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Abstract. We present a technique for delegating a short lattice basis
that has the advantage of keeping the lattice dimension unchanged upon
delegation. Building on this result, we construct two new hierarchical
identity-based encryption (HIBE) schemes, with and without random
oracles. The resulting systems are very different from earlier lattice-based
HIBEs and in some cases result in shorter ciphertexts and private keys.
We prove security from classic lattice hardness assumptions.

1 Introduction

Hierarchical identity based encryption (HIBE) is a public key encryption scheme
where entities are arranged in a directed tree [HL02,GS02]. Each entity in the
tree is provided with a secret key from its parent and can delegate this secret
key to its children so that a child entity can decrypt messages intended for it, or
for its children, but cannot decrypt messages intended for any other nodes in the
tree. This delegation process is one-way: a child node cannot use its secret key
to recover the key of its parent or its siblings. We define HIBE more precisely in
the next section.

The first HIBE constructions, with and without random oracles, were based
on bilinear maps [GS02,BB04,BW06,BBG05,GH09,Wat09]. More recent con-
structions are based on hard problems on lattices [CHKP10,ABB10] where the
secret key is a “short” basis B of a certain integer lattice L. To delegate the
key to a child the parent creates a new lattice L′ derived from L and uses B to
generate a random short basis for this lattice L′. In all previous constructions
the dimension of the child lattice L′ is larger than the dimension of the parent
lattice L. As a result, private keys and ciphertexts become longer and longer as
one descends into the hierarchy.

Our results. We first propose a new delegation mechanism that operates “in
place”, i.e., without increasing the dimension of the lattices involved. We then
use this delegation mechanism to construct two HIBE systems where the lattices
used have the same dimension for all nodes in the hierarchy. Consequently, pri-
vate keys and ciphertexts are the same length for all nodes in the hierarchy. Our
? Supported by NSF and the Packard Foundation.



first construction, in Section 4, provides an efficient HIBE system in the random
oracle model. Our second construction, in Section 5, provides selective security in
the standard model, namely without random oracles. We prove security of both
constructions using the classic learning with errors (LWE) problem [Reg09].

To briefly explain our delegation technique, let L be a lattice in Zm and let
B = {b1, . . . , bm} be a short basis of L. Let R be a public non-singular matrix
in Zm×m. Observe that the set B′ := {Rb1, . . . , R bm} is a basis of the lattice
L′ := RL. If all entries of the matrix R are “small” scalars then the norm of the
vectors in B′ is not much larger than the norm of vectors in B. Moreover, using
standard tools we can “randomize” the basis without increasing the norm of the
vectors by much. The end result is a random short basis of L′. This idea suggests
that by associating a public “low norm” matrix R to each child, the parent node
can delegate its short basis B to a child by multiplying the vectors in B by the
matrix R and randomizing the resulting basis. Note that since the dimension of
L′ is the same as the dimension of L this delegation does not increase dimensions.

The question is whether delegation is one way: can a child L′ recover a short
basis of the parent L? More precisely, given a “low norm” matrix R and a random
short basis of L′, can one construct short vectors in R−1L′? The key ingredient
in proving security is an algorithm called SampleRwithBasis that given a lattice
L (for which no short basis is given) outputs a “low norm” matrix R along
with a short basis for the lattice L′ = RL. In other words, if we are allowed to
choose a low norm R then we can build a delegated lattice L′ = RL for which
a short basis is known even though no short basis is given for L. Algorithm
SampleRwithBasis shows that if it were possible to use a random short basis of
L′ to generate short vectors in L then it would be possible to solve SVP in
any lattice L — generate an L′ = RL with a known short basis and use that
basis to generate short vectors in L. More importantly, the algorithm enables us
to publish matrices R so that during the HIBE simulation certain private keys
are known to the simulator while others are not. The key technical challenge is
showing that these simulated matrices R are distributed as in the real system.

Comparison to other lattice-based HIBE. Table 1 shows how the HIBE
systems derived from our basis delegation mechanism compare to existing lattice-
based HIBE systems. In the random oracle model the construction compares
favorably to other lattice-based HIBE in terms of ciphertext and private key
size. In terms of computation time, the encryptor in our system computes an
`-wise matrix product when encrypting to an identity at depth `, which is not
necessary in [CHKP10]. However, this product is not message dependent and
need only be computed once per identity.

Our construction in the standard model treats identities at each level as k-
bit binary strings. Table 1 shows that the construction is only competitive with
existing HIBEs [CHKP10,ABB10] in applications where k < ` (such as [CHK07]
where k = 1). When k > ` the construction is not competitive due to the k2 term
in the ciphertext length (compared to k` in [CHKP10] and ` in [ABB10]). Nev-
ertheless, this HIBE is very different from the existing HIBEs and the techniques
of [ABB10] can potentially be applied to improve its performance.



selective secure ciphertext secret key pub. params. lattice security
HIBE length length length dimension n/α

[CHKP10] with RO Õ(`nd2) Õ(`3n2d2) Õ(n2d2) Õ(`dn) Õ(ddnd/2)

Sec. 4 with RO Õ(nd2) Õ(`n2d2) Õ(n2d2) Õ(dn) Õ((dn)
3
2 d)

[CHKP10] no RO Õ(k`nd2) Õ(k2`3n2d2) Õ(kn2d3) Õ(k`dn) Õ(dd(kn)d/2)

[ABB10] no RO Õ(`nd2) Õ(`3n2d2) Õ(n2d3) Õ(`dn) Õ(ddnd/2)

Sec. 5 no RO Õ(k2nd2) Õ(k3`n2d2) Õ(k3n2d3) Õ(kdn) Õ((kdn)kd+ d
2 )

The table compares the lengths of the ciphertext, private key, and lattice dimension.
We let n be the security parameter, d be the maximum hierarchy depth (determined
at setup time), and ` be the depth of the identity in question. When appropriate we
let k be the number of bits in each component of the identity. The last column shows
the SVP approximation factor that needs to be hard in the worst-case for the systems
to be secure (the smaller the better). We focus on selectively secure HIBE since for
all known adaptive lattice HIBE security degrades exponentially in the hierarchy depth.

