
Protecting Cryptographic Keys Against
Continual Leakage

Ali Juma and Yevgeniy Vahlis?

Department of Computer Science, University of Toronto
{ajuma,evahlis}@cs.toronto.edu

Abstract. Side-channel attacks have often proven to have a devastating
effect on the security of cryptographic schemes. In this paper, we address
the problem of storing cryptographic keys and computing on them in a
manner that preserves security even when the adversary is able to obtain
information leakage during the computation on the key.
Using any fully homomorphic encryption with re-randomizable cipher-
texts, we show how to encapsulate a key and repeatedly evaluate arbi-
trary functions on it so that no adversary can gain any useful information
from a large class of side-channel attacks. We work in the model of Mi-
cali and Reyzin, assuming that only the active part of memory during
computation leaks information. Our construction makes use of a single
“leak-free” hardware token that samples from a distribution that does
not depend on the protected key or the function that is evaluated on it.
Our construction is the first general compiler to achieve resilience against
polytime leakage functions without performing any leak-free computa-
tion on the protected key. Furthermore, the amount of computation our
construction must perform does not grow with the amount of leakage
the adversary is able to obtain; instead, it suffices to make a stronger
assumption about the security of the fully homomorphic encryption.

1 Introduction

Leakage-resilient cryptographic constructions – constructions that remain secure
even when internal state information leaks to the adversary – have received much
recent interest. Traditionally, security models have treated such internal state
information as perfectly hidden from the adversary. However, the development
of various side-channel attacks has made it clear that this traditional view is
inconsistent with physical reality. In a side-channel attack, an adversary obtains
information about the internal state of a device by measuring such things as
power consumption, computation time, and emitted radiation.

Cryptographic primitives with long term keys, such as encryption and signa-
ture schemes, are often targeted by such attacks. An adversary observing infor-
mation leakage from computation on the key can potentially accumulate enough
data over time to compromise the security of the scheme. Consequently, storing
? Supported by the Natural Sciences and Engineering Research Council of Canada

(NSERC).

keys and computing on them in adversarial environments has been an important
goal both in theory and practice. Indeed, many operating systems provide cryp-
tographic facilities that allow programs to access keys only through designated
functions, such as signing and encrypting. Smart cards provide a similar inter-
face in hardware. In both cases, the goal is to limit any adversary to interacting
with the scheme through designated channels. Nevertheless, information leakage
through physical side-channels is often sufficient to overcome such barriers and
break the scheme.

In this paper, we propose an approach for protecting cryptographic keys and
computing on them repeatedly in a manner that preserves the secrecy of the key
even when information about the state of the device continuously leaks to the
adversary. Towards this goal, we define a new primitive called a key proxy, which
encapsulates a key K and provides a structured way of evaluating arbitrary func-
tions on K. This allows, for example, the conversion of any pseudorandom func-
tion, signature scheme, or public-key encryption scheme into a leakage-resilient
variant of itself. Our construction withstands a bounded amount of leakage per
invocation (where an invocation occurs each time a function is evaluated on
K), but the total amount of leakage is unbounded. Previously, only stream ci-
phers, signature schemes, and identification scheme have been made resilient to
an unbounded total amount of leakage.

For our construction, we make use of the recently achieved fully homomorphic
encryption [12, 4], and an additional “leak-free” component. We describe two
ways of instantiating this component, and in both cases the component samples
from a globally fixed distribution that does not depend on K.

Leakage-resilient cryptography. The problem of executing code in an adversar-
ial environment has always been on the minds of cryptographers. Still, most
cryptographic schemes are designed assuming that the hardware on which they
will be implemented is a black box device, and information is accessible to the
adversary only through external communication channels. Goldreich and Ostro-
vsky [13] consider the problem of protecting software from malicious users, and
define the concept of an oblivious RAM – a CPU that is capable of evaluat-
ing encrypted programs using a constant amount of leak-free memory and an
unbounded amount of memory that is fully visible to the adversary. The obliv-
ious RAM is initialized with a secret key, which is used to decrypt encrypted
instructions, execute them, and re-encrypt the output. The encrypted state of
the program is stored in the clear. Oblivious RAMs provide the strong security
guarantee that even if an adversary can keep track of the memory locations ac-
cessed by the computation, she is still unable to gain any additional information
about the program over what would normally be revealed through black box
access.

Since the work of Goldreich and Ostrovsky, the focus in leakage-resilient cryp-
tography has been steadily shifting towards allowing the adversary ever-growing
freedom in observing the computation of cryptographic primitives. Ishai, Sahai,
and Wagner [17] introduce “private circuits” – a generic compiler that transforms
any circuit into one that is resilient to probing attacks. In a probing attack, the

adversary selects a subset (of some fixed size) of the wires of the circuit and
obtains the values of these wires. Goldwasser, Kalai, and Rothblum [15] define
one-time programs – programs that come with small secure hardware tokens,
and can be executed a bounded number of times without revealing anything but
the output, even if the adversary observes the entire computation. The secure
tokens are the hardware equivalent of oblivious transfer – each token stores two
keys and reveals one of them upon request, while the second key is erased.

Micali and Reyzin [20] outline a framework for defining and analyzing cryp-
tographic security against adversaries that perform side channel attacks. They
introduce an axiom: only computation leaks information. That is, at any point
during the execution of an algorithm, only the part of memory that is actively
computed on may leak information. This allows for convenient modeling of leak-
age: an algorithm is described as a sequence of procedures and the set of variables
that is accessed by the procedure. The adversary may then obtain leakage sep-
arately from the contents of each set of variables as they are accessed during
the execution of the algorithm. The only-computation-leaks model (OCL) has
since been used to obtain stream ciphers [9, 21] and signature schemes [10] that
remain secure even if the adversary obtains leakage from the active state each
time the primitive is used, and the total amount of leakage is unbounded. We
refer to such leakage as “continuous leakage” for the rest of the paper.

