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Abstract. The main results of this work are new public-key encryp-
tion schemes that, under the quadratic residuosity (QR) assumption (or
Paillier’s decisional composite residuosity (DCR) assumption), achieve
key-dependent message security as well as high resilience to secret key
leakage and high resilience to the presence of auxiliary input information.

In particular, under what we call the subgroup indistinguishability as-
sumption, of which the QR and DCR are special cases, we can construct
a scheme that has:

– Key-dependent message (circular) security. Achieves security
even when encrypting affine functions of its own secret key (in fact,
w.r.t. affine “key-cycles” of predefined length). Our scheme also
meets the requirements for extending key-dependent message secu-
rity to broader classes of functions beyond affine functions using
previous techniques of Brakerski et al. or Barak et al.

– Leakage resiliency. Remains secure even if any adversarial low-
entropy (efficiently computable) function of the secret key is given to
the adversary. A proper selection of parameters allows for a “leakage
rate” of (1− o(1)) of the length of the secret key.

– Auxiliary-input security. Remains secure even if any sufficiently
hard to invert (efficiently computable) function of the secret key is
given to the adversary.

Our scheme is the first to achieve key-dependent security and auxiliary-
input security based on the DCR and QR assumptions. Previous schemes
that achieved these properties relied either on the DDH or LWE assump-
tions. The proposed scheme is also the first to achieve leakage resiliency
for leakage rate (1−o(1)) of the secret key length, under the QR assump-
tion. We note that leakage resilient schemes under the DCR and the QR
assumptions, for the restricted case of composite modulus product of safe
primes, were implied by the work of Naor and Segev, using hash proof
systems. However, under the QR assumption, known constructions of
hash proof systems only yield a leakage rate of o(1) of the secret key
length.



1 Introduction

The “classical” definition of semantic secure public-key encryption by Gold-
wasser and Micali [16], requires that an efficient attacker with access to the
public encryption-key must not be able to find two messages such that it can
distinguish a random encryption of one from a random encryption of the other.
Numerous candidate public-key encryption schemes that meet this definition
have been presented over the years, both under specific hardness assumptions
(like the hardness of factoring) and under general assumptions (such as the ex-
istence of injective one-way trapdoor functions).

This notion of security, however (as well as other commonly accepted ones),
does not capture certain situations that may occur in the “real world”:

– Functions of the secret decryption-key can be encrypted and sent (note that
semantic security only guarantees security with respect to messages which
an efficient attacker can find).

– Information about the secret key may leak.
– The same secret key may be used in more than one application, or more

generally the attacker can somehow obtain the value of a hard-to-invert
function of the secret key.

In recent years, extensive research effort has been invested in providing en-
cryption schemes which are provably secure even in the above settings. Such
schemes are said to achieve key-dependent message (KDM) security, leakage-
resilience, and auxiliary-input security in correspondence to the above real world
settings. To date, we know of: (1) Candidate schemes which are KDM secure
under the decisional Diffie-Hellman (DDH) and under the learning with errors
(LWE) assumptions; (2) Candidate schemes that are resilient to key leakage of
rate (1−o(1)) (relative to the length of the secret key), under the LWE assump-
tion and under the DDH assumption. In addition, candidate scheme achieving
some leakage resilience under a general assumption: the existence of universal
hash-proof systems, with a leakage rate depending on the hash proof system be-
ing used; (3) Candidate schemes that are auxiliary input secure under the DDH
assumption and under the LWE assumption.

In this work, we present an encryption scheme that achieves all of the above
security notions simultaneously and is based on a class of assumptions that
we call subgroup indistinguishability assumptions. Specifically, this class includes
the quadratic residuosity (QR) and the decisional composite residuosity (DCR)
assumptions, both of which are related to the problem of factoring large numbers.
In addition, our schemes have the following interesting property: the secret key
consists of a randomly chosen binary vector independent of the group at hand.
The instantiation of our scheme under QR enjoys the same useful properties
for protocol design as the original [16] scheme, including re-randomization of
ciphertexts and support of the XOR homomorphic operation over the {0, 1}
message space, with the added benefit of leakage resilience.

To best describe our results, we first, in Section 1.1, describe in detail the
background for the new work, including the relevant security notions and pre-



vious results. Second, in Section 1.2, we describe in detail the new results and
encryption schemes. Then, in Section 1.3, we describe the new techniques. Sec-
tion 1.4 discusses some additional related works and Section 1.5 contains the
paper organization.