Table 1. A comparison of lattice-based HIBE schemes

Relation to bilinear map constructions. The recent lattice-based IBE and
HIBE systems are closely related to their bilinear map counterparts and there
may exist an abstraction that unifies these constructions. While the mechan-
ics are quite different the high level structure is similar. The construction and
proof of security in [CHKP10] resembles the tree construction of Canetti et
al. [CHK07]. The construction and proof of security in [ABB10] resembles the
constructions of Boneh and Boyen [BB04] and Waters [Wat05]. The constructions
in this paper have some relation to the HIBE of Boneh, Boyen, and Goh [BBG05],
although the relation is not as direct. Waters [Wat09] recently proposed dual-
encryption as a method to build fully secure HIBE systems from bilinear maps.
It is a beautiful open problem to construct a lattice analog of that result using
either the basis delegation in this paper or the method from [CHKP10]. It is
quite possible that two lattice-based dual-encryption HIBE systems will emerge.

2 Preliminaries

Notation. Throughout the paper we say that a function ε : R≥0 → R≥0 is
negligible if ε(n) is smaller than all polynomial fractions for sufficiently large n.
We say that an event happens with overwhelming probability if it happens with
probability at least 1− ε(n) for some negligible function ε. We say that integer
vectors v1, . . . , vn ∈ Zm are Zq-linearly independent for prime q if they are
linearly independent when reduced modulo q.



2.1 Hierarchical IBE

Recall that an Identity-Based Encryption system (IBE) consists of four algo-
rithms [Sha85,BF01]: Setup, Extract, Encrypt, Decrypt. The Setup algorithm gen-
erates system parameters, denoted by PP, and a master key MK. The Extract
algorithm uses the master key to extract a private key corresponding to a given
identity. The encryption algorithm encrypts messages for a given identity and
the decryption algorithm decrypts ciphertexts using the private key.

In a Hierarchical IBE [HL02,GS02], identities are vectors, and there is a fifth
algorithm called Derive. Algorithm Derive takes an identity id = (id1, . . . , idk) at
depth k and a private key SKid|` of a parent identity id|` = (id1, . . . , id`) for some
` < k. It outputs the private key SKid for the identity id which is distributed the
same as the output of Extract for id.

Selective and Adaptive ID Security. The standard IBE security model
of [BF01] allows an attacker to adaptively choose the identity it wishes to attack.
A weaker notion of IBE called selective security [CHK07] forces the adversary
to announce ahead of time the public key it will target. We use both notions,
but restrict the adversary to chosen-plaintext attacks.

Security Game. We define HIBE security using a game that captures a strong
privacy property called indistinguishable from random which means that the
challenge ciphertext is indistinguishable from a random element in the ciphertext
space. This property implies both semantic security and recipient anonymity, and
also implies that the ciphertext hides the public parameters (PP) used to create
it. For a security parameter λ, we let Mλ denote the message space and let
Cλ denote the ciphertext space. The selective security game, for a hierarchy of
maximum depth d, proceeds as follows.

Init: The adversary is given the maximum depth of the hierarchy d and
outputs a target identity id∗ = (I∗1, . . . , I

∗
k), k ≤ d.

Setup: The challenger runs Setup(1λ, 1d) (where d = 1 for IBE) and gives
the adversary the resulting system parameters PP.

Phase 1: The adversary adaptively issues queries on identities id1, id2, . . .
where no query is for a prefix of id∗. For each query the challenger runs
algorithm Extract to obtain a private key di for the public key idi and
sends di to the adversary.

Challenge: Once the adversary decides that Phase 1 is over it outputs a
plaintext M ∈ Mλ on which it wishes to be challenged. The challenger
chooses a random bit r ∈ {0, 1} and a random ciphertext C ∈ Cλ. If
r = 0 it sets the challenge ciphertext to C∗ := Encrypt(PP, id∗,M). If
r = 1 it sets the challenge ciphertext to C∗ := C. It sends C∗ as the
challenge to the adversary.

Phase 2: The adversary issues additional adaptive private key queries as in
phase 1 and the challenger responds as before.

Guess: Finally, the adversary outputs a guess r′ ∈ {0, 1} and wins if r = r′.



We refer to such an adversary A as an INDr–sID-CPA adversary and define its
advantage in attacking E as AdvE,A,d(λ) =

∣∣Pr[r = r′]− 1/2
∣∣.

Definition 1. A depth d HIBE system E is selective-identity, indistinguish-
able from random if for all INDr–sID-CPA PPT adversaries A the function
AdvE,A,d(λ) is negligible. We say that E is INDr–sID-CPA secure for depth d.

We define the adaptive-identity counterparts to the above notions by remov-
ing the Init phase from the attack game, and allowing the adversary to wait
until the Challenge phase to announce the identity id∗ it wishes to attack. The
adversary is allowed to make arbitrary private-key queries in Phase 1 and then
choose an arbitrary target id∗ as long as he did not issue a private-key query
for a prefix of id∗ in phase 1. The resulting security notion is defined using the
modified game as in Definition 1, and is denoted INDr–ID-CPA.