Faust et al [11] propose an alternative restriction on side-channel adversaries:
restricting the computational power of the leakage function but allowing leakage
on the entire state. Faust et al describe a circuit transformation that immunizes
any circuit against leakage functions that can be described as AC0 circuits1. The
transformed circuit can leak information from the entire set of wires at each
invocation, and makes use of a polynomial number of leak-free components that
generate samples from a fixed distribution that does not depend on the compu-
tation of the circuit. We make use of a similar leak-free component, although the
distribution generated by our component is significantly more complex than the
one in [11] due to the fact that we must defend against leakage functions that
are not restricted to circuits of small depth.

Very recently, specific leakage-resilient cryptographic primitives have been
constructed under even more general continuous leakage models. Dodis, Har-
alambiev, Lopez-Alt, and Wichs [7] have constructed several primitives, includ-
ing signature schemes and authenticated key agreement protocols, that remain
secure even if the entire state (and not just the active part) leaks information
continuously. The public key of the scheme remains fixed throughout the life-
time of the system. Brakerski, Kalai, Katz, and Vaikuntanathan [3] construct a
public-key encryption scheme that allows continuous leakage on the entire state,
and does not require a leak-free key update procedure. [3] also construct sig-
nature schemes and identity based encryption under slightly different leakage
models. As in our work, both above works provide protection against leakage
that can be described by arbitrary polynomial-time computable functions with
sufficiently short output.

1 AC0 circuits have constant depth and unbounded fan-in

In addition to the recent work on cryptographic constructions that are re-
silient to continuous leakage, there has been significant progress [1, 2, 22, 19] on
obtaining resilience to “memory attacks” – side channel attacks where the ad-
versary obtains a bounded amount of information about the memory contents
of the device throughout its lifetime. Perhaps due to the bounded nature of this
type of leakage, constructions secure against memory attacks tend to be quite
efficient and do not require the algorithm to maintain a state.

Concurrent work of Goldwasser and Rothblum. In a concurrent paper [16], Gold-
wasser and Rothblum construct a general compiler that achieves resilience to
polynomial time leakage. Their construction relies on a linear number of leak-
free components, while ours relies on a single component. On the other hand,
they rely on the standard Decisional Diffie Hellman assumption, whereas we rely
on fully homomorphic encryption.

On testable leak-free components. When constructing leakage-resilient crypto-
graphic primitives, one has to take care in the nature and amount of components
that are assumed not to leak any information. It is preferable, but may not al-
ways be possible, to avoid such components altogether. For example, one can
protect any functionality against leakage given an arbitrary number of leak-free
gates that can decrypt a ciphertext, perform a logical operation on the plain-
text, and re-encrypt the result. Such a component can be used to evaluate the
circuit F on K gate by gate, keeping all intermediate values encrypted, and
thereby rendering leakage useless. However, building such leak-free components
may be as difficult as constructing a leak-free computer and forgetting all about
side-channels. Consequently, the focus of research in this area has always been
to reduce the power and amount of computation that is assumed to be a-priori
insulated from side-channel attacks.

Our construction uses a leak-free component that produces random encryp-
tions of some fixed message (in our case – 0̄) under a given public key in the
fully homomorphic encryption scheme. More specifically, the leak-free compo-
nent we use is a randomized component that, given pub, produces two random
encryptions of 0̄. Consequently, the computation performed by this component
does not depend on any user or adversarially supplied inputs, and in particular
does not depend on the key K or the function F that is evaluated on K. We call
such a component testable because it can be accurately simulated in a controlled
environment – all one has to do is feed the component random bits and randomly
generated public keys and observe its behavior. More generally, we say that a
component is testable if its inputs come from a globally fixed distribution that
is independent from other inputs to the system.

We propose testability as a rule of thumb for secure hardware components
in leakage resilient cryptography. All hardware components leak at least some
information such as timing (every computation takes time) and power consump-
tion. Therefore, the best we can hope for is that the information leaked by the
components that we assume to be leak-free is useless to the adversary. Testabil-
ity gives us the ability to observe the leakage from the secure component – as it

will happen during actual usage – and estimate whether the component is safe
to use. We note that the components used by [11] and [16] are testable.

In contrast to previous general compilers that achieve leakage resilience, we
use only one leak-free component, regardless of the size of the circuit that is
evaluated on K, or the amount of information leakage per invocation. Thus, our
construction does not require the number of leak-free components to grow with
the amount of leakage.

Our contributions. We study the problem of computing on a cryptographic key
in an environment that leaks information each time a computation is performed.
We show that in the OCL model with a single leak-free randomized token, a
cryptographic key can be protected in a manner that allows repeated compu-
tation on it while making sure that the adversary gains no information from
side-channel information leakage.

More precisely, we propose a tool which we call a key proxy – a stateful
cryptographic primitive that is initialized once with a key K, and then given
any circuit F computes F (K). Any leakage obtained by an adversary from the
computation of the key proxy can be computed given just F and F (K). Using
any fully homomorphic encryption (FHE) we construct a key proxy with the
following properties:

Resilience to adaptive polynomial time leakage. During each invocation of the
key proxy, we allow the adversary to adaptively select leakage functions that are
modeled as arbitrary circuits with a sufficiently short output. The exact amount
of round leakage that our construction can withstand depends on the level of
security of the underlying FHE. Assuming the most basic security for the FHE
(i.e. against polynomial time adversaries) permits security against O(log n) bits
of leakage each time a function is evaluated on K. More generally, given a 2l(n)-
secure FHE, our construction can withstand roughly l(n) bits of leakage per
invocation.

