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Abstract. A cryptographic primitive is leakage-resilient, if it remains
secure even if an adversary can learn a bounded amount of arbitrary
information about the computation with every invocation. As a conse-
quence, the physical implementation of a leakage-resilient primitive is
secure against every side-channel as long as the amount of information
leaked per invocation is bounded.
In this paper we prove positive and negative results about the feasibility
of constructing leakage-resilient pseudorandom functions and permuta-
tions (i.e. block-ciphers). Our results are three fold:
1. We construct (from any standard PRF) a PRF which satisfies a re-
laxed notion of leakage-resilience where (1) the leakage function is fixed
(and not adaptively chosen with each query.) and (2) the computation
is split into several steps which leak individually (a “step” will be the
invocation of the underlying PRF.)
2. We prove that a Feistel network with a super-logarithmic number
of rounds, each instantiated with a leakage-resilient PRF, is a leakage
resilient PRP. This reduction also holds for the non-adaptive notion just
discussed, we thus get a block-cipher which is leakage-resilient (against
non-adaptive leakage).
3. We propose generic side-channel attacks against Feistel networks. The
attacks are generic in the sense that they work for any round functions
(e.g. uniformly random functions) and only require some simple leakage
from the inputs to the round functions. For example we show how to
invert an r round Feistel network over 2n bits making 4·(n+1)r−2 forward
queries, if with each query we are also given as leakage the Hamming
weight of the inputs to the r round functions. This complements the
result from the previous item showing that a super-constant number of
rounds is necessary.

1 Introduction

Traditional cryptographic security definitions only give the adversary black-box
access to the primitive at hand. For example, a function F : Σk × Σm → Σn

(Σ
def
= {0, 1}) is pseudorandom if no efficient adversary given oracle access to

a function O : Σm → Σn can tell whether the oracle is a uniformly random
function or instantiated with F(K, .) for a random key K ∈ Σk.



Unfortunately, this model does not capture many attacks in the real-world
where adversaries can attack concrete implementations of cryptosystems which
potentially leak information about their internal secret state during computa-
tion. Attacks exploiting such leakage are called side-channel attacks. Popular
side-channels that have been exploited for cryptanalytic attacks include running-
time [28], electromagnetic radiation [39, 20] or power consumption [30].

Countermeasures. Side-channel attacks are a very real threat for systems used
in practice. Not surprisingly, much research has concentrated on developing coun-
termeasures against such attacks. This research is mostly done by practitioners
(i.e., the cryptographic hardware community) who are also active in finding and
exploiting new side-channels, [37] gives an overview of this research. The coun-
termeasures proposed are usually ad-hoc, in the sense that they aim to protect
against some particular, known attack, and are backed up by heuristic security
arguments. This is fundamentally different from the provable security approach
taken by modern cryptography, where one requires that a scheme is proven se-
cure against a class of resource bounded (e.g. polynomial time) adversaries and
not only particular attacks. This situation is very unsatisfying; after all, what
is a provably secure cryptosystem good for, if ultimately its security hinges on
an ad-hoc side-channel countermeasure? Nonetheless, until recently there was
almost no input from the theory community on side-channel countermeasures
as it was believed that this is a practical problem, and theory can only be of
limited use in this context. Fortunately, recent results indicate that this view
was much too pessimistic. In an early influential paper, Micali and Reyzin [35]
propose the “physically observable cryptography” framework which adapts the
concept of cryptographic reductions to the context of side-channel attacks. Only
very recently direct constructions of cryptographic schemes were proposed which
are provably secure against general classes of side-channel attacks. We’ll discuss
several such modes below.

Leakage-Resilient PRFs. A cryptographic primitive is leakage-resilient if it
remains secure even if the adversary can – with each invocation – learn a bounded
amount of arbitrary information about the computation. This notion was intro-
duced in [17], and is formally modelled by allowing the adversary to choose
(besides the regular input, if there is any) a leakage function g with bounded
range Σλ for some leakage parameter λ.1 After the invocation the adversary gets
– besides the regual output – the leakage g(τ) where τ is all data accessed by the
primitive during this invocation (that is, the part of the secret state that was
accessed and – if the primitive is probabilistic – any random coins used). We will
take a more “fine-grained” view and split an invocation into t > 1 sequential
steps, where the adversary is allowed to learn a bounded amount of information

1 The basic idea to consider adversaries who can learn any (sufficiently compress-
ing) function g(S) about the secret state S goes back to Maurer’s bounded storage
model [32, 15, 42]. The bounded retrieval model [14, 8] adapts this to the computa-
tional setting.



g1(τ1), . . . , gt(τt) about every step. Here τi denotes absolutely all information
that is accessed in the i-th step.

As a consequence, the physical implementation of a leakage-resilient cryp-
tosystem will remain secure in the presence of any side-channel attack, as long
as the information exploited by this attack can be modelled by adaptively cho-
sen leakage functions as just described. A sufficient (but not necessary) condition
on the side-channel is to require that (1) the amount of information leaked per
invocation (or, in the fine-grained approach, per step) is at most λ bits and (2)
“only computation leaks information”, which means that parts of the memory
which are not accessed during an invocation (or step) will not leak.

Remark 1 (On “Only computation leaks information”). “Only computation leaks
information” is an assumption about the physical properties of cryptodevices,
and was originally put forward as one the “axioms” in the physically observable
cryptography framework of Micali and Reyzin [35]. As just mentioned, devices
adhering to this axiom are captured by the model of leakage resilience, but this is
only a sufficient condition and by no means necessary. For example, [38] explains
why the mathematical model of leakage-resilience also captures certain physical
attacks which explicitly violate this axiom, like “cold-boot attacks” [22] or when
considering memory that is subject to static leakage.

Limitations of Current Techniques. The only leakage-resilient primitives
that were constructed so far in the standard model are stream-ciphers [17, 38] and
signature schemes [19]. A leakage-resilient public-key encryption scheme has been
constructed, but only in the idealised generic group model [27]. A central open
problem is this line of research is the construction of pseudorandom functions
(PRFs) and permutations (PRPs, or equivalently, block-ciphers). Block-ciphers
are the work horses of crypto. Not surprisingly, they are also a favourite target
of side-channel cryptanalysts.