2.2 Statistical distance

Let X and Y be two random variables taking values in some finite set Ω. Define
the statistical distance, denoted ∆(X;Y ), as

∆(X;Y ) :=
1
2

∑
s∈Ω

∣∣Pr[X = s]− Pr[Y = s]
∣∣

We say that X is δ-uniform over Ω if ∆(X;UΩ) ≤ δ where UΩ is a uniform
random variable over Ω. Two ensembles of random variables X(λ) and Y (λ) are
statistically close if d(λ) := ∆(X(λ);Y (λ)) is a negligible function of λ.

2.3 Integer Lattices

Definition 2. Let B =
[
b1
∣∣ . . . ∣∣ bm ]

∈ Rm×m be an m × m matrix whose
columns are linearly independent vectors b1, . . . , bm ∈ Rm. The m-dimensional
full-rank lattice Λ generated by B is the set,

Λ = L(B) =
{
y ∈ Rm s.t. ∃s ∈ Zm , y = B s =

m∑
i=1

si bi

}
Here, we are interested in integer lattices, i.e, when L is contained in Zm. We

let det(Λ) denote the determinant of Λ.

Definition 3. For q prime, A ∈ Zn×mq and u ∈ Znq , define:

Λq(A) :=
{
e ∈ Zm s.t. ∃s ∈ Znq where A> s = e (mod q)

}
Λ⊥q (A) :=

{
e ∈ Zm s.t. Ae = 0 (mod q)

}
Λuq (A) :=

{
e ∈ Zm s.t. Ae = u (mod q)

}
Observe that if t ∈ Λuq (A) then Λuq (A) = Λ⊥q (A) + t and hence Λuq (A) is a shift
of Λ⊥q (A) .



2.4 The Gram-Schmidt Norm of a Basis

Let S be a set of vectors S = {s1, . . . , sk} in Rm. We use the following standard
notation:

– ‖S‖ denotes the L2 length of the longest vector in S, i.e. max1≤i≤k ‖si‖.
– S̃ := {s̃1, . . . , s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the

vectors s1, . . . , sk taken in that order.

We refer to ‖S̃‖ as the Gram-Schmidt norm of S.

Micciancio and Goldwassser [MG02] showed that a full-rank set S in a lattice Λ
can be converted into a basis T for Λ with an equally low Gram-Schmidt norm.

Lemma 1 ([MG02, Lemma 7.1]). Let Λ be an m-dimensional lattice. There
is a deterministic polynomial-time algorithm that, given an arbitrary basis of Λ
and a full-rank set S = {s1, . . . , sm} in Λ, returns a basis T of Λ satisfying

‖T̃‖ ≤ ‖S̃‖ and ‖T‖ ≤ ‖S‖
√
m/2

Ajtai [Ajt99] and later Alwen and Peikert [AP09] show how to sample an
essentially uniform matrix A ∈ Zn×mq with an associated basis SA of Λ⊥q (A)
with low Gram-Schmidt norm. The following follows from Theorem 3.2 of [AP09]
taking δ := 1/3. The theorem produces a matrix A statistically close to uniform
in Zn×mq along with a short basis. Since m is so much larger than n, the matrix A
is rank n with overwhelming probability and we can state the theorem as saying
that A is statistically close to a uniform rank n matrix in Zn×mq .

Theorem 1. Let q ≥ 3 be odd and m := d6n log qe. There is a probabilistic
polynomial-time algorithm TrapGen(q, n) that outputs a pair (A ∈ Zn×mq , S ∈
Zm×m) such that A is statistically close to a uniform rank n matrix in Zn×mq

and S is a basis for Λ⊥q (A) satisfying

‖S̃‖ ≤ O(
√
n log q ) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

Notation: We let L̃TG := O(
√
n log q ) denote the maximum (w.h.p) Gram-

Schmidt norm of a basis produced by TrapGen(q, n).

2.5 Discrete Gaussians

Definition 4. Let L be a subset of Zm. For any vector c ∈ Rm and any positive
parameter σ ∈ R>0, define:

ρσ,c(x) = exp
(
−π ‖x− c‖

2

σ2

)
and ρσ,c(L) =

∑
x∈L

ρσ,c(x)



The discrete Gaussian distribution over L with center c and parameter σ is

∀y ∈ L , DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L)

For notational convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ.
When σ = 1 we write ρ to denote ρ1. ut

The distribution DL,σ,c will most often be defined over the lattice L = Λ⊥q (A)
for a matrix A ∈ Zn×mq or over a coset L = t+ Λ⊥q (A) where t ∈ Zm.

Properties. The following lemma from [Pei] captures standard properties of
these distributions. The first property follows from Lemma 4.4 of [MR07]. The
last two properties are algorithms from [GPV08].

Lemma 2. Let q ≥ 2 and let A be a matrix in Zn×mq with m > n. Let TA be a
basis for Λ⊥q (A) and σ ≥ ‖T̃A‖ω(

√
logm ). Then for c ∈ Rm and u ∈ Znq :

1. Pr
[
x ∼ DΛuq (A),σ : ‖x‖ >

√
mσ

]
≤ negl(n).

2. There is a PPT algorithm SampleGaussian(A, TA, σ, c) that returns x ∈ Λ⊥q (A)
drawn from a distribution statistically close to DΛ,σ,c.

3. There is a PPT algorithm SamplePre(A, TA, u, σ) that returns x ∈ Λuq (A)
sampled from a distribution statistically close to DΛuq (A),σ, whenever Λuq (A)is
not empty.

Randomizing a basis: Cash et al. [CHKP10] show how to randomize a lattice
basis (see also [GN08, Sec. 2.1]).