Independent complexity. The starting point of leakage-resilient cryptography
is that computation leaks information. It does not require a large leap of faith to
suspect that more computation leaks more information. In fact, to the best of
our knowledge, this is indeed the case for many side-channel attacks in practice.
The amount of computation performed by our key proxy construction does not
depend on the amount of leakage that the adversary obtains per invocation.
Instead, to get resilience to larger amounts of leakage, a stronger assumption
about the security of the underlying fully homomorphic encryption is used. This
allows us to avoid a circular dependency where, in order to obtain resilience to
larger amounts of leakage one must build a more complex device, which in turn
leaks more information.

One-time programs with efficient refresh. The one-time programs of [15] can
be implemented without leak-free one-time memory tokens by storing the con-
tents of the tokens in memory, and then accessing only the needed values during
computation. The one-time programs can then be refreshed occasionally in a
secure environment to allow continuous use. Currently, the refresh procedure
performs as much computation as the evaluation of the program that it pro-

tects. If one is willing to trade resilience against complete exposure of the active
memory (achieved by [15]) for resilience length bounded leakage then by pre-
computing the outputs of the leak-free tokens in our construction and storing
them in memory we obtain one-time programs with an update procedure of fixed
complexity that does not depend on the protected program.

Our approach. The underlying building block for our construction is fully ho-
momorphic encryption. An FHE is a public-key encryption scheme that allows
computation on encrypted data. That is, given a ciphertext with corresponding
plaintext M , the public key, and a circuit F , there is an efficient algorithm that
computes an encryption of F (M).

For our construction, we partition the state of the key proxy into two parts, A
and B (or equivalently two devices). Given a key K, the key proxy is initialized
as follows. An FHE key pair (pri, pub) is generated and is stored in memory
A. Then, a random encryption C of K under pub is computed and is stored in
memory B. To evaluate a function F (described as a circuit) on K, the following
actions are performed. First, a new pair of keys (pri′, pub′) is generated and
stored in memory A, and an encryption Cpri = Encpub′(pri) of the old private
key is written to a public channel. Then, computing on memory B and the public
channel, the following two ciphertexts are generated homomorphically from C
and Cpri: an encryption Cres of F (K) and a fresh encryption Ckey of K. Note
that both Cres and Ckey are encryptions under the new public key pub′. The
ciphertext Cres is then sent back to memory A where it is decrypted, and F (K)
is returned as the output of the program. This basic approach is described in
Figure 1.

It is clear that without leakage, the above construction is secure. Of course,
the main difficulty is showing that leakage does not provide the adversary with
any useful information. Below we provide an informal description of two main
technical issues that arise.

Leakage on private keys and ciphertexts. It is easy to see that without refreshing
the encryption C of K, a leakage adversary will eventually learn all of K by
gradually leaking all of C and pri and then simply decrypting. Therefore, it is
clear that an update procedure is necessary. The algorithm described in Figure 1
performs such an update: After each invocation, memory A contains a freshly
generated private key and memory B contains an encryption of K under the
corresponding public key. However, we cannot directly claim that this refreshing
procedure provides the necessary level of security. The main difficulty stems
from the fact that the adversary obtains leakage on the private key in memory
A both before and after she obtains leakage on the encryption C of K under the
corresponding public key. In particular, if the adversary could obtain the entire
ciphertext C, she would be able to hardcode it into the second leakage function
that is applied to the private key. The leakage function would then decrypt C
and leak bits of information about K.

This requires us to make use of the fact that the adversary obtains only a
bounded amount of leakage on the ciphertext C, and never sees it completely.

Memory A Memory B

Contents of memory: prii
Contents of memory: C = Encpubi

(K),
Input: circuit F

(prii+1, pubi+1) = KeyGen(1n)
Encrypt Cpri = Encpubi+1(prii)

Set memory to prii+1
pubi+1,Cpri−−−−−−−→

Homomorphically compute using C, Cpri:
Cres = Encpubi+1(F (K))
and Ckey = Encpubi+1(K)
Set memory to Ckey

Cres←−−−−−−
Compute Y = Decprii+1(Cres)
Return Y

Fig. 1. Informal description of the construction

We argue that any leakage function that provides enough information about the
ciphertext in order to later learn something about the plaintext given the private
key, essentially acts as a distinguisher and can be used to break the semantic
security of the FHE.

Randomizable FHE. Ciphertexts produced by fully homomorphic encryption
schemes may carry information about the homomorphic computation that was
performed to obtain them. For instance, it is possible that the ciphertext Cres

is actually first decrypted to a string of the form (F (K), K) and then the de-
cryption algorithm ignores the second element in the pair. In this case, the
adversarial leakage function is clearly not forced to follow the honest decryption
algorithm and can make use of the intermediate values of the decryption process
to leak information about K. Similarly, the ciphertext Ckey may contain infor-
mation about the function F that was evaluated on K. For some applications,
such as encryption where F encodes in plain text the message to be encrypted,
this is undesirable since the adversary may use future leakage functions to gain
information about the message.