In this work we consider the problem of constructing leakage-resilient PRFs
and PRPs. The techniques used in the construction of leakage-resilient stream-
ciphers and signature schemes crucially rely on key evolution. For example, in a
stream-cipher the key evolves naturally, while for signatures one can sample a
fresh public/secret key pair with each signature query and sign the new key with
an old key. Unfortunately it is not clear how to evolve the key of a PRF/PRP.
The same difficulty arises with public-key encryption, so the leakage-resilient
PKE scheme from [27] does not rely on evolution, but rather on sharing the
secret key. The sharing is rerandomized after each invocation. In order to decrypt
using the shares of the secret key without actually reconstructing it, one exploits
the homomorphic property of the group. Thus, even aside from the reliance
on idealised generic groups [27], this technique is not an option to construct
leakage-resilient PRFs/PRPs if we do not want to use inefficient techniques and
assumptions (like DDH) that are used in public-key cryptography.

Our PRF Results. As leakage-resilient PRFs seem out of reach with our cur-
rent techniques, we will consider a relaxed notion of leakage-resilience, where the



leakage function is not adaptively chosen by the adversary before each invoca-
tion, but is fixed. This notion still captures all side-channel attacks where the
adversary will always measure (almost) the same leakage if she performs exactly
the same computation. This for example captures timing and to some extent
power-analysis attacks2, but not probing attacks (where different wires can be
probed on different invocations on the same input.) We construct a PRF which
is secure under this relaxed notion from any standard PRF. The construction,
as illustrated on the left in Figure 1, can be seen as a hybrid of the GGM con-
struction [21] (which constructs a PRF from any PRG) and the leakage-resilient
stream cipher from [38].

Related Work. The idea to only consider non-adaptive leakage functions and that
this could be useful in the context of the GGM construction goes back at least to
Micali and Reyzin [35].3 A similar point for a particular leakage function (power
analysis) was made by Kocher [29]. The idea to consider leakage-resilience but
to fix the leakage function is due to Standaert et al. [41]. They suggest that the
GGM construction is secure in this setting if the PRG is modelled as a uniformly
random function and the leakage function is fixed.4

Side-Channel Attacks on Feistel. A pseudorandom permutation (PRP)
F : Σk × Σn → Σn is defined like a PRF, except that one requires that for
every key K ∈ Σk, F(K, .) is a permutation. A super PRP (sPRP) satisfies a
stronger notion where the adversary can also make inverse queries. The addi-
tional structural properties of permutations are often useful as they allow for
better efficiency and/or security. Block-ciphers, which are strong PRPs, are the
“work horses” of cryptography and a favourite target of side-channel cryptana-
lysts.

PRPs seem to be much more complicated objects than PRFs, but in a classi-
cal paper, Luby and Rackoff [31] prove that a simple 3 round Feistel network (cf.

2 If the power-analysis just leaks the number of wires set to 1, then this is captured,
but if the power-analysis leaks the number of wires that “switch” from 0 to 1, then
this is no longer possible.

3 From [35]: Our definitions allow for repeated computation to leak new information
each time. However, the case can be made (e.g., due to proper hardware design) that
some devices computing a given function f may leak the same information whenever
f is evaluated at the same input x. This is actually implied by making the leakage
function deterministic and independent of the adversary measurement. Fixed-leakage
physically observable cryptography promises to be a very useful restriction of our gen-
eral model (e.g., because, for memory efficiency, crucial cryptographic quantities are
often reconstructed from small seeds, such as in the classical pseudorandom function
of [21]).

4 The model considered is basically the random oracle model, but it is conceptually
used in a different way. In the RO model, a uniformly random function is accessible
to all parties, and security proofs only exploit the fact that a random oracle allows to
efficiently access an exponential amount of true randomness. In contrast, in [41] the
security proof exploits the fact that the adversarial leakage functions cannot query
the random oracle.



Definition 6) instantiated with PRFs, is a PRP. With one round more one even
gets a sPRP. More recently, [7] prove that a six round Feistel network instan-
tiated with random functions is indifferentiable [34] from a uniformly random
permutation. These results suggest that a Feistel network with some small con-
stant number of rounds instantiated with leakage-resilient PRFs, would yield a
leakage-resilient PRP.

Unfortunately, this is not true. We show very simple side-channel attacks
against Feistel networks where the round functions can be arbitrary, and the
only leakage is some (simple) function g(.) of the inputs to the round functions.
We identify a simple property of leakage-functions function g(.) – which we call
“reconstructible” (cf. Definition 7) – that is sufficient for our attack to work.
This property is shared by many simple and natural leakage functions (like the
Hamming weight or the identity function with very high noise). Thus our attacks
are quite practical. We explain these attacks in detail in Section 3 (which is self
contained and can be read independently of the rest of this paper), here only
giving the brief summary. We show that getting leakage from any reconstructible
leakage function g(.) is sufficient to allow the side-channel attacker to invert
the Feistel network on any input using a number of forward queries which is
exponential in the number of rounds (and, thus, in polynomial time for any
fixed constant number of rounds). This breaks the security of any fixed-round
Feistel network as a PRP.

For readers familiar with the notion of Indifferentiability [34, 6], it might
seem that our attacks contradict the beautiful result of Coron et al. [7] showing
that a six round Feistel network with random functions is indifferentiable from a
random permutation. The reason this is not a contradiction is that the indiffer-
entiability simulator S is allowed to make arbitrary additional forward/backward
queries to the random permutation when trying to “fake” the six random round
functions, as opposed to the queries made by the distinguisher (which the simula-
tor does not even see). For example, for our attack making only forward queries,
the simulator will be “smart enough” to figure out the backward query we are
“computing” using our forward queries, and will make such a query in advance
to avoid any inconsistencies. Translated to the setting of leakage, the indifferen-
tiability framework will imply the following much weaker notion of security than
the one we are aiming for: after making q block-cipher queries and observing the
leakage, all but specially chosen poly(q) input/outputs of the block cipher will
“look random”. In contrast, we will ensure that every un-queried input/output
pair will “look random”.

We also mention that [12] defined a notion of “honest but curious indif-
ferentiability”. As observed by [12, 7] this notion is incomparable to standard
indifferentiability. On one hand, it is stronger because the simulator S is not
allowed to make any queries to P or P−1 (but only sees the queries made by
the distinguisher). But it is also weaker, as the distinguisher is not allowed to
query intermediate round functions, but only the entire Feistel network (or its
simulation) together with all the inputs/outputs of the internal round functions.
This notion is much closer to the setting of side-channel attacks, except with



side-channels we allow a much richer class of leakage functions (e.g., those that
depend on the key). In fact, the side-channel attacks we propose generalize (and
strengthen) a lower bound from [12] which basically corresponds to our attack
for the special case where the leakage contains the entire inputs to the round
functions.

