our TempIdeal algorithm is a modification of Kalai’s algorithm that accounts
for the fact that there could be up to n prime ideals that are “tied” with the
same norm. To each integer s, we associate n ideals {Is,j}. Specifically, if there
are r ≤ n distinct prime ideals of norm s, we let Is,1, . . . , Is,r be these ideals,
and set Is,r+1 = · · · = Is,n = 1.

TempIdeal(R, a, b):

1. Generate a sequence b ≥ s1 > s2 > · · · > s` = 1 by uniformly choosing
si+1,j ∈ {1, . . . , si−1} for all j ∈ {1, . . . , n} and setting si+1 ← maxj{si+1,j}.
(Use b as s0.) Put each si that is a norm of a prime ideal in a list L.



2. For each si ∈ L, do the following. First, generate j ∈ [1, n] uniformly and put
the ideal Isi,j into multiset M . Then, for each j, insert at least k additional
instances of Isi,j into M with probability 1/sk

i .
3. Remove those ideals in M that are equal to 1.
4. Let K be the product of the ideals remaining in M (with repetition).
5. If Nm(K) /∈ [a, b], restart.
6. Output a basis for K with probability Nm(K)/b; otherwise, restart.

Remark 7. Obviously, in Step 2, we could have avoided putting any ideals that
equal 1 in to M in the first place, since we remove them in Step 3. But we leave
this in, since it will make the analysis a bit simpler.

Theorem 8. TempIdeal uniformly samples an ideal K ⊂ R with norm in [a, b].
The algorithm takes time b/(a− b) · poly(n, log b).

To simplify the proof of Theorem 8, we define a “slow” version of the above
algorithm – SlowTempIdeal – which is analogous to the “slow” version of Kalai’s
algorithm with the alternative first step.

SlowTempIdeal(R, a, b):

1. For each si ∈ [1, b] that is the norm of a prime ideal, for each j ∈ [1, n], put
at least k instances of Isi,j into multiset M ′ with probability 1/sk

i . If there
is some ideal Isi,j in M ′, put si into L.

2. Run Steps 2-6 of TempIdeal(R, a, b).

Now, Theorem 8 follows from Lemmas 12, 14, and 15.

Lemma 12. The distribution of L is the same in TempIdeal and SlowTempIdeal,
and hence the two algorithms have the same output distribution.

Proof. (Lemma 12) Consider the probability that a fixed s is in L. For TempIdeal,
this equals the probability that s is in the sequence. If si > s, the probability
that si+1 ∈ [1, s] is sn/(si − 1)n, whereas the probability that si+1 ∈ [1, s − 1]
is (s − 1)n/(si − 1)n. Thus, when sampling si, the probability that si+1 is in
[1, s − 1] given that it is in [1, s] is (s − 1)n/sn. Consequently, since si+1 must
eventually be in [1, s] for some i, the probability that s is in the sequence is
1− (s− 1)n/sn. This probability is independent of whether or not other values
s′ are in L. For SlowTempIdeal, the probability that none of the n ideals Is,j is
in M ′ is (s−1)n/sn. So, the probability that some ideal Is,j is in M ′, and hence
s ∈ L, is the same as in TempIdeal: 1− (s− 1)n/sn. ut
Lemma 13. Through Step 4 of SlowTempIdeal, the probability that a fixed ideal
K0 with prime ideal factors in [1, b] is selected is

1
Nm(K0)

·
∏

Nm(p)≤b

Nm(p)− 1
Nm(p)

where the product is over prime ideals.



Proof. (Lemma 13) It is clear that the multisets M and M ′ have exactly the same
distribution conditioned on the list L. That is, if si /∈ L, neither multiset contains
an ideal Isi,j . If si ∈ L, then both M and M ′ contain a random non-empty
multiset S with elements from {Isi,1, . . . , Isi,n}, where Pr[S] is proportional to
1/s

|S|
i . Therefore, we could have used M ′ instead of M beginning in Step 3 of

SlowTempIdeal without affecting the output distribution.
Remove the primes that equal 1 from M ′. A (nontrivial) ideal Isi,j is in M ′ at

least k times independently with probability 1/sk
i = 1/Nm(Isi,j)

k, and therefore
exactly k times independently with probability (Nm(Isi,j)−1)/Nm(Isi,j)

k+1. By
the independence of these probabilities, and by multiplicativity of the norm map
over ideals, the result follows. ut
Lemma 14. SlowTempIdeal uniformly samples an ideal K ⊂ R with norm in
[a, b].

Proof. (Lemma 14) Given Lemma 13 – i.e., the fact that through Step 4 the
probability that some K0 is chosen equals 1/Nm(K0) times some universal con-
stant that is independent of K0 – it is clear that the final two rejection sampling
steps ensure that K is uniform among ideals with norm in [a, b]. ut
Lemma 15. TempIdeal takes time b/(a− b) · poly(n, log b).