Fortunately, the homomorphic encryption schemes of Gentry [12] and of van
Dijk et al [4] have the following additional property: given any encryption C
of a message M and a random encryption C ′ of M ′, the ciphertext C + C ′,
where the addition is performed over the appropriate group of ciphertexts, is
a random encryption of M + M ′. Consequently, to address the issue described
above, we randomize both Cres and Ckey by adding random encryptions of zero
to both ciphertexts. In order to make use of the property described above, the
encryptions of zero need to be generated without leakage; otherwise, the leaked

information maintains a correlation between the randomized ciphertext and the
history of the computation that was used to produce the original ciphertext.

We note that in the FHE schemes of [12] and [4], C ′ has to be generated in a
special way in order to have enough noise to annihilate any dependence between
C + C ′ and the computation history of C. For simplicity of exposition we ignore
this distinction, and instead remark that the randomization procedures of both
FHE schemes satisfy the properties needed for our construction.

Function privacy in key proxies. In the above description of key proxies, we re-
quire that the leakage obtained by the adversary can be simulated given just F
and F (K). However, in some applications, such as private-key encryption, the
function F itself also needs to be hidden. In the case of encryption, F contains
the message M , so an adversary can break semantic security simply by leak-
ing information about F , ignoring K completely. This raises a subtle modeling
issue: the message M must exist somewhere as plaintext, and if the adversary
obtains leakage on that computation, she will trivially break semantic security.
Therefore, irrespective of the definition of leakage-resilient key proxies, seman-
tic security cannot be achieved when every invocation of every algorithm leaks
information.

There are several ways in which this issue can be addressed. One solution is to
weaken the definition of semantic security by requiring that the plaintexts have
high pseudo-entropy2 given the leakage obtained by the adversary. We avoid this
approach both because it leads to complex definitions, and because it does not
seem to have a clear advantage over the following much cleaner solution. Instead,
we allow the adversary to obtain leakage both before and after the challenge ci-
phertext is generated, but not on the computation of the challenge ciphertext
itself. This essentially means that while leakage can compromise individual en-
cryptions, the long-term key remains safe. Under this restriction, our definition
of key proxies provides the needed level of security. This approach is consistent
with previous definitions of leakage-resilient semantic security (see e.g. [9, 22, 8,
6]), and allows us to avoid additional complexity in our definition. This is desir-
able especially given the fact that for some applications of key proxies, such as
signature schemes, function privacy is not necessary.

We mention briefly that another option is to define a leakage model for
private-key encryption which allows the encryption algorithm to perform some
leak-free pre-processing that is independent of the key. Then, the encryptor can
generate an encrypted version of the circuit F , which can be safely given to the
adversary without compromising security.

Organization. In Section 3, we describe the computational and leakage models
that we use, and define a leakage-resilient key proxy. In Section 4, we provide
our main construction, and analyze its security. In Section 5, we describe sev-
eral variants of our model and construction, and provide several applications of
leakage-resilient key proxies.
2 A distribution has pseudo-entropy ≥ k if it is computationally indistinguishable from

some distribution with min-entropy ≥ k.

2 Preliminaries

Notation. We write PPT to denote Probabilistic Polynomial Time. When we
wish to fix the random bits of a PPT algorithm M to a particular value, we
write M(x; r) to denote running M on input x and randomness r. We write
timen(M) to denote the running time of algorithm M on security parameter n.
We use x ∈R S to denote the fact that x is sampled according to a distribution
S. Similarly, when describing an algorithm we may write x←R S to denote the
action of sampling an element from S and storing it in a variable x.

It is common in cryptography to describe probabilistic experiments that test
the ability of an adversary to break a primitive. Given such an experiment Exp,
and an adversary A, we write A � Exp to denote the random variable repre-
senting outcome of Exp when run with the adversary A.

2.1 Fully Homomorphic Encryption

The main tool in our construction is a fully homomorphic public-key encryption
(FHE) system. Intuitively, such a system has the usual semantic security prop-
erties of a public-key encryption (PKE) scheme, but in addition, can perform
arbitrary computation on encrypted data. The outcome of this computation is
of course also encrypted. The first construction of FHE was given by Gentry in
[12], and is based on ideal lattices. Recently another construction was proposed
by van Dijk et al [4].

We do not go into the details of the FHE constructions, but rather present
the result with respect to an arbitrary FHE with an additional randomization
property, which is satisfied by both constructions.

Definition 1. Let FHE = (KeyGen, Enc, Dec, EncEval, Add, Subtract) be a tuple
of PPT algorithms, and let l : N→ N. We say that HPKE is an l(n)-secure fully
homomorphic public key encryption scheme if the following conditions hold:

1. The triple (KeyGen, Enc, Dec) is a public-key encryption scheme. We assume
without loss of generality that the private key is always the random bits of
KeyGen.

2. The algorithm EncEval(pub, C, F), where pub is a public key, C = (C1, . . . , Cn)
is a vector of ciphertexts with plaintexts (m1, . . . ,mn), and F is a circuit on
n inputs, outputs a string C ′ which is a valid encryption of F (m1, . . . ,mn).

3. The algorithms Add and Subtract have the following properties:
(a) For all pri, for pub = KeyGen(pri), for all messages M1 and M2, for a

random encryption C1 of M1 under pub and for every encryption C2 of
M2 under pub, Add(pub, C1, C2) is distributed identically to Encpub(M1+
M2), and Subtract(pub, C1, C2) is distributed identically to Encpub(M1−
M2).

(b) For all ciphertexts C1 and C2, Add(pub, Subtract(pub, C2, C1), C1) = C2.
That is, subtracting a ciphertext is the inverse of adding it.

4. For every probabilistic adversary A running in time at most l(n), the advan-
tage of A in breaking the semantic security of FHE is at most 1/l(n).