Leakage-Resilient PRPs. In light of the results discussed in the previous sec-
tion, the best we can hope for is that an r-round Feistel network Ψr, instantiated
with leakage-resilient PRFs, is secure against adversaries who make at most an
exponential (in r) number of queries. In Section 4 we show (again using tech-
niques from [12]) that this is indeed the case: the r-round Feistel network is a
secure leakage-resilient super PRP as long as the number of queries is bounded
by q ≤ 1.38r/2−1.

We notice that the leakage-resilient sPRP, as just described, is secure in an
attack scenario where the adversary with every query to Ψr gets to see all the
inputs5 to the r round functions and also leakage from every round function (as
computed by any leakage function for which the underlying leakage-resilient PRF
is secure). Also, the reductions works for other notions of leakage-resilience, in
particular for the original notion of leakage-resilience where the leakage-function
is chosen adaptively. Thus, although our current PRF constructions only give us
“non-adaptive-leakage” sPRPs, future advances in leakage-resilient PRFs would
immediately translate to stronger leakage-resilient sPRPs.

In contrast, when proposing attacks, we want to consider a setting where
the adversary is as limited as possible. As explained in the previous section,
the side-channel attacks we propose against Feistel require a very limited setting
where the only leakage the adversary gets is some simple function (e.g. Hamming
weight) of the inputs to the round functions. The attack works no matter what
the round functions are, they can be leakage-proof PRFs or even uniformly
random functions.

More Related Work. We shortly discuss some work on provable side-channel
security not already covered in the introduction. The more practical work on
this topic is too extensive to cover here, [37] gives an overview of this research.

Private Circuits. Ishai et al. [25, 24] consider a model where the adversary can
choose some wires in the circuit on which the cryptographic algorithm is run,
and then learns the values carried by those wires during the computation (This
can be seen as a generalisation of exposure resilient cryptography [13], where
the adversary was restricted to learn some bits of the input.) They were the first
to prove how to implement any algorithm secure against an interesting side-
channel, i.e. probing attacks. This work uses techniques from general multiparty
computation (MPC).6 Recently Faust et al. [18] extended this result to signif-

5 The outputs of the round functions can be computed from the input: the output of
the ith round functions is the XOR of the inputs of rounds i − 1 and i + 1.

6 Formally, Ishai et al. prove the following: let t ≥ 0 be some constant and let [X]
denote a (t+1) out of (t+1) secret sharing of the value X. They construct a general



icantly more general classes of leakage, in particular, they give a construction
(also based on general MPC) which remains secure given leakage computed by
any function from a low complexity class like AC0. The main drawback of those
constructions is that the amount of leakage that can be tolerated is very small:
to tolerate t bits leakage, the circuits must be blown up by a factor of at least
t. Moreover the construction from [18] requires (albeit very simple) completely
leakage proof components.

(Continuous) Memory Attacks. A cryptographic scheme is secure against mem-
ory attacks, if it remains secure even if a bounded amount of information about
the secret key is given to the adversary. In this model [1, 36, 4] construct public-
key encryption schemes and [26, 2] construct signature schemes, identification
schemes and key exchange protocols.7 Unlike leakage-resilience, here the leakage
function gets the entire secret state as input, and not only what was accessed.
On the downside – unlike leakage-resilience or private circuits – memory at-
tacks are a “one-shot” game where the total amount of leakage cannot be larger
than the length of the secret key. Very recently [10, 5] extended the model of
memory attacks to the continuous setting. In their model the secret key gets
periodically updated (using local randomness and without changing the public
key), and a bounded amount about of information about the secret key can
leak in-between every two updates. The update phases can also leak, but only
a logarithmic amount. In this model, [10] construct identification, signature and
authenticated key agreement schemes, [5] construct signatures and PKE.

Auxiliary Input. [11] introduce the notion of security against auxiliary input,
where one requires the scheme to be secure even if the adversary is given some
leakage g(K) about the secret key as long as g(.) is uninvertible. That is, K
cannot be inverted given g(K) but with very small probability. In this model
private-key [11] and public-key [9] encryption schemes have been constructed.

Notation & Basic Definitions.

– Σt denotes {0, 1}t, i.e. all bitstring of length t. Σ≤t def
=
⋃t

i=0 Σt denotes all
bitstrings of length at most t, including the empty string ε.

– [a, b] denotes the interval {a, a + 1, . . . , b}, [b] is short for [1, b].

– Sequential composition of functions is denoted with g ◦ f(x)
def
= g(f(x)).

compiler, which turns every circuit G(.) into a circuit Gt(.) (of size O(t|G|)) such that
[G(X)] = Gt([X]) for all inputs X, and moreover one does not learn any information
on G(X) even when given the value carried by any t wires in the circuit Gt(.) while
evaluating the input [X]. This transformation uses multiparty-computation, which
is quite different from all other approaches we discuss here.

7 Let us mention that PRFs and PRPs (i.e. the primitives considered in this paper)
that are secure against memory attacks do not even exist. E.g. we can trivially
distinguish F (K,X) (here K is the key and X is any fixed input to the PRF F (., .))
from uniform with advantage 1 − 2−λ given as leakage the first λ bits of F (K, X).



– Concatenation of two strings x, y is denoted x‖y, or, if no confusion is pos-
sible, simply xy.

– wH(x) denotes the number of 1’s (i.e. Hamming weight) in x.

– Rm,n denotes a uniformly random function Σm → Σv, Pn a uniformly
random permutation over Σn.

– For X ∈ Σn we denote with X|i the i bit prefix of X .

– pre(X) =
⋃n

i=0 X|i denotes the set of all prefixes of X , including the empty
string ε = X|0 and the entire X = X|n.

– We sometimes write Xq to denote a sequence X1, . . . , Xq of values.

– For a set X , X
∗
← X denotes that X is assigned a value sampled uniformly

at random from X .

– We denote with δD(X ; Y ) the advantage of a circuit D in distinguishing the

random variables X, Y , i.e.: δD(X ; Y )
def
= |Pr[D(X) = 1] − Pr[D(Y ) = 1]|.