RandBasis(S, σ):
On input a basis S of an m-dimensional lattice Λ⊥q (A) and a gaussian parameter
σ ≥ ‖S̃‖ · ω(

√
log n), outputs a new basis S′ of Λ⊥q (A) such that

– with overwhelming probability ‖S̃′‖ ≤ σ
√
m, and

– up to a statistical distance, the distribution of S′ does not depend on S. That
is, the random variable RandBasis(S, σ) is statistically close to RandBasis(T, σ)
for any other basis T of Λ⊥q (A) satisfying ‖T̃‖ ≤ σ/ω(

√
log n).

We briefly recall how RandBasis works:
1. For i = 1, . . . ,m, let v ← SampleGaussian(A,S, σ, 0) and

if v is independent of {v1, . . . , vi−1}, set vi ← v, if not, repeat.
2. Convert the set of vectors v1, . . . , vm to a basis S′ using Lemma 1 (and using

some canonical basis of Λ⊥q (A)).
3. Output S′.

The analysis of RandBasis in [CHKP10] uses [Reg09, Corollary 3.16] which shows
that a linearly independent set is produced in Step (1) w.h.p. after m2 samples
from SampleGaussian(A,S, σ, 0). It is not difficult to show that only 2m samples
are needed in expectation.



2.6 Hardness assumption

Security of all our constructions reduces to the LWE (learning with errors) prob-
lem, a classic hard problem on lattices defined by Regev [Reg09].

Definition 5. Consider a prime q, a positive integer n, and a distribution χ
over Zq, all public. An (Zq, n, χ)-LWE problem instance consists of access to an
unspecified challenge oracle O, being, either, a noisy pseudo-random sampler Os
carrying some constant random secret key s ∈ Znq , or, a truly random sampler
O$, whose behaviors are respectively as follows:

Os: outputs samples of the form (ui, vi) =
(
ui, u

>
i s+xi

)
∈ Znq ×Zq, where, s ∈

Znq is a uniformly distributed persistent value invariant across invocations,
xi ∈ Zq is a fresh sample from χ, and ui is uniform in Znq .

O$: outputs truly uniform random samples from Znq × Zq.

The (Zq, n, χ)-LWE problem allows repeated queries to the challenge oracle O.
We say that an algorithm A decides the (Zq, n, χ)-LWE problem if

LWE-adv[A] :=
∣∣Pr[AOs = 1]− Pr[AO$ = 1]

∣∣
is non-negligible for a random s ∈ Znq .

Regev [Reg09] shows that for certain noise distributions χ, denoted Ψα, the
LWE problem is as hard as the worst-case SIVP and GapSVP under a quantum
reduction (see also [Pei09]). Recall that for x ∈ R the symbol bxe denotes the
closest integer to x.

Definition 6. For an α ∈ (0, 1) and a prime q let Ψα denote the distribution
over Zq of the random variable bq Xe mod q where X is a normal random vari-
able with mean 0 and standard deviation α/

√
2π.

Theorem 2 ([Reg09]). If there exists an efficient, possibly quantum, algorithm
for deciding the (Zq, n, Ψα)-LWE problem for q > 2

√
n/α then there exists an

efficient quantum algorithm for approximating the SIVP and GapSVP problems,
to within Õ(n/α) factors in the `2 norm, in the worst case.

The following lemma about the distribution Ψα will be needed to show that
decryption works correctly. The proof is implicit in [GPV08, Lemma 8.2].

Lemma 3. Let e be some vector in Zm and let y R← Ψ
m

α . Then the quantity
|e>y| treated as an integer in [0, q − 1] satisfies

|e>y| ≤ ‖e‖ qαω(
√

logm ) + ‖e‖
√
m/2

with all but negligible probability in m.

As a special case, Lemma 3 shows that if x R← Ψα is treated as an integer in
[0, q− 1] then |x| < qαω(

√
logm) + 1/2 with all but negligible probability in m.



3 Basis Delegation Without Dimension Increase

Let A be a matrix in Zn×mq and let TA be a “short” basis of Λ⊥q (A), both given.
We wish to “delegate” the basis TA in the following sense: we want to determin-
istically generate a matrix B from A and a random basis TB for Λ⊥q (B) such
that from A,B and TB it is difficult to recover any short basis for Λ⊥q (A). Basis
delegation mechanisms were proposed by Cash et al [CHKP10] and Agrawal et
al. [ABB10] where the dimension of the matrix B was larger than the dimension
of the given A. In the resulting HIBE systems ciphertext and private key sizes
increase as the hierarchy deepens.

Here we consider a simple delegation mechanism that does not increase the
dimension. To do so we use a public matrix R in Zm×m where the columns of R
have “low” norm. We require that R be invertible mod q. Now, define B := AR−1

in Zn×mq and observe that B has the same dimension as A. We show how to build
a “short” basis of Λ⊥q (B) from which it is difficult to recover a short basis of A.
In the next section we use this to build new HIBE systems.

We begin by defining distributions on matrices whose columns are low norm
vectors. We then define the basis delegation mechanism.

Distributions on low norm matrices. We say that a matrix R in Zm×m is
Zq-invertible if R mod q is invertible as a matrix in Zm×mq . Our construction
makes use of Zq-invertible matrices R in Zm×m where all the columns of R are
“low norm”.

Definition 7. Define σR := L̃TG ω(
√

logm) =
√
n log q · ω(

√
logm).

We let Dm×m denote the distribution on matrices in Zm×m defined as(
DZm,σR

)m conditioned on the resulting matrix being Zq-invertible

Algorithm SampleR(1m). The following simple algorithm samples matrices
in Zm×m from a distribution that is statistically close to Dm×m.