Remark 1. The algorithms Add and Subtract may be implemented as addition
and subtraction over the space of ciphertexts, though we do not require this. In
some fully homomorphic encryption schemes, Add and Subtract may not achieve
the exact requirement of step 3 above. Specifically, Add and Subtract may pro-
duce an encryption that cannot be computed on homomorphically using EncEval.
We note that this is not a problem for our construction since we only use EncEval
on encryptions of pri, which are ephemeral and never the output of Add or
Subtract. We avoid formalizing this issue to improve exposition.

3 Models and Definitions

In this section, we present the definition of a leakage-resilient key proxy (LRKP).
We start with a syntactic description of the primitive, and then describe the
security experiment and the leakage model.

Stateful Algorithms. Due to the continuous nature of side-channel attacks, it is
necessary for an LRKP to maintain a state in order to achieve security. We model
stateful algorithms by considering algorithms with a special input and output
structure. A stateful randomized algorithm takes as input a triple (x; R,S) where
x is the query to the algorithm, R is a random string, and S is a state (when R
is clear from context we omit it, and denote the input by (x; S)). It then outputs
(y, Snew) where y is the reply to the query, and Snew is the new state.

Definition 2. A key proxy is a pair KP = (KPInit, KPEval), where KPInit
is an algorithm, and KPEval is a stateful algorithm. For fixed c ∈ N and for
all n ∈ N, K ∈ {0, 1}nc

, KPInit(1n, K) outputs an initial state S. For every
circuit F : {0, 1}|K| → {0, 1}n, and random coins R, the stateful algorithm
KPEval(1n, F ; R,S) outputs F (K).

We now describe the security experiment of LRKPs. This experiment is pa-
rameterized by the leakage structure on a single invocation of the KPEval algo-
rithm. However, for clarity we start with the description of the general exper-
iment, and then provide details on the leakage that occurs at each invocation.
We model the the leakage resilience of a key proxy by requiring the leaked infor-
mation to be simulatable. That is, we require the existence of a simulator Sim
that, given F and F (K), can simulate the leakage and messages obtained by the
adversary during the computation of KPEval(1n, F ; R,S). No efficient adversary
should be able to tell whether she is getting actual leakage and messages, or
interacting with a simulator. We now describe the real and ideal security exper-
iments:

Let KP = (KPInit, KPEval) be a key proxy. Let A and Sim be PPT algo-
rithms, n ∈ N, and consider the following two experiments:

ExpReal (Real Interaction). The interaction of the adversary with the key
proxy proceeds as follows:
1. A key K is chosen by the adversary, and KPInit(1n, K) is used to generate

an initial state S.

2. The adversary repeats the following steps an arbitrary number of times:
(a) The adversary submits a circuit F , which is evaluated on K by

KPEval. During the computation, the adversary acts as a single
invocation leakage adversary (described below in Definition 5) for
KPEval.

(b) At the end of the computation of KPEval, the adversary is given
F (K).

3. After the adversary is done making queries, it outputs a bit b.
ExpIdeal (Ideal Interaction). The interaction of the adversary with simulated

leakage proceeds as follows:
1. The adversary submits a key K, which is not revealed to the simulator.
2. The adversary then repeats the following steps an arbitrary number of

times:
(a) The adversary submits a circuit F , and Sim is given F and F (K).

The adversary then acts as a single invocation leakage adversary
according to Definition 5, except that the leakage functions are sub-
mitted to the simulator, which returns simulated leakage values and
messages.

(b) Eventually the adversary stops submitting leakage functions, and is
given F (K).

3. After the adversary is done making queries, it outputs a bit b.

Definition 3. We say that KP is a Leakage-Resilient Key Proxy if for every
PPT A there exists a PPT S and a negligible function neg(·) such that

|Pr[(A � ExpReal) = 1]− Pr[(A � ExpIdeal) = 1]| ≤ neg(n)

The above definition describes the security of an LRKP relative to some un-
specified procedure which allows the adversary to obtain leakage during each in-
vocation of KPEval. The exact procedure for a single-invocation leakage depends
on the leakage model and on the structure of the implementation of KPEval. Be-
low we formalize the structure of our solution, and describe the leakage obtained
by the adversary during a single invocation of KPEval.

Our construction of KPEval is described as a protocol between two parties
EvalA and EvalB that leak information separately, and where the messages be-
tween EvalA and EvalB are public. In this format, our construction requires two
flows between the parties: one from EvalA to EvalB and one from EvalB to EvalA.
The following definition formalizes this structure.

Definition 4. A 2-round split state key proxy KP = (KPInit, KPEval) is a
key proxy such that the state S is represented as a pair S = (MemA, MemB) ∈
({0, 1}nd

)2 for some fixed d ∈ N, and the algorithm KPEval is described as four
algorithms (LeakFree, EvalA1, EvalB, EvalA2), each running in time polynomial in
n, where

1. EvalA1 takes as input MemA, OutLFA, and randomness RandA, and outputs
an updated state MemA′ ∈ {0, 1}nd

and a message MAB to EvalB.

2. LeakFree takes as input message MAB and randomness RandLF, and outputs
string OutLF.

3. EvalB takes as input MemB, randomness RandB, OutLF, the message MAB,
and a circuit F : {0, 1}|K| → {0, 1}n of arbitrary size. It then outputs an
updated state MemB′ ∈ {0, 1}nd

and a message MBA to EvalA.
4. EvalA2 takes as input MemA′, the message MBA and outputs an updated

state MemA′′ and the result F (K).