With δs(X ; Y ) we denote maxDδD(X ; Y ) where the maximum is over all
circuits D of size s.
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Fig. 1. Left: Illustration of the NALR-secure PRF Γ F,m : Σ3k+n × Σm → Σ4k+2n

(here shown for m = 4 and input 1011 ∈ Σm) from any standard (weak) PRF F :
Σk × Σn → Σ4k+2n. We consider adversaries who with each such query X can get

leakage ΛI for every I ∈ pre(X) which is defined as ΛI
def
= g(KI , ZI , I), where g is any

function of bounded size s and range λ. And moreover all the ZI , I ∈ pre(X).
Right: Illustration of the second Claim from the proof of Theorem 2.

2 Leakage-Resilient PRFs

Figure 1 (left) illustrates our construction of a PRF F : Σk × Σm → Σn for
which we will show that it satisfies a relaxed notion of leakage-resilience where
the leakage function is a priori fixed (and not adaptively by the adversary with
every query). Recall the standard definitions of (weak) PRFs.



Definition 1 (PRF/weak PRF). F : Σκ × Σm → Σn is an (ǫprf , sprf , qprf)-
secure pseudorandom function (PRF) if no adversary of size sprf can distinguish
F (instantiated with a random key) from a uniformly random function, i.e. for
any A of size sprf making qprf oracle queries we have

Pr
K

[AF(K,.) → 1]− Pr
Rm,n

[ARm,n(.) → 1] ≤ ǫprf

F as above is a (ǫprf , sprf , qprf)-secure weak PRF if the above only holds for ran-

domly (and not adversarially) chosen inputs, i.e. for K
∗
← Σκ and

for i = 1, . . . , qprf : Xi
∗
← Σm Yi ← F(K, Xi) Ri ← Rm,n(Xi)

we have Pr[A(Xqprf , Y qprf ) = 1]− Pr[A(Xqprf , Rqprf ) = 1] ≤ ǫprf

Definition 2 below specifies what we mean by a PRF F being leakage-resilient
w.r.t. to a class of leakage functions L. Informally, we consider an adversary
A with access to two oracles. Initially, we sample a key K

∗
← Σk. The first

oracle then takes as input some X ∈ Σm and outputs the output of the PRF
Y ← F(K, X) on this input and the leakage Λ ← g(K, X) (where g is any
function from the class L). The second oracle is either a uniformly random
function Rm,n, or the PRF F(K, .) (using the same key as K the first oracle.).
We require that no efficient A can distinguish these two cases. Of course we
have to require that A never queries the two oracles on the same input X , as
otherwise distinguishing becomes trivial.

The practical implication of this definition is as follows. Consider an adver-
sary who can launch a side-channel attack against F(K, .), where for every query
F(K, X) made she can measure some leakage Λ(K, X). If F is L resilient, and the
leakage Λ(K, X) can be modelled as Λ(K, X) = g(K, X) for some g ∈ L, then
for all inputs X ′ on which F(K, .) has not yet been queried, the output F(K, X ′)
will be indistinguishable from random.

Definition 2 (L-resilient PRF/PRP/sPRP). F : Σκ × Σm → Σn is a
(ǫprf , sprf , qprf)-secure L-resilient pseudorandom function if for every adversary
A of size sprf and every g ∈ L

Pr
K

[AFg(K,.),F(K,.) → 1]− Pr
K,Rm,n

[AFg(K,.),Rm,n(.) → 1] ≤ ǫprf (1)

Here A can make a total of qprf queries (arbitrarily scheduled) to his two oracles,
but the queries to the first and second oracle must be disjoint. The first oracle
Fg(K, .) takes as input X ∈ Σm and outputs F(K, X), g(K, X).
L-resilient pseudorandom permutations (PRP) are defined similarly, except

that now for every K, F(K, .) has to be a permutation and the random function
Rm,n in eq.(1) is replaced with a random permutation Pm. A L-resilient super
PRP (sPRP) is defined the same way, except that now we additionally allow
the adversary to make inverse queries. Here A is also not allowed to make an
inverse (forward) query Y to one oracle, if Y has been received as output to a
forward (inverse) query from the other oracle.



Definition 3 (NARL security). We say that a PRF F (same for PRP,sPRP)
is non-adaptive leakage-resilient if the computation of F(K, X) can be split into
t ≥ 1 steps, and F is L-resilient w.r.t. to a class L which can leak, for every of
the t steps, arbitrary λ bits of information about all the data that is accessed in
this step.

Below we define our construction Γ F,m of a function as illustrated is Figure 1
for which we will prove that it is NARL secure if instantiated with any standard
weak PRF F. This construction can be seen as a hybrid of the GGM construction
[21] and the leakage-resilient stream-cipher from [38].

Definition 4 (Construction Γ F). For a functions F : Σk × Σn → Σ4k+2n,
we denote with Γ F a function Σ3k+n × Σm → Σ4k+2n defined as follows (cf.
Figure 1). The secret key K consists of the four values Zε ∈ Σn, Kε, K0, K1 ∈
Σk. The output on input X ∈ Σm is YX ← F(KX , ZX) where ZI , KI for I ∈
pre(X) are recursively defined as

(ZI0, ZI1, KI00, KI01, KI10, KI11)← F(KI , ZI)

Figure 1 illustrates this construction for m = 4 on input X = 1011.

Theorem 1 below states that Γ F is NARL secure. Or more precisely, L-resilient,
where L contains all functions that leak λ bits of arbitrary information about
every invocation of F. How large λ can be depends on the security of F. Roughly,
if F cannot be broken with advantage 2−w, then we can leak λ = w/6 bits with
each of the n invocations of F. (and thus nw/6 bits in total.)

NARL security requires that the leakage in each of the m + 1 steps (i.e.the
invocations of the underlying F) can depend on absolutely all data that is ac-
cessed during this step. For step i (0 ≤ i ≤ m) this means ZI , KI , where I = X|i

is the i bit prefix of the input X , but also the last two bits of I itself, as this
bits specify which part of the state8 must be accessed in this step. We will even
give the entire I as input to the leakage function.

Theorem 1. If F is a weak PRF, Γ F,m is a NARL super-PRP, where each
invocation of the underlying F is considered a step as in Def. 3. If the PRF
cannot be distinguished from random with advantage more than ǫprf , then we
can tolerate leakage of λ = log(ǫ−1

prf )/6 bits per step. The precise quantitative
statement is given below.