1. Let T be the canonical basis of the lattice Zm.
2. For i = 1, . . . ,m do ri

R← SampleGaussian(Zm, T, σR, 0).
3. If R is Zq-invertible, output R; otherwise repeat step 2.

In the full version we show that step 2 will need to be repeated fewer than two
times in expectation for prime q.

3.1 Basis delegation: algorithm BasisDel(A,R, TA, σ)

We now describe a simple basis delegation algorithm that does not increase the
dimension of the underlying matrices.
Inputs:

a rank n matrix A in Zn×mq ,
a Zq-invertible matrix R in Zm×m sampled from Dm×m

(or a product of such),
a basis TA of Λ⊥q (A),
and a parameter σ ∈ R>0.

(1)



Output: Let B := AR−1 in Zn×mq . The algorithm outputs a basis TB of Λ⊥q (B).

Algorithm BasisDel(A,R, TA, σ)works as follows:

1. Let TA = {a1, . . . , am} ⊆ Zm. Calculate T ′B := {Ra1, . . . , Ram} ⊆ Zm.
Observe that T ′B is a set of independent vectors in Λ⊥q (B).

2. Use Lemma 1 to convert T ′B into a basis T ′′B of Λ⊥q (B). The algorithm in the
lemma takes as input T ′B and an arbitrary basis of Λ⊥q (B) and outputs a
basis T ′′B whose Gram-Schmidt norm is no more than that of T ′B .

3. Call RandBasis(T ′′B , σ) and output the resulting basis TB of Λ⊥q (B).

The following theorem shows that BasisDel produces a random basis of Λ⊥q (B)
whose Gram-Schmidt norm is bounded as a function of ‖T̃A‖. The proof is given
in the full version.

Theorem 3. Using the notation in (1), suppose R is sampled from Dm×m and
σ satisfies

σ > ‖T̃A‖ · σR

√
mω(log3/2m) .

Let TB be the basis of Λ⊥q (AR−1) output by BasisDel.
Then TB is distributed statistically close to the distribution RandBasis(T, σ) where
T is an arbitrary basis of Λ⊥q (AR−1) satisfying ‖T̃‖ < σ/ω(

√
logm). If R is a

product of ` matrices sampled from Dm×m then the bound on σ degrades to
σ > ‖T̃A‖ ·

(
σR

√
mω(log1/2m)

)` · ω(logm) .

When R is a product for ` matrices sampled from Dm×m then for the smallest
possible σ in Theorem 3 we obtain that w.h.p

‖T̃B‖ / ‖T̃A‖ ≤
(
mω(logm)

)` √
mω(logm) .

This quantity is the minimum degradation in basis quality as we delegate across
` levels of the HIBE hierarchy.

3.2 The main simulation tool: algorithm SampleRwithBasis(A)

All our proofs of security make heavy use of an algorithm SampleRwithBasis that
given a random rank nmatrix A in Zn×mq as input generates a “low-norm” matrix
R (i.e., a matrix sampled from Dm×m) along with a short basis for Λ⊥q (AR−1).

Algorithm SampleRwithBasis(A). Let a1, . . . , am ∈ Znq be the m columns of
the matrix A ∈ Zn×mq .

1. Run TrapGen(q, n) to generate a random rank n matrix B ∈ Zn×mq and a
basis TB of Λ⊥q (B) such that ‖T̃B‖ ≤ L̃TG = σR/ω(

√
logm).

2. for i = 1, . . . ,m do:
(2a) sample ri ∈ Zm as the output of SamplePre(B, TB , ai, σR),

then Bri = ai mod q and ri is sampled from a distribution
statistically close to DΛaiq (B),σR

.
(2b) repeat step (2a) until ri is Zq linearly independent of r1, . . . , ri−1.



3. Let R ∈ Zm×m be the matrix whose columns are r1, . . . , rm.
Then R has rank m over Zq. Output R and TB .

By construction BR = A mod q and therefore B = AR−1 mod q. Hence, the
basis TB is a short basis of Λ⊥q (AR−1). It remains to show that R is sampled
from a distribution close to Dm×m.

Theorem 4. Let m > 2n log q and q > 2 a prime. For all but at most a q−n

fraction of rank n matrices A in Zn×mq algorithm SampleRwithBasis(A) outputs
a matrix R in Zm×m sampled from a distribution statistically close to Dm×m.
The generated basis TB of Λ⊥q (AR−1) satisfies ‖T̃B‖ ≤ σR/ω(

√
logm) with over-

whelming probability.

The bound on ‖T̃B‖ is from Theorem 1. The difficult part of the proof is
arguing that R is sampled from a distribution statistically close to Dm×m. The
proof is based on a detailed analysis of the distribution from which R is chosen
and is given in the full version of the paper.

4 An HIBE in the Random-Oracle Model

Our first construction is a depth d HIBE secure in the random oracle model. In
the next section we describe an HIBE selectively secure in the standard model.

To encrypt a message m for identity id, the encryptor builds a matrix Fid

and encrypts m using the dual Regev public key system (described in [GPV08,
sec. 7]) using Fid as the public key. The matrix Fid is built by multiplying a fixed
matrix A, specified in the public parameters, by ` “low norm” square matrices
generated by a random oracle H described in (2) below.