The output of KPEval is F (K), and the updated state is (MemA′′, MemB′).

Recall that our construction requires a leak-free component. This leak-free com-
ponent is modeled by algorithm LeakFree above. A crucial point here is that
LeakFree receives only randomness and a public message as input, and, in par-
ticular, receives neither F nor the saved state (MemA, MemB) as inputs; there-
fore, regardless of the actual construction, the above definition prevents LeakFree
from carrying out the evaluation of F on K, which would make the construction
trivial.

We are now ready to describe the leakage structure on a single invocation of
a 2-round split state key proxy. The leakage model we use, commonly known as
“only computation leaks information” (OCL), lets the adversary obtain leakage
only on the active part of memory during each computation.

Definition 5. Let l : N → N and let KP be a 2-round split state key proxy. A
single invocation leakage adversary in the only-computation-leaks model chooses
a circuit f1, then sees f1(MemA, RandA) and MAB, chooses circuit f2, then
sees f2(MemB, OutLF, RandB) and MBA, chooses a circuit f3, and finally sees
f3(MemA′). The adversary is l-bounded if for all n the range of f1, f2, f3 is
{0, 1}l(n).

Note that in the above definition, the leakage functions can compute any in-
ternal values that appear during the computations of EvalA1, EvalB, and EvalA2.
This means, for example, that it is unnecessary to explicitly provide MAB to f1

or MBA to f2.

History freeness. In Definition 3 we allow information about the functions Fi

that are evaluated on K to leak to the adversary. In particular, it is possible that
during some invocation j the adversary can obtain, through leakage, information
about some previously queried function Fi. In the introduction we mentioned
that leakage-resilient variants of some applications, such as private-key encryp-
tion, are defined to allow leakage both before and after the generation of the
challenge ciphertext, but not on the challenge itself. However, if the state of
LRKP keeps a history of some of the functions that were applied to K, then by
leaking on it after the challenge was computed, the adversary may be able to
break the semantic security of the encryption. We note that the above defini-
tion is sufficient to obtain security in the presence of what we call “lunch-time
leakage” attacks – where the adversary obtains leakage only before the challenge
ciphertext is generated, but not after.

To address the above issue, and allow full leakage in applications such as
encryption, we introduce an additional information theoretic property that re-
quires that the state of the LRKP is distributed identically after all sequences of
functions that are evaluated on K. This property is satisfied by our construction,
and prevents the above mentioned “history attack”.

Definition 6. An LRKP (KPInit, KPEval) is called history free if for all n ∈
N and all K ∈ {0, 1}poly(n), there exists a distribution D over the states of
the LRKP such that for all j ∈ N, all sequences of functions F1, . . . , Fj :
{0, 1}|K| → {0, 1}n, and all sequences of random tapes R0, . . . , Rj−1, the ran-
dom variable {Sj+1|S1, . . . , Sj} over Rj is distributed according to D, where S1 =
KPInit(1n, K; R0) and Si is the updated state after KPEval(1n, Fi−1; Ri, Si−1).

4 Leakage-Resilient Key Proxies From Homomorphic
Encryption

Given a fully homomorphic public-key encryption scheme FHE = (KeyGen, Enc,
Dec, EncEval, Add, Subtract) we construct a leakage-resilient 2-round split state
key proxy LRKP = (KPInit, KPEval).

KPInit(1n, K): The algorithm KPInit(1n, K) first runs KeyGen(1n) to obtain a
public-private key pair (pub1, pri1) for the FHE. It then generates a cipher-
text Ckey = Encpub1

(K) and assigns MemA ← pri1 and MemB ← Ckey. The
output is an initial state that consists of two parts (MemA, MemB).

KPEval(1n, F ; (MemA, MemB)): The algorithm KPEval consists of four subrou-
tines: 〈LeakFree, EvalA1, EvalB, EvalA2〉 that are used as follows: on input
circuit F first generate (OutLFA, OutLFB) ←R LeakFree(1n). Then, follow
the protocol described in Figure 2 by computing

(MAB , MemA′)←R EvalA1(MemA, OutLFA);
(MBA, MemB′)←R EvalB(MemB, OutLFB , MAB);
Y ← EvalA2(MemA′, MBA)

The final state after one evaluation of KPEval is (MemA′, MemB′), and the
output is Y .

We now describe the subroutines 〈LeakFree, EvalA1, EvalB, EvalA2〉 of KPEval:

LeakFree(pub): Parse randomness as (rLF1, rLF2), and compute

CR0 = Encpub(0̄; rLF1)
CR1 = Encpub(0̄; rLF2)
OutLF = (CR0, CR1)

and output OutLF.

The subroutines EvalA1, EvalB, and EvalA2 are described in Figure 2 as a two
round two party protocol where EvalA1 and EvalA2 specify the actions of party
A and EvalB specifies the actions of party B. In the definition of EvalB we use
subroutines Evaluate and Refresh that are defined as follows:

Evaluate(F,C, pri): Compute and output F (Decpri(C))
Refresh(C, pri): Compute and output Decpri(C)

Party A Party B

Contents of MemA: prii
Randomness: prii+1, r

i
pri

Contents of MemB: C′
key,i = Encpubi

(K)
Randomness: ri

B1, ri
B2

Input: Fi

EvalA1:
pubi+1 = KeyGen(prii+1)
Ci

pri = Encpubi+1(prii; r
i
pri)

MemA← prii+1

pubi+1,Ci
pri−−−−−−−−−−−→

(CR0,i, CR1,i) = LeakFree(pubi+1)

EvalB:
Cres,i = EncEval(pubi+1, C

i
pri,

Evaluate(Fi, C
′
key,i, ·); ri

B1)
Ckey,i+1 = EncEval(pubi+1, C

i
pri,

Refresh(C′
key,i, ·); ri

B2)
C′

res,i = Add(pubi+1, CR0,i, Cres,i)
C′

key,i+1 = Add(pubi+1, CR1,i,
Ckey,i+1)

MemB← C′
key,i+1

C′
res,i←−−−−−−−

EvalA2:
Yi = Decprii+1(C′

res,i)
Output Yi

Fig. 2. The algorithm KPEval in its ith invocation.