Assume F : Σk×Σn → Σ4k+2n is a (ǫprf , sprf , n/ǫ2prf) secure weak PRF (where

ǫprf ≥ n ·2−n/3 and n ≥ 20) and let λ = log(ǫ−1
prf )/6. Then Γ F,m : Σ3k+n×Σm →

Σ4k+2n is a (ǫ′prf , s
′
prf , q

′
prf) secure Ls,λ-resilient PRF for any q′prf and

s′prf = sprfǫ
2
prf/2λ+2(n + k)3 − s ·m · q′prf ǫ′prf = 8 · q′2prf ·m · ǫ

1/12
prf

8 Let Id denote I where the last d bits deleted. Then before step I the state is
ZI10ZI11, KI200, KI201, KI210, KI211.



where the class Ls,λ contains all functions Lg indexed by a function g : Σk+n+m →
Σλ of size at most s defined as (with KI , ZI as in Definition 4)

Lg(K, X) = {ΛI , ZI : I ∈ pre(X)} ΛI
def
= g(KI , ZI , I)

Recall that a random variable X has min-entropy k, denoted H∞(X) = k, if
Pr[X = x] ≤ 2−k for any x in the support. In the proof, we will extensively use
a computational version of this notion called HILL-pseudoentropy [23, 3].

Definition 5 (HILL-pseudoentropy[23, 3]). We say X has HILL pseudoen-
tropy k, denoted by HHILL

ǫ,s (X) ≥ k, if there exists a distribution Y with min-
entropy H∞(Y ) = k where δs(X ; Y ) ≤ ǫ.

Proof (of Theorem 1). Our construction Γ F,m is inspired by the construction of
the leakage-resilient stream-cipher from [38], and also the proof is very similar.
We will use several technical results from [38, 17] which for space reasons are
moved to Appendix A.

It will be convenient to consider an adversary which is stronger than what is
actually required in the proof. We consider an adversary A who can adaptively
“explore” the tree structure underlying the Γ F,m construction. This is modeled
by giving her access to two oracles OK(.) and Ob

K(.). These are initialised with
a random key K (as used in Γ F,m), a random bit b and a uniformly random
function R. The Ob

K oracle takes inputs from Σm and outputs either random
outputs (if b = 1) or the output of Γ F,m (if b = 0). The OK oracle allows to
“explore” the tree structure of Γ F,m.

OK(I)→

{

ZI0, ZI1, ΛI if I ∈ Σ≤m−1

YI , ΛI if I ∈ Σm Ob
K(I)→

{

YI if b = 0
R(I) if b = 1

We put the additional restriction on the order in which queries can be made: A
can only make a query I to OK or Ob

K , if the |I| − 1 bit prefix of I has already
been queried (the first query can only be ε). Wlog. we assume that A never
makes the same query twice. A can never make the same query I ∈ Σm to both
oracles (which would trivially allow to distinguish the cases b = 0 and b = 1.)

A q′prf-query adversary A′ who breaks the Ls,λ security of Γ F,m with ad-
vantage ǫ can be turned into an adversary A of almost the same size who has
advantage ǫ in distinguishing the cases b = 0 and b = 1 in the experiment just
described: A query X to Γ F,m(X) can be simulated by making the queries pre(X)
to OK . A query X to the second oracle can be simulated the same way, except
that the query X is forwarded to Ob

K(.). This A makes at most (m− 1)q′prf and
q′prf queries to the first and second oracle respectively. Thus it remains to upper
bound

Pr
K

[AOK(.),O0

K(.) → 1− Pr
K,R

[AOK(.),O1

K(.) → 1]

This means we must show that the outputs of the oracle O0
K : I → F(KI , ZI)

are pseudorandom even given access to OK , and thus cannot be distinguished



from the uniformly random outputs of O1
K : I → R(I). Let viewi denote the

view of A after the ith query, the initial view is view0 = {Zε}. We say that
I ∈ Σ≤m is a “potential query” if A did not yet make the query I but all the
its prefixes pre(I) \ I. The following facts hold (with high probability) after the
ith query and for any potential query I. (We ignore the precise bounds on HILL
pseudoentropy, writing only HHILL to denote HHILL

ǫ,s for “small” ǫ and “large” s.)

1. KI and ZI are independent given the view viewi of A.
2. HHILL(KI |viewi) = k − 2λ and HHILL(ZI |viewi \ ZI) = k − 2λ.
3. If KI , ZI satisfy fact 1 & 2 then

(a) F(KI , ZI) is pseudorandom given viewi.
(b) HHILL(F(KI , ZI)|ΛI , viewi) = |F(KI , ZI)| − 2λ.

Note that fact 3.(a) implies that a query I to O0
K will result in a pseudorandom

value F(KI , ZI). As just described, this establishes the theorem. The lemmata
below are given in Appendix A.

Fact 1 follows from Lemma 3 (originally from [16], also given as Lemma 5 in
[38]). The only reason we add ZI0ZI1 to the output of OK(I) (and not only the
leakage ΛI) is so we can apply this lemma.

Fact 3.(a) follows from Fact 2 using Lemmata 4 and 5, which state that
the output F(K, Z) of a weak PRF is pseudorandom as long as K and Z are
independent and have sufficiently high pseudoentropy.

Fact 3.(b) follows from Fact 3.(a) and Theorem 2 from [17] (or, independently
[40]), which states that a pseudorandom value like F(K, Z) has high pseudoen-
tropy, even if a bounded amount of information about the seed (in our case K, Z)
is leaked. The precise quantitative statement of Fact 3.(b) is given as Lemma 6
(which is Lemma 6 from [38]).

Finally, Fact 2 holds by induction over the queries that A makes using Fact
3.(b). To see this, note that Fact 2 holds initially for i = 0 as K0, K1, Kε, Zε

are independently and uniformly sampled. Now assume it holds after the ith
query, and A makes the query I (where |I| < m), then by Fact 3.(b) the newly
computed values ZI0, ZI1, KI00, . . . , KI11 ← F(KI , ZI) will also satisfy Fact 2.