1.1 Background

Key-dependent messages. The shortcoming of the standard security defini-
tion in the case where the plaintext to be encrypted depends on the secret key
was already noticed in [16]. It was later observed that this situation is not so
unlikely and may sometimes even be desirable [9, 1, 21]. Black, Rogoway and
Shrimpton [5] formally defined KDM-security: the attacker can obtain encryp-
tions of (efficient) functions of its choosing, taken from some specified class of
functions F , applied to the secret key. The requirement is that the attacker can-
not tell if all of its queries are answered by encryptions of some constant symbol
0, instead of the requested values. This definition is extended to the case of many
(say n) users that can encrypt each others’ secret keys: the attacker’s queries
now contain a function to be applied to all secret keys, and an identity of the
user whose public key should be used to encrypt. This latter case is referred to
as KDM(n)-security while the single-user case is called KDM(1)-security.

Boneh, Halevi, Hamburg and Ostrovsky [6] constructed a public key en-
cryption scheme that is KDM(n) secure w.r.t. all affine functions,3 under the
decisional Diffie-Hellman (DDH) assumption, for any polynomial n. This first
result was followed by the work of Applebaum, Cash, Peikert and Sahai [3] who
proved that a variation of Regev’s scheme [25] is also KDM secure w.r.t. all affine
functions, under the learning with errors (LWE) assumption.

More recent works by Brakerski, Goldwasser and Kalai [8] and by Barak,
Haitner, Hofheinz and Ishai [4] presented each general and different techniques to
extend KDM-security to richer classes of functions. In [8], the notion of entropy-
κ KDM-security is introduced. A scheme is entropy-κ KDM-secure if it remains
KDM-secure even if the secret key is sampled from a high-entropy distribution,
rather than a uniform one. They show that an entropy-κ KDM-secure scheme im-
plies a scheme that is KDM-secure w.r.t. roughly any pre-defined set of functions
of polynomial cardinality. In [4], the notion of targeted public-key encryption is
introduced. A targeted encryption scheme can be thought of as a combination
of oblivious transfer and encryption: it is possible to encrypt in such a way that
the ciphertext is decryptable only if a certain bit of the secret key takes a prede-
fined value. They show that a targeted encryption scheme implies a KDM-secure
scheme w.r.t. all functions computable by circuits of some predefined (polyno-
mial) size. These two results achieve incomparable performance. While in the
former, the public key and ciphertext lengths depend on the size of the function
class (but not on its complexity) and are independent of the number of users
n, in the latter the public key size does not depend on the function class, but
3 More precisely “affine in the exponent”: the secret key is a vector of group elements

g1, . . . , g` and the scheme is secure w.r.t. functions of the form h ·∏ gai
i .



the ciphertext length is linear in the product of n times the complexity of the
functions.
Leakage resiliency. The work on cold boot attacks by Halderman et al. [17],
gave rise to the notion of public-key encryption resilient to (bounded) memory
leakage attacks, presented by Akavia, Goldwasser and Vaikuntanathan [2] and
further explored by Naor and Segev [22]. In their definition, security holds even if
the attacker gets some information of its choosing (depending on the value of the
public key) on the scheme’s secret key, so long as the total amount of information
leaked does not exceed an a-priori information theoretic bound. More formally,
the attacker can request and receive f(sk) for a length-restricted function f .4

[2, 22] presented public-key encryption schemes that are resilient to leakage of
even a 1 − o(1) fraction of the secret key (we call this the “leakage rate”). In
particular, [2] showed how this can be achieved under the LWE assumption, while
[22] showed that this can be achieved under the DDH (or d-linear) assumption.
It is further shown in [22] that some leakage resilience can be achieved using any
universal hash proof system (defined in [10]), where the leakage rate depends on
the parameters of the hash proof system. This implies secure schemes under the
the QR and DCR assumptions as well. However, using the known hash proof
systems, the leakage rate achievable under the QR assumption was only o(1) —
much less than the desired 1 − o(1). Based on the DCR assumption, a leakage
rate of (1− o(1)) was achievable [22, 10, 11].
Auxiliary input. Dodis, Kalai and Lovett [13] and Dodis, Goldwasser, Kalai,
Peikert and Vaikuntanathan [12] considered the case where the leakage is not re-
stricted information theoretically, but rather computationally. In the public key
setting, the attacker is allowed to access any information on the secret key, with
the following computational restriction: as long as recovering the secret key sk
from said information f(pk, sk), for f of the attackers choosing, is computation-
ally hard to a sufficient extent (see discussion of several formalizations in [12]).
This notion of security was termed security in the presence of auxiliary input (or
auxiliary-input security, for short). Public-key auxiliary-input secure encryption
schemes under the DDH and LWE assumptions were recently presented in [12].