At level `, let id = (id1, id2, . . . , id`) ∈ ({0, 1}∗)`, where ` ∈ [d]. We assume
the availability of a hash function H that outputs matrices in Zm×m:

H : ({0, 1}∗)≤d → Zm×mq : id 7→ H(id) ∼ Dm×m (2)

where the requirement is that, over the choice of the random oracle H, the output
H(id) is distributed as Dm×m (as in Definition 7). In practice, the hash function
H can be built from a “standard” random function h : ({0, 1}∗)≤d → {0, 1}t by
using h as a coin generator for the sampling process in Algorithm SampleR(1m).
This method however is not indefferentiable in the sense of [CDMP05] and the
analysis requires that H itself be a random oracle.

4.1 Construction

The system uses a number of parameters that will be set in Section 4.2. The
parameters n,m and q are fixed across the levels of the hierarchy. In addition,
we have two level-dependent parameters: a guassian parameter σ̄ = (σ1, . . . , σd)
and a noise parameter ᾱ = (α1, . . . , αd).

For an identity id = (id1, . . . , id`) and 1 ≤ k ≤ ` we use id|k to denote the
vector (id1, . . . , idk). Now, for a hierarchy of maximum depth d the scheme works
as follows:



Setup(1n, 1d) On input a security parameter n and maximum depth d:
1. Invoke TrapGen(q, n) to generate a uniformly random matrix A ∈ Zn×mq

and a short basis TA =
[
a1| . . . |am

]
∈ Zm×m for Λ⊥q (A).

2. Generate a uniformly random vector u0 ∈ Znq .
3. Output the public parameters PP and master key MK given by,

PP =
(
A, u0

)
MK =

(
TA

)
Derive(PP,SKid|`, id): On input public parameters PP, a secret key SKid|` cor-

responding to a “parent” identity id|` = (id1, . . . , id`), and a “child” identity
id = (id1, . . . , id`, . . . idk) where k ≤ d do:
1. Let Rid|` = H(id|`) · · · H(id|2)H(id|1) ∈ Zm×m and
Fid|` = AR−1

id|` in Zn×mq . Then SKid|` is a short basis for Λ⊥q (Fid|`).

2. Compute R = H(id|k) · · · H(id|`+1) ∈ Zm×m and set Fid = Fid|`R
−1.

3. Evaluate S′ ← BasisDel(Fid|`, R, SKid|`, σk) to obtain a short random
basis for Λ⊥q (Fid).

4. Output the delegated private key SKid = S′.
Algorithm Extract(MK, id) works the same way by running Derive(PP,MK, id)
where Fid|0 = A and SKid|0 = MK.

Encrypt(PP, id, b): On input public parameters PP, a recipient identity id of
depth |id| = `, and a message bit b ∈ {0, 1}:
1. Compute Rid ← H(id|`) . . . H(id|2)H(id|1) in Zm×m.
2. Compute the encryption matrix Fid ← AR−1

id in Zn×mq .
3. Now encrypt the message using Regev’s dual public key encryption (as

defined in [GPV08, sec. 7]) using Fid as the public key. To do so,

(a) Pick a uniformly random vector s R← Znq .

(b) Choose noise vectors x
Ψα`←− Zq and y

Ψmα`←−∈ Zmq . (Ψα is as in def. 6)
(c) Output the ciphertext,

CT =
(
c0 = u>0 s+ x+ b bq

2
c , c1 = F>id s+ y

)
∈ Zq × Zmq

Decrypt(PP,SKid,CT): On input public parameters PP, a private key SKid for
an identity id of length |id| = `, and a ciphertext CT:

1. Let τ` = σ`
√
m ω(

√
logm )

(
≥ ‖S̃Kid‖ ω(

√
logm )

)
.

2. Construct the matrix Fid ∈ Zn×mq as in step (2) of Encrypt.
3. Set did ← SamplePre(Fid,SKid, u0, τ`). Note that Fid did = u0 in Znq .
4. Compute w = c0 − d>id c1 ∈ Zq.
5. Compare w and b q2c treating them as integers in [q] ⊂ Z:

if they are close, i.e., if
∣∣∣w−b q2c∣∣∣ < b q4c in Z, output 1; otherwise output 0.



4.2 Parameters and correctness

When the cryptosystem is operated as specified, during decryption of a cipher-
text encrypted to an identity at level ` we have,

w = c0 − d>id c1 = b bq
2
c+ x− d>idy︸ ︷︷ ︸

error term

Since ‖did‖ ≤ τ`
√
m = σ` m ω(

√
logm ) w.h.p, we have by Lemma 3 that the

norm of the error term is bounded w.h.p by

|x− d>idy| ≤ qα`σ`m ω(logm) + σ`m
3/2 ω(

√
logm) (3)

In addition, by properties of RandBasis(·, σ`) the Gram-Schmidt norm of a secret
key SK` at level ` satisfies w.h.p. ‖S̃K`‖ ≤ σ`

√
m. Therefore, with σ0 = L̃TG, for

the system to work correctly we need that:
- TrapGen can operate (i.e. m > 6n log q),
- the error term in (3) is less than q/5 w.h.p

(i.e. α` < [σ`mω(logm)]−1 and q > σ`m
3/2ω(

√
logm) ),

- BasisDel used in Derive can operate (i.e. σ` > ‖S̃K`−1‖σR

√
m ω(log3/2m)

which follows from σ` > σ`−1m
3/2 ω(log2m) ), and

- Regev’s reduction applies (i.e. q > 2
√
n/α` for all `).

To satisfy these requirements we set the parameters (q,m, σ̄, ᾱ) as follows tak-
ing n to be the security parameter (and letting ` = 1, . . . , d):

m = 6n1+δ = O(dn log n) , q = m
3
2d+2 · ω(log2d+1 n )

σ` = m
3
2 `+

1
2 · ω(log2` n) , α` = [σ` m ω(log n)]−1

(4)

and round up m to the nearest larger integer and q to the nearest larger prime.
Here we assume that δ is such that nδ > dlog qe = O(d log n).