So far we have only established the qualitative statement that Γ F,m is a
NARL secure PRP but said nothing about the exact security as claimed in the
proof. The HILL-pseudoentropy in the facts above must be quantified, e.g. in
fact 2. above HHILL(KI |viewi) = k − 2λ can be expressed as HHILL

ǫ,s (KI |viewi) =
k − 2λ for some ǫ, s. One then has to do some bookkeeping bounding how this
parameters get worse (i.e. how s decreases and ǫ increases) during the run of the
experiment. As this is not very instructive we omit this calculations. The bounds
we get here are exactly the same bounds that are proven for the leakage-resilient
stream-cipher in [38] (when using the same F and the number of invocations to
the underlying F is the same). In fact, minor adaptions of the proof from [38]
give us the claimed bounds. The only difference is that the advantage ǫ′prf in this
paper is a factor q′prf larger, the reason is that our A can make q′prf “challenge

queries” to the Ob
K oracle, whereas in [38] only one challenge query is considered.

⊓⊔



3 Side-Channel Attacks on Feistel

In this section we put forward generic side-channel attacks on Feistel networks.
As Feistel networks (and minor variations thereof) are the only generic con-
structions of PRPs from PRFs known, this indicates that constructing leakage-
resilient PRPs from leakage-resilient PRFs might be significantly harder than
constructing PRPs from PRFs in the normal (non-leakage) setting. Below we
first define the Feistel network.

Definition 6 (Feistel, µ). For a function f : Σn → Σn, we denote with

Ψ [f ] the permutation over Σ2n defined as Ψ [f ](xL, xR)
def
= f(xL) ⊕ xR‖xL.

Ψ [f1, . . . , fr] denotes Ψ [fr] ◦ . . . ◦ Ψ [f1].

We define µ as (R0, . . . , Rr+1)
def
= µ(Ψ [f1, . . . , fr], R1‖R0) where for i ≥ 1 :

Ri
def
= Ri−1 ⊕ fi−1(Ri−1), so Ri is the input to the ith round function on input

X = R1‖R0.

In a classical paper, Luby and Rackoff prove that the advantage of any q-query

distinguisher in distinguishing Ψ3
def
= Ψ [f1, . . . , f3] from a uniformly random per-

mutation over Σ2n is upper bounded by9 q2/2n if the fi : Σn → Σn are uniformly
random functions.10 This in particular implies that no adversary who can query
Ψ3 in forward direction can invert Ψ3 on a random Y ∈ Σ2n, unless she makes
q = Θ(2n/2) queries.

We consider a setting where the adversary not only can make queries to some

Feistel network Ψr
def
= Ψ [f1, . . . , fr], but with each query X , besides the output

Y ← Ψr(X), also gets some “leakage” about the intermediate values.
We will consider different leakage functions g : Σn → Σ∗, our attack will

work for any functions which allow “reconstruction” as defined below

Definition 7 (reconstructible). A function g : Σn → Σ∗ is (k, δ) recon-
structible, if there exists an efficient algorithm Bg such that Pr[C′ = C] ≥ δ in
the experiment below:

1. Sample a random challenge C
∗
← Σn.

2. Bg can adaptively make k queries X1, . . . , Xk to an oracle which on input
Xi outputs g(C ⊕Xi).

3. Bg outputs C′.

If g is probabilistic, then it is (k, δ) reconstructible if there exits a single Bg such
that the expectation (over the randomness of g) of the probability E[Pr[C′ = C]]
is at least δ. Two examples of reconstructible functions are given below.

9 With one round more, the same result holds even if the distinguisher is allowed to
make inversion queries.

10 This then implies that Ψ [f1, . . . , f3] is a pseudorandom permutation if the fi’s are
pseudorandom functions. In fact, Luby-Rackoff proved this latter result directly, but
as advocated e.g. in [33], the detour via uniformly random objects is cleaner and
easier.



Hamming-weight: The Hamming-weight function g : Σn → Σ⌈log n⌉, g(X)
def
=

wH(X) is (n, 1) reconstructible: For i ∈ [n] let B ask for Λi = g(X ⊕ ei),
where ei = 0i−110n−i−1 for i = 1, . . . , n. Note that Λi can only take two
values, wH(X)− 1 or wH(X) + 1, which is the case if the ith bit of X is 1
and 0 respectively.11

Noise: For some γ > 0 consider the probabilistic function gγ : Σn → Σn which
flips every bit of its input with probability 1/2−γ (and each bit of every input

is flipped independently.) For any k, gγ is (k, 1−n ·e−2·k·γ2

) reconstructible:
Bgγ

uses any sequence X1, . . . , Xk of distinct inputs, and guesses that the
ith bit of C is 0 iff the majority of the ith bits in gγ(C⊕X1), . . . , gγ(C⊕Xk)
is 0. By the Chernoff bound, the probability that the ith bit is guessed wrong
is at most e−2·k·γ2

, taking the union bound over all n bits we get the bound
as claimed.

Theorem 2. For some r ≥ 3 and any f1, . . . , fr : Σn → Σn, consider the r
round Feistel network Ψr = Ψ [f1, . . . , fr] and some leakage function g : Σn → Σ∗

which is (k, δ) reconstructible. Then there exists an attacker A which can invert

Ψr on any value Y with probability δ(k+1)r−2

, where A makes 4(k + 1)r−2 for-
ward queries to Ψr, and with each query X learns the output Ψr(X) and leakage
g(R1), . . . , g(Rr−1) about the inputs to the round functions (R0, . . . , Rr+1) ←
µ(Ψr, X). The running time of A is O((k +1)r−3|Bg|) where |Bg| is the running
time of Bg as in Definition 7.

In the theorem we only consider the case r ≥ 3, for r = 0, 1 or 2 one can
trivially invert with probability 1 making 0, 1 or 4 forward queries respectively.
This theorem generalizes Theorem 3.1 from [12], who consider the case where
the adversary gets all the Ri’s. (or equivalently, where g is (1, 1) reconstructible.)

Remark 2. Note that we don’t have to leak g(Ri) for i ∈ {0, 1, r, r + 1} as for
those i the entire Ri is already contained in the input or output. The above
theorem can also be proven (with worse bounds: (k+1)r queries and probability
δ(k+1)r

) in a weaker setting where the adversary does not even get to see the
output Ψr(X) = Rr‖Rr+1, but instead gets the leakage g(Rr), g(Rr+1).

Remark 3. The success probability δ(k+1)r−2

drops very fast in k and r. This
is not an issue for leakage functions where δ = 1 like Hamming weight. But
this also is good enough for noisy leakage, where we get a success probability
of (1 − n · e−2·k·γ2

)(k+1)r−2

≥ (1 − n · e−2·k·γ2

· (k + 1)r−2) which approaches 1
exponentially fast in k.