The correctness of this construction follows in a straightforward manner from
the correctness of the underlying FHE. We also note that our construction is
history free according to Definition 6. This is due to the fact that the values
assigned to MemA and MemB at the end of KPEval are independent from the
function F . In particular, MemA is simply a random private key, and MemB
contains an encryption of K which was obtained by a homomorphic evaluation

of Refresh on the previous contents of MemB and an encryption of the previous
private key, neither of which depends on F .

The bulk of the analysis is in showing that our construction is in fact leakage-
resilient according to Definition 3, where during each invocation the leakage
structure on the computation of KPEval is given in Definition 5. We now state
our main theorem.

Theorem 1. Let LRKP be the 2-round split state key proxy described in the
above construction, and let l : N → N. If FHE is a 2O(l(n))-secure fully homo-
morphic encryption then LRKP is leakage-resilient against all O(l(n))-bounded
adversaries in the OCL model.

The theorem follows as a corollary from the following lemma:

Lemma 1. Consider the experiment ExpReal instantiated using scheme LRKP .
Then, for every function ε(n) > 0, every d > 0, every l : N → N, and every l-
bounded PPT adversary Adv that makes nd queries and gets leakage according
to the only-computation-leaks model, there exists a PPT simulator S such that
if

|Pr[(Adv � ExpReal) = 1]− Pr[(Adv � S) = 1]| ≥ ε(n)

for infinitely many n, then for every function ε′(n) > 0 there exists an adversary
Adv′ that runs in time

23l(n)+7

ε′(n)2

(
3l(n) + 4 + log

1
ε′(n)

)
· timen (LRKP ↔ Adv)

and breaks the semantic security of (KeyGen, Enc, Dec) with advantage

ε(n)
3 · 22l(n)(nd + 1)

− 2ε′(n)

for infinitely many n. Specifically, S runs in time timen(LRKP ↔ Adv).

4.1 Proof approach for Lemma 1

Let Adv be a PPT adversary according to Definition 3 that makes nd func-
tion evaluation queries and gets leakage according to the only-computation-leaks
model described in Definition 5. We define a sequence of experiments where the
initial experiment is the real security experiment ExpReal, and the final experi-
ment is such that the leakage obtained by the adversary for each KPEval query
F can be simulated given only (F, F (K)). Specifically, the final experiment in-
volves instantiating our construction with key 0̄ instead of K. We show that
if Adv can distinguish the initial experiment and the final experiment, we can
construct an adversary Adv′ that, roughly speaking, distinguishes variants of
these experiments that consist of only two rounds. We then show how pairs of
the leakage queries of Adv′ can be combined into a single query (of larger output
length) using a guess-and-check approach: when the adversary would normally

make the first of the pair of leakage queries, it instead guesses an output and ver-
ifies this guess when it makes the second leakage query; when the guess is wrong,
the adversary outputs a randomly chosen bit. Repeatedly combining queries in
this manner yields an adversary that just makes a single leakage query and (es-
sentially) distinguishes encryptions of K and 0̄. To finish the proof, we use an
observation of Akavia et al [1] that every 2O(`(n))-semantically-secure public-
key encryption scheme remains secure when the adversary gets O(`(n)) bits of
leakage on KeyGen. We defer the details to the full version of this paper [18].

5 Extensions and Applications

Below we describe some variants and applications of our scheme.

Resilience against simultaneous leakage. In Definition 5, the adversary is
only allowed to see leakage from the part of memory where computation is occur-
ring. Our construction is also secure under an alternative leakage model where
the adversary is allowed to see independent leakage from both parts of memory
each time it makes a leakage query. The basic idea is to first show that our
construction is secure under a variant of Definition 5 where the adversary sees
an additional leakage f4 on memory B. Under this variant of Definition 5, the
adversary’s leakage queries strictly alternate between memory A and memory
B. We then use an observation of Pietrzak [21] that simultaneous but indepen-
dent leakage on two pieces of memory can be perfectly simulated by strictly
alternating leakage (of twice the output length) on these two pieces of memory.

Resilience against complete compromise. Our scheme can be viewed as
a protocol between two devices that communicate over a public channel. The
key remains hidden even if the memory contents of one of the devices are leaked
completely (for example, in a cold boot attack), provided that the compromise is
detected and no further computation is performed using the counterpart device.

One-time programs. Our construction can be modified to work without any
leak-free components by pre-computing a large number of tuples of the form
(pri, pub, C, C ′) where C and C ′ are encryptions of 0 under pub, and storing the
tuples in memory. Then, at each invocation, one such tuple is used (first pri
and pub are used by EvalA1, and then C, C ′ are used by EvalB). Assuming that
only computation leaks information, the remaining tuples remain hidden until
they are accessed. Therefore, security is obtained following essentially the same
argument as the proof of Theorem 1. The number of invocations in this case is
bounded by the number of pre-computed tuples. This approach provides a weaker
security guarantee than the one time programs of [15] (i.e. only security against
leakage), but has the advantage that the pre-computing phase is independent
from the functionality that is being protected.