Observe that since σ` is increasing with ` algorithm Extract generates the
same distribution on private keys as algorithm Derive for all identities at depth
greater than one, as required from our definition of HIBE.

Overall, the ciphertext size for all identities is Õ(d2n). Security depends
on the assumption that worst-case SVP cannot be solved to within a factor
q
√
n = Õ((dn)1.5d).

4.3 Security

We state the system’s security against both a selective and an adaptive adversary.
Selective security implies adaptive security in the random oracle model via a
simple generic transformation from [BB04]. However, proving adaptive security
directly gives a slightly simpler system. Recall that selective security in the
random oracle model means that the attacker must commit to the target identity
before issuing any type of query.



Theorem 5. Let A be a PPT adversary that attacks the scheme of Section 4.1
when H is modeled as a random oracle. Let QH is the number of H queries made
by A and d be the max hierarchy depth. Then there is a PPT algorithm B that
decides LWE such that

1. If A is a selective adversary (INDr–sID-CPA) with advantage ε
then ε ≤ LWE-adv[B].

2. If A is an adaptive adversary (INDr–ID-CPA) with advantage ε
then ε ≤ LWE-adv[B] · (dQdH) + negl(n).

where LWE-adv[B] is with respect to the parameters (Zq, n, Ψα) from Section 4.2.

Proof. We prove part (2) of the theorem. The proof of part (1) is similar and
a little simpler. Recall that LWE is about recognizing an oracle O defined
in Section 2.6. We use A to construct an LWE algorithm B with advantage
about ε/dQdH .

Instance. B requests from O and receives, for each i = 0, . . . ,m, a fresh pair
(ui, vi) ∈ Znq × Zq.

As the number of oracle calls is known a priori, the samples can be supplied
non-interactively at the beginning, e.g., here in the form of an instance with
(m+ 1) (n+ 1) elements of Zq.

Setup. B prepares a simulated attack environment for A as follows.

1. Select d uniform random integer Q∗1, . . . , Q
∗
d ∈ [QH ]. where QH is the maxi-

mum number of queries to H that A can make.
2. Sample d random matricesR∗1, . . . , R

∗
d ∼ Dm×m by runningR∗i ← SampleR(1m)

for i = 1, . . . , d.
3. Assemble the random matrix A0 ∈ Zn×mq from m of the given LWE samples,

by letting the i-th column of A0 be the n-vector ui for all i = 1, . . . ,m.
4. Choose a random w ∈ [d] and set A← A0R

∗
w · · ·R∗1. The matrix A is uniform

in Zn×mq since all the R∗i are invertible mod q and A0 is uniform in Zn×mq .
5. Publish the public parameters PP =

(
A, u0

)
.

Random-oracle hash queries. A may query the random oracle H on any
identity id = (id1, . . . , idi) of its choice, adaptively, and at any time. B answers
the Q-th such query as follows. (We assume w.l.o.g. that the queries are unique;
otherwise the simulator simply returns the same output on the same input with-
out incrementing the query counter Q.)

Let i = |id| be the depth of id. If this is query number Q∗i (i.e. Q = Q∗i ), define
H(id)← R∗i and return H(id).

Otherwise, if Q 6= Q∗i :
1. Compute Ai = A ·

(
R∗i−1 · · · R∗2 R∗1

)−1 ∈ Zm×mq (where A1 = A).
2. Run SampleRwithBasis(Ai) to obtain a random R ∼ Dm×m and a short

basis TB for B = AiR
−1 mod q.

3. Save the tuple (i, id, R,B, TB) for future use, and return H(id)← R.



Secret key queries. A makes interactive key-extraction queries on arbitrary
identities id, chosen adaptively. B answers a query on id = (id1, id2, . . . , idk) of
length |id| = k ∈ [d] as follows.

1. Let j ∈ [k] be the shallowest level at which H(id|j) 6= R∗j . In the unlikely
event that H(id|j) = R∗j for all j = 1, . . . , k the simulator aborts and fails.

2. Retrieve the saved tuple (j, id|j , R,B, TB) from the hash oracle query history.
This tuple was created when responding to a query for H(id|j) (w.l.o.g., we
can assume that an extraction query on id is preceded by a hash query on
all prefixes of id). By construction

B = A · (R∗1)−1 · · · (R∗j−1)−1 ·H(id|j)−1 mod q

and TB is a short basis for Λ⊥q (B).
Notice that B is exactly the encryption matrix Fid|j (as defined in the En-
crypt algorithm) for the ancestor identity id|j = (id1, id2, . . . , idj) and there-
fore TB is a trapdoor for Λ⊥q (Fid|j ).

3. Run Derive(PP, TB , id) to generate a secret key for id from the private key
TB for the identity id|j . Send the resulting secret key to the adversary.

Challenge.A announces to B the identity id∗ on which it wishes to be challenged
and a message b∗ ∈ {0, 1} to be encrypted. We require that id∗ not be equal to,
or a descendant of, any identity id for which a private key has been or will be
requested in any preceding and subsequent key extraction query.

Let ` = |id∗|. If there is an i ∈ [`] such that H(id∗|i) 6= R∗i , then the simulator
must abort. (Indeed, when this is the case, B is able extract a private key for id∗

and thus answer by itself the challenge that it intended to ask.)
Recall that A = A0R

∗
w · · ·R∗1. If w 6= ` then the simulator aborts and fails.