Proof (of Theorem 2). The proof by induction on the number of rounds r. For

j ∈ [r] let Ψj
def
= Ψ [f1, . . . , fj] denote the first j rounds of Ψr. For any j, 1 ≤ j ≤ r,

we let E(j, Yj)
def
= Ψ−1

j (Yj), that is, the input Z such that the intermediate value
after j rounds in the computation Ψr(Z) is Yj . It will be convenient to define

11 If all Λi are the same then X = 1n or 0n, which is the case can be deduced from Λ1

(which is n − 1 or 1 in those cases).



E′(j, Yj) = {Z, Ψr(Z), g(R1), . . . , g(Rr)} where (R0, . . . , Rr+1) ← µ(Ψr, Z). We
show that

Claim. E′(1, YL‖YR) can be computed (with probability δ) making k+1 forward
queries to Ψr.

Proof (of Claim). As Z
def
= E(1, YL‖YR) is YR‖f1(YR)⊕YL, to get Z it is sufficient

to learn C
def
= f1(YR). To get E′(1, YL‖YR) we then make one more Ψr query Z.

Let Bg be as in Definition 7, we will use it to reconstruct C as follows: For every
query Xi asked by Bg, we make the query YR‖Xi to Ψr. The answer will contain
the leakage Λ2 = g(C ⊕Xi), which is exactly what Bg expects as answer to his
query Xi. Thus after k queries we learn C with probability δ. ⊓⊔

Claim. For j ∈ [2, r − 2], E′(j, YL‖YR) can be computed (with probability δ)
making k + 1 queries to E′(j − 1, .).

Proof (of Claim). The proof of this claim is illustrated in Figure 1. The idea is

similar as in the previous claim; We will use Bg to reconstruct C
def
= fj(YR) (as

explained below) and then we get E′(j, YL‖YR) = E′(j−1, YR‖C⊕YL) with one
more E′(j − 1, .) query.

To reconstruct C = fj(YR), for every query Xi made by Bg, we ask for
E′(j − 1, YR‖Xi) which includes the leakage Λj+1 = g(C ⊕Xi)) as expected by
Bg. Thus after k queries X1, . . . , Xk, Bg outputs C = fj(YL) with probability δ.

Claim. For j ∈ {r − 1, r}, E′(j, YL‖YR) can be computed making 2 queries to
E′(j − 1, .).

Proof (of Claim). We ask for E′(j − 1, 0n‖YL) = {Z, Ψr(Z), . . .}, here Ψr(Z)
contains fj(YL) in the clear (it’s the left part of Ψr(Z) for j = r − 1 and right
part for j = r). Make one more E′(j − 1, .) query to get E′(j, YL‖YR) = E′(j −
1, YR‖fj(YL)⊕ YL). ⊓⊔

Let us for now assume that δ = 1 (i.e. Bg always reconstructs correctly) and
let Tj,r denote the number of forward queries to Ψr one has to make in order to
compute E′(j, .). By the above claims

1. T1,r = k + 1
2. Ti,r = (k + 1)Ti−1,r for i ∈ [2, r − 2].
3. Ti,r = 2 · Ti−1,r for i = r − 1 or i = r.

For i ≤ r − 2, the relations 1. and 2. are satisfied by

Ti,r ≤ (k + 1)i

So Tr−2,l = (k + 1)r−2, with 3. this gives

Tr,r = 4(k + 1)r−2

As claimed in the theorem. We just have to verify the success probability, the
error δ(k+1)r−2

comes up as follows: by the first claim, we can compute E(1, .)
with probability δ. For E(j, .) (1 < j ≤ r − 1) we need k + 1 invocations of
E(j − 1, .), thus the error exponentiates with k + 1. For j = r − 1 and j = r no
extra error is introduced. ⊓⊔



4 Leakage-Resilient PRPs

Theorem 3 below states that an r round Feistel network, instantiated with L-
resilient PRFs, is a L′-resilient super PRP. Here L′ contains all leakage functions
which for every round round i ∈ [r] leak gi(Ki, Ri) where gi ∈ L is an admissi-
ble leakage function for the leakage-resilient PRF used in the round functions.
Moreover the round function inputs Ri are leaked entirely. Thus, if the PRF is
NALR secure, so is the super PRP. The number of queries a distinguisher can
make is exponential in r, thus for super-logarithmic r we get security against
any polynomial distinguisher.

Theorem 3. An r round Feistel network instantiated with NARL secure PRFs
is a NARL secure super PRP for q-query distinguishers satisfying q ≤ 1.38r/2−1.

More precisely, let F : Σk × Σn → Σn be a (ǫprf , sprf , q)-secure L-resilient
PRF and Ψr = Ψ [f1, . . . , fr] denote an r round Feistel network instantiated with

fi = F(Ki, .). Then Ψr (whose key is K
def
= {K1, . . . , Kr}) is a (ǫ, s, q) L′-resilient

super-PRP for

q ≤ 1.38r/2−1 s = sprf − |F | · q · r ǫ = (2 + q · r) · ǫprf +
q6r6

5! · 2n
+

q2

2n

Where L′ contains, for every g1, . . . , gr ∈ L, the function g′ defined as

g′(K, X) = {g1(K1, R1), . . . , gr(Kr, Rr), R0, . . . , Rr+1}

with (R0, . . . , Rr+1)← µ(Ψr, X).

We will prove this theorem using a combinatorial lemma from [12]. Consider
an adversary A making q queries (forward or inverse) to Ψr = Ψ [f1, . . . , fr].
Let R[i, j] denote the input to the jth round function on the ith query. We say
R[i, j + 1] (resp. R[i, j − 1]) is “freshly generated” if the ith query is a forward
(resp. inverse) query where R[i, j] is fresh in the sense that R[i, j] 6= R[k, j] for all
k < j (and thus fj has not been invoked on R[i, j] before). We say that for this
sequence of queries the 5-XOR condition holds, if some freshly generated value
can be expressed as the bitwise XOR of 5 previously computed round function
inputs. In [12] the following Lemma is proven

Lemma 1 (Lemma 4.1 from [12]). Let Ψr be any r round Feistel network.
For any s ≤ r/2, if after making q ≤ 1.38s/2 forward/inverse queries to Ψr the
5-XOR condition does not hold, then there is no collision on the input to the jth
round function for any j ∈ [s, r − s].