Proof. (Lemma 15) Let us consider the probability that a restart occurs.
Regarding Step 5, by Merten’s theorem for number fields, we have

∏

Nm(p)≤b

(1− 1/Nm(p)) =
e−γ

aK

1
log b

+ O(
1

log2 b
)

where aK is the residue of ζK(s), the Dedekind zeta-function, at s = 1, and γ
denotes Euler’s constant 0.577.... Denote the above term by α. By Lemma 13,
the probability that some K with norm at most b is selected in Step 4 is

α ·
∑

Nm(K)≤b

1/Nm(K)

There are θ(b) ideals of norm at most b (this follows from Theorems 1 and 2),
and thus the above sum is Ω(1/ log(b)).

Regarding Step 6, among K’s with norm at most b, approximately a (b−a)/b
fraction of them have norm at least a. (Again this follows from Theorems 1 and
2.) The result follows. ut

5 Basing Gentry’s Somewhat Homomorphic Scheme on
SIVP over Ideal Lattices

We showed how to reduce WBDDP to HBDDP for our average-case distribution.
It remains to base our variant of Gentry’s scheme on HBDDP, and to reduce
SIVP to WBDDP. We sketch these results here. Details are in the full version.



First, we specify some details of our variant. As in [10], the public key includes
ideals I and J , and a short independent set BI of I – e.g., where ‖BI‖ = poly(n).
J is output by our new IdealGen algorithm. The cosets of I form the plaintext
space. Regarding I, we have a new requirement: that Nm(I) is prime and very
small – i.e., poly(n). To find such an I, we can either construct f(x) to ensure that
the associated ring of integers has an ideal of small prime norm, or we can apply
Kummer-Dedekind (Theorem 4) to primes of size poly(n). By Theorem 8.7.7.
of [5], for appropriate values of f(x) and assuming GRH, applying Kummer-
Dedeking will eventually give us the basis a prime ideal p in R having poly(n)-
norm. From this basis, we can compute an independent set of p of length at most
Nm(p). We set I ← p and BI to be this independent set. We sample ciphertexts
per a Gaussian distribution: c ← c′ mod BJ where c′ ← Dm+I,s,0 for some s.

To reduce HBDDP to the semantic security of this scheme, we first reduce
HBDDP to a decision problem that we call the inner ideal membership problem
(IIMP): (roughly) given (BJ , t) where BJ

R← IdealGen(R) and t ← x mod BJ

for some x ∈ R with ‖x‖ < sIIMP, decide whether or not x ∈ I. Essentially, a
HBBDP-solver can use a IIMP-solver to find out which coset of I that x is in.
(For this search to be efficient, Nm(I) must be poly(n).) Using “Hensel lifting”,
the HBDDP-solver can recover x modulo Ik for large k – large enough that x
becomes the shortest vector in x + Ik by such a large margin that is efficient
to recover x using Babai’s nearest plane algorithm. To reduce the IIMP to the
semantic security of the scheme, we sample a uniform coset of I, set u ∈ R
to be a short vector in that coset, and set the challenge ciphertext as follows:
c∗ ← c′ mod BJ where c′ ← mb + t × u + DI,s,0. When x ∈ I, c′ ∈ mb + I,
and the ciphertext has the correct distribution. (This is not quite true: but we
can smooth out the discrepancy by choosing s large enough – in particular,
so that s/sIIMP = poly(n)/ε.) When x /∈ I, c′ is in a random coset of I that
conveys no information about mb. Overall, for some polynomial g(n), if there is
an algorithm A that breaks the semantic security of the scheme in time t with
probability ε for parameter s, then there is an algorithm that, for a O(ε) fraction
of bases output by IdealGen, solves HBDDP for parameter sHBDDP ≤ s · ε/g(n)
with overwhelming probability in time O(t ·Nm(I)/ε). This reduction is entirely
classical (non-quantum).

To reduce SIVP to WBDDP (quantumly), the heavy lifting has already been
done by Regev [30]. He provided a quantum reduction of SIVP over the dual
lattice L∗ to BDDP over the lattice L. A bit more work is necessary to turn
his result into a quantum reduction of SIVP over an inverse ideal lattice I−1 to
BDDP over the ideal lattice I (the inverse of an ideal lattice is not the same as
its dual), and then to extend this result to SIVP over (non-inverse) ideals of R.

6 Conclusions and Open Problems

We showed that ideal lattice problems within some fixed rings are, in a sense,
random self-reducible. However, the reduction uses a factoring oracle. One open



problem is to find a random self-reduction that is efficient in the classical setting
– in particular, to find a reduction that does not use factorization.

We presented a KeyGen algorithm that generates ideals according to our
average-case distribution, together with a secret key. However, this algorithm is
rather complicated, and one wonders whether there is a simpler approach.

While we are able to base Gentry’s somewhat homomorphic encryption scheme
on worst-case hardness, his FHE scheme requires an additional computational
assumption – namely, that the (average-case) SSSP is hard. Currently, we do
not have a worst-case / average-case reduction for the SSSP that would allow
his FHE scheme to be based entirely on worst-case hardness.
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