Now, suppose w = ` and id∗ is such that H(id∗|i) = R∗i for all i ∈ [`]. Then
by definition

Fid∗ = A (R∗1)−1 · · · (R∗` )−1 = A0 ∈ Zn×mq

and B proceeds as follows:

1. Retrieve v0, . . . , vm ∈ Zq from the LWE instance and set v∗ =

 v1...
vm

 ∈ Zmq .

2. Blind the message bit by letting c∗0 = v0 + b∗ b q2e ∈ Zq.
3. Set c∗1 = v∗ ∈ Zmq .
4. Set CT∗ = (c∗0, c

∗
1) and send it to the adversary.

When O is a pseudo-random LWE oracle then c0 = u>0 s + x + bb q2e and c1 =
F>id∗s+ y for some random s ∈ Znq and noise values x and y. In this case (c0, c1)
is a valid encryption of b for id∗.

When O is a random oracle then (v0, v∗) are uniform in (Zq × Zmq ) and
therefore (c0, c1) is uniform in (Zq × Zmq ).

Now, A makes more secret key queries, answered by B in the same manner as
before. Finally, A guesses whether CT∗ was an encryption of b∗ for id∗. B outputs
A’s guess and ends the simulation.



The distribution of the public parameters is identical to its distribution in
the real system as are responses to private key queries. By Theorem 3, responses
to H oracle queries are as in the real system. Finally, if B does not abort then the
challenge ciphertext is distributed either as in the real system or is independently
random in (Zq,Zmq ). Hence, if B does not abort then its advantage in solving
LWE is the same as A’s advantage in attacking the system.

Since A is PPT it only finds collisions on H with negligible probability.
A standard argument shows that the simulator can proceed without aborting
with probability Pr[¬abort] ≥ Q−`H /d − negl(n) ≥ Q−dH /d − negl(n) for some
constant c > 0. Then if A has advantage ε ≥ 0, B has advantage at least
[ε/(dQdH)]− negl(n) in deciding the LWE problem instance.

5 Selectively Secure HIBE in the Standard Model

We briefly describe an HIBE of depth d that is selectively secure without random
oracles. The details are in the full version of the paper. The construction is a
binary tree encryption (BTE) which means that identities at each level are binary
(i.e. 0 or 1). To build an HIBE with k-bit identities at each level we assign k
levels of the BTE hierarchy to each level of the HIBE. The parameters used by
this system are shown in Table 1.

Setup: For a BTE of depth d the setup algorithm runs TrapGen(q, n) to generate
a random n ×m matrix A ∈ Zn×mq with a short basis TA ∈ Zm×m for Λ⊥q (A)
and samples 2d matrices R1,0, R1,1, . . . , Rd,0, Rd,1 ∈ Zm×m from the distribution
Dm×m using SampleR(1m). With u0 random in Znq the public params and master
key are

PP =
(
A , u0 , R1,0, R1,1 , R2,0, R2,1 , . . . , Rd,0, Rd,1

)
, MK =

(
TA
)

Extract: the secret key for an identity id = (id1, . . . , id`) ∈ {0, 1}`≤d is a short
random basis for the lattice Λ⊥q (Fid) where

Fid = A (R1,id1)−1 (R2,id2)−1 · · · (R`,id`)−1 ∈ Zn×mq (5)

Encryption and decryption are as in the system of Section 4.1 using the matrix
Fid from (5) in a dual-Regev encryption.

Security. The simulator is given an identity id = (id1, . . . , id`) ∈ {0, 1}` where
the attacker will be challenged. To simplify the description assume id is at max-
imum depth, namely ` = d. The case ` < d is just as easy, but complicates the
notation.

The simulator first constructs a matrix A0 ∈ Zn×mq from the given LWE
challenge. It then samples random matrices

R1,id1 , R2,id2 , . . . , R`,id` ∈ Zm×m



from the distribution Dm×m and sets A = A0 R`,id` · · ·R2,id2 R1,id1 ∈ Zn×mq .
Now, consider the d matrices

Fi = A (R1,id1)−1 · · · (Ri,idi)−1 for i = 0, . . . , d− 1.

For each matrix Fi the simulator invokes SampleRwithBasis(Fi) to obtain a ma-
trix Ri,1−idi ∈ Zm×m and a short basis Ti for Λ⊥q (Fi · (Ri,1−idi)

−1). Finally, it
sends to the adversary the public parameters

PP =
(
A , u0 , R1,0, R1,1 , R2,0, R2,1 , . . . , Rd,0, Rd,1

)
where u0 is a random vector in Znq from the LWE challenge.

It is not difficult to see that the simulator can use T1, . . . , Td to generate
private keys for every node in the hierarchy except for the challenge identity id.
Moreover, for the challenge identity it can generate a ciphertext that will help
it solve the given LWE challenge as in Section 4.3, as required.

6 Conclusions

We presented a new lattice basis delegation mechanism and used it to construct
two HIBE systems, one secure in the random oracle model and one secure without
random oracles. The random oracle construction provides a lattice HIBE with
short ciphertexts and private keys. The standard model system is not as short.

This work raises a number of interesting open problems. First, our standard
model system processes bits of the identity one at a time. It would be interest-
ing to apply the techniques of [ABB10,Boy10] to obtain a selective HIBE that
processes many bits at a time so that the encryption matrix Fid is a product of
only ` low-norm matrices for identities at depth `.

Another interesting problem is an adaptively secure HIBE in the standard
model where performance does not degrade exponentially in the hierarchy depth.
Using the lattice basis delegation method from this paper or from [CHKP10] in
Waters’ dual encryption system [Wat09] is a promising direction.

Acknowledgments. We thank David Freeman, Daniele Micciancio and Brent
Waters for helpful comments about this work.
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