Next we show that it is hard to provoke the 5-XOR condition in Ψr.

Lemma 2. Assume an adversary A of size s can satisfy the 5-XOR condi-
tion with probability ǫ making q queries to Ψr(K, .) as in Theorem 3 (with each
query X also getting the leakage g′(K, X) for some g′ ∈ L′.) Then F is not a

(sprf , ǫprf , q)-secure L-resilient PRF where sprf = s+|F |·q ·r and ǫprf = ǫ
q·r−

q5r5

5!·2n .



Proof. We define an adversary A′ (which will use A as a black-box) against the
L-resilience of F. As in Definition 2, A′ has access to Fg(K, .) (Where g ∈ L and

Fg(K, X)
def
= [F(K, X), g(K, X)].)12 and O(.), and has to guess whether O(.) is

a random function or F(K, .).
A′ first guesses a random query i and round j (1 ≤ i ≤ q, 1 ≤ j ≤ r). Then

it simulates an attack of A on Ψr, where for the first i queries it uses its first
oracle Fg(K, .) as the function for the jth round, and samples the round keys for
the other r − 1 rounds at random.

On the ith query, if the input to the jth round function is not fresh or the
5-XOR conditions already holds, A′ outputs 0 and stops. Otherwise it uses its
second oracle O(.) to compute the output, which gives a “freshly generated”
value R. If this value can be expressed as the XOR of 5 previous round values,
A′ outputs 1 and 0 otherwise.

Assume O(.) is a uniformly random function, then the probability that A′

outputs 1 is at most q5r5/(5! ·2n) as the output of O(.) is uniformly random, and
there are at most q5r5/5! possible values (i.e. each subset of 5 queries specifies
one possibility) which will trigger the 5-XOR condition.

Now assume the other case, where O(.) is F(K, .). If A will provoke the 5-
XOR condition (which holds with prob. ǫ), and A′ guessed which fresh query
will satisfy this condition for the first time (with happens with prob 1/(q · r)),
then A′ will output 1. Thus in this case A′ outputs 1 with prob. ǫ/(q · r).

By definition, the gap ǫ/q · r− q5r5/(5! · 2n) between those two probabilities
is A′ advantage in breaking the L-resilience of F. ⊓⊔

Proof (of Theorem 3). Consider an adversaryA of size s against the L′-resilience
of Ψr as specified in Definition 2. This A has access to two oracles, the first
being Ψg′

r (K, .) : X → [Ψr(K, X), g′(K, X)] and the second being either Ψr(K, .)
or a uniformly random permutation Pn(.) (we call this the real and random
experiment). By Lemma 2, in the real experiment the inputs to the functions in

round w
def
= ⌊r/2⌋ and w+1 will be distinct with probability at least 1− ǫ′ where

ǫ′ = q ·r ·ǫprf +q6r6/(5!·2n). Conditioned on this, the output of the right oracle in
the real experiment is pseudorandom and thus cannot be distinguished from the
output of the right oracle Pn(.) in the random experiment but with probability
2 · ǫprf + q2/2n, here the 2ǫprf accounts for the output only being pseudorandom,
and the q2/2n accounts for the fact that even if those values were uniform, the
distribution would still be slightly off from what the oracle Pn in the random
experiment outputs (we omit the details here.) Thus, A cannot distinguish the
two experiments better than with probability ǫ′ + 2 · ǫprf + q2/2n. ⊓⊔

12 The following reduction also works for the original notion of leakage-resilience where
the leakage-function can be adaptively chosen. For this one must consider the oracle

FL (instead Fg) defined as FL(K, X, g)
def
= [F(K, X), g(K, X)] (where g ∈ L). Thus,

although our current PRF constructions only give us “non-adaptive-leakage” sPRPs,
future advances in leakage-resilient PRFs would immediately translate to stronger
leakage-resilient sPRPs.
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A Technical Lemmata

Lemma 3 ([16]). Let A0, B0 be independent and φ1, φ2, . . . be any sequence of
functions. Let A1, A2, . . ., B1, B2, . . . and V1, V2, . . . be defined as

((Ai+1, Vi+1), Bi+1) := (φi+1(Ai, V1, . . . , Vi), Bi) if i is even
(Ai+1, (Vi+1, Bi+1)) := (Ai, φi+1(Bi, V1, . . . , Vi)) otherwise

Then Bi → {V1, . . . , Vi} → Ai (and Ai → {V1, . . . , Vi} → Bi) is a Markov chain
(or equivalently, Ai and Bi are independent given the V1, . . . , Vi)

Lemma 4 ([38]). For any α > 0 and t ∈ N: If F : {0, 1}κ × {0, 1}n → {0, 1}m

is a (ǫprf , sprf , qprf)-secure wPRF (for uniform keys), then it is a (ǫ′prf , s
′
prf , q

′
prf)-

secure wPRF even if the keys are only sampled from a distribution with min-
entropy κ− α with

qprf ≥ q′prf · t sprf ≥ s′prf · t ǫprf ≤ ǫ′prf/2α+1 −
q2
prf

2n+1
− 2 · exp

(

−
t · ǫ′2prf

8

)

Lemma 5 ([38]). Let β > 0, then if F : {0, 1}κ × {0, 1}n → {0, 1}m is a
(ǫprf , sprf , 1)-secure wPRF (for uniform inputs), it’s also a (ǫ′prf , s

′
prf , 1)-secure

wPRF if the input is chosen from a distribution with min-entropy m− β, where
for any t ∈ N

sprf ≥ s′prf · 2t ǫprf ≤ ǫ′prf/2β+1 − 2 · exp

(

−
2 · t · ǫ′2prf

64

)

Lemma 6 ([38]). Let F : {0, 1}κ × {0, 1}n → {0, 1}m be a (ǫprf , sprf , n/ǫ2prf)-
secure wPRF. Let K ∈ {0, 1}κ and X ∈ {0, 1}n be independent where H∞(K) =
κ − 2λ and H∞(X) = n − 2λ and let f : {0, 1}κ+n → {0, 1}λ be any leakage
function, then for λ ≤ log(ǫ−1

prf )/6

Pr
X,Y

[HHILL
ǫ′,s′ (F(K, X)|X, f(K, X)) ≥ m− 2λ] ≥ 1− 2−λ/2+1

with ǫ′ = 2−λ/2+2 and s′ = sprf/2λ+3(n + κ)3.