Concurrent composition. We have shown that an adversary interacting with
a single instance of our construction gains no information about the underlying
key. However, for some applications, such as private-key encryption where several

parties compute on the same agreed upon key, this may not suffice. It is quite
possible that the adversary is performing side-channel attacks on several parties
simultaneously, and is coordinating his leakage functions adaptively. In the full
version of this paper, we show that an adversary interacting concurrently with
several instances of our construction still gains no information through leakage.

Leakage-resilient private-key encryption. Extending the traditional no-
tions of semantically secure encryption to the leakage setting is non-trivial. In
particular, suppose that every invocation of the encryption algorithm leaks in-
formation. Then, since the plaintext of the adversary’s challenge message is an
input to the encryption algorithm, the adversary can trivially break semantic
security by leaking even a single bit about this message. To deal with this prob-
lem, several works [9, 22, 8, 5] adopt the approach that the computation of the
encryption of the challenge is not allowed to leak. We follow this approach, and
show how to obtain semantically-secure private-key encryption in the leakage
setting using LRKPs. The details are deferred to the full version of this paper.

Leakage-resilient public-key encryption. Constructions of public-key en-
cryption schemes that are resilient to an a-priori bounded amount of leakage
were recently given by [22, 2, 5]. However, no constructions are known of PKEs
that remain secure under Chosen Ciphertext Attack (CCA), if the adversary can
obtain leakage during each decryption query. LRKPs provide a convenient way to
achieve such a construction. Specifically, given a CCA-PKE (KeyGen, Enc, Dec),
we construct a new PKE (KeyGen′, Enc, Dec′) where the encryption algorithm
stays the same; the key generation KeyGen′ runs KeyGen to obtain (pub, pri) and
then initializes an LRKP with pri. The public key is pub, and the private key is
the initial state state1 of the LRKP. The decryption algorithm is stateful, and
to decrypt a ciphertext C, Dec′ generates a circuit H(x) that computes that
function Decx(C), and then uses KPEval to evaluate it on the private key pri.

Acknowledgements. We thank Charles Rackoff for many hours of discussion.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: TCC ’09: Proceedings of the 6th Theory
of Cryptography Conference. pp. 474–495. Springer, Berlin, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage resilient public-key cryptography in the
bounded retrieval model. In: Advances in Cryptology — CRYPTO 2009. pp. 36–54.
Springer, Berlin, Heidelberg (2009)

3. Brakerski, Z., Kalai, Y., Katz, J., Vaikuntanathan, V.: Cryptography resilient to
continual memory leakage (2010), manuscript

4. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. In: EUROCRYPT (2010 (to appear))

5. Dodis, Y., Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key
encryption schemes with auxiliary inputs (2009)

6. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-key
encryption schemes with auxiliary inputs. In: TCC. pp. 361–381 (2010)

7. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. Cryptology ePrint Archive, Report 2010/196 (2010),
http://eprint.iacr.org/

8. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC
’09: Proceedings of the 41st annual ACM symposium on Theory of computing. pp.
621–630. ACM, New York, NY, USA (2009)

9. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS ’08: Pro-
ceedings of the Annual IEEE Symposium on Foundations of Computer Science.
pp. 293–302. IEEE Computer Society, Washington, DC, USA (2008)

10. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
TCC. pp. 343–360 (2010)

11. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting
against computationally bounded and noisy leakage. In: EUROCRYPT (2010 (to
appear))

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC ’09: Pro-
ceedings of the 41st annual ACM symposium on Theory of computing. pp. 169–178.
ACM, New York, NY, USA (2009)

13. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

14. Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learn-
ing with errors assumption. In: Proceedings of the 1st Innovations in Computer
Science conference (ICS 2010) (2010)

15. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Advances in
Cryptology — CRYPTO 2008. pp. 39–56. Springer, Berlin, Heidelberg (2008)

16. Goldwasser, S., Rothblum, G.: Securing computation against continuous leakage.
These proceedings (2010)

17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Advances in Cryptology — CRYPTO 2003. pp. 463–481. Springer,
Berlin, Heidelberg (2003)

18. Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage.
Cryptology ePrint Archive, Report 2010/205 (2010), http://eprint.iacr.org/

19. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) Advances in Cryptology - ASIACRYPT 2009. Proceedings.
Lecture Notes in Computer Science, vol. 5912, pp. 703–720. Springer (2009),
http://dx.doi.org/10.1007/978-3-642-10366-7

20. Micali, S., Reyzin, L.: Physically observable cryptography. In: TCC ’04: Proceed-
ings of the 1st Theory of Cryptography Conference. pp. 278–296. Springer, Berlin,
Heidelberg (2004)

21. Pietrzak, K.: A leakage-resilient mode of operation. In: Advances in Cryptology –
EUROCRYPT 2009. pp. 462–482. Springer-Verlag, Berlin, Heidelberg (2009)

22. Segev, G., Naor, M.: Public-key cryptosystems resilient to key leakage. In: Ad-
vances in Cryptology — CRYPTO 2009. pp. 18–35. Springer, Berlin, Heidelberg
(2009)

23. Standaert, F.X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Advances in Cryptology – EUROCRYPT
2009. pp. 443–461. Springer, Berlin, Heidelberg (2009)

24. Standaert, F.X., Pereira, O., Yu, Y., Quisquater, J.J., Yung, M., Oswald, E.: Leak-
age resilient cryptography in practice. Cryptology ePrint Archive, Report 2009/341
(2009), http://eprint.iacr.org/