1.2 New Results

Let us define a generalized class of assumptions called subgroup indistinguisha-
bility (SG) assumptions. A subgroup indistinguishability problem is defined by
a group GU (“the universe group”) which is a direct product of two groups
GU = GM × GL (interpreted as “the group of messages” and “the language
group”) whose orders, denoted by M,L respectively, are relatively prime and
where GM is a cyclic group. Essentially, the subgroup indistinguishability as-
sumption is that a random element of the universe GU is computationally in-
distinguishable from a random element in GL. In other words, the language GL

4 To be more precise, the requirement is that the min-entropy of the secret sk drops
by at most a bounded amount, given f(sk).



is hard on average in the universe GU . The precise definition is a little more
involved, see Section 3 for details.

Two special cases of the subgroup indistinguishability assumptions are the
quadratic residuosity (QR) assumption on Blum integers and Paillier’s decisional
composite residuosity (DCR) assumption. This is easily seen for QR as follows.
Let integer N = p · q, where p, q are random primes of equal bit-length, Z∗N =
{x ∈ ZN : gcd(x,N) = 1}, JN denote the group of Jacobi symbol (+1) elements
of Z∗N , and QRN = {x2 : x ∈ Z∗N} denote its subgroup of quadratic residues. The
quadratic residuosity (QR) assumption is then, that the uniform distributions
over JN and QRN are computationally indistinguishable. Taking N to be a Blum
integer where p, q = 3 (mod4) (otherwise the orders of GL,GM we define next
will not be relatively prime) and setting GU = JN , GL = QRN (which is of odd
order), and GM = {±1} (which is cyclic and has order 2), the QR assumption
falls immediately into the criteria of subgroup indistinguishability assumptions.

We are now ready to describe the new encryption scheme for a given subgroup
problem (GU ,GM ,GL) where h is a generator for GM . In general, we view the
plaintext message space as the elements hm ∈ GM (sometimes the exponent m
itself can be viewed as the message). For the case of QR, the plaintext message
space is GM = {±1}.

A word on the choice of parameters is in order. All parameters are measured
as a function of the security parameter k. As customary, in the QR and DCR
cases, think of the security parameter as the size of the modulus N (i.e. k =
dlog Ne). We let ` denote a parameter whose value is polynomially related to k,5

selected in accordance to the desired properties of the scheme (KDM security,
amount of leakage resilience etc.).

The Encryption Scheme for Subgroup Problem (GU ,GM ,GL) with
Parameter `:

– Key generation. Set the secret key to a random binary vector s = (s1, . . . , s`)
of length `. Set the public key to be the tuple (g1, . . . , g`, g0) where g1, . . . , g`

are uniformly chosen elements of GL and g0 =
∏

g−si
i . (For the QR assump-

tion, the public key thus consists of ` random squares, followed by a product
of a random subset of them, selected by the secret key s).

– Encryption. On input message hm,6 sample a uniform integer r from a large
enough domain and output the ciphertext (gr

1, . . . , g
r
` , hm · gr

0). (For the QR
assumption case, encryption is of single bits {±1}, and the ciphertext is the
tuple of squares in the public key, raised to a random power, where the last
one is multiplied by the plaintext message.)

– Decryption. On ciphertext (c1, . . . , c`, c0), compute hm = c0 ·
∏

csi
i . (For the

case of QR, m = c0 ·
∏

csi
i .) In general, recoverability of the exponent m

depends on whether taking discrete logs in base h of hm is easy.

5 More precisely, ` is a polynomial function `(k).
6 Recall that h is a generator of GM , which is a part of the description of GU .



We remark that the basic structure of our construction is strikingly similar
to [6], where the public key also contains ` independent “random” elements and
an additional element that is statistically close to uniform, but in fact is a com-
bination of the previous ones. The difference and challenge is in how to prove
security. This challenge is due to the fact that the subgroup indistinguishability
assumptions seem inherently different from the DDH assumption. In the latter,
for cyclic group G where DDH is assumed, the assumption implies that the dis-
tribution (g1, g2, g

r
1, g

r
2) is computationally indistinguishable from (g1, g2, g

′
1, g

′
2)

giving complete re-randomization (a similar property follows for LWE). Such re-
randomization does not follow nor is it necessarily true from subgroup indistin-
guishability. Rather, we will have to use the weaker guarantee that (g1, g2, g

r
1, g

r
2)

is indistinguishable from (g1, g2, h
r′ · gr

1, h
r′′ · gr

2), giving only “masking” of the
message bits.

Similarly to the scheme of [6], our scheme is lacking in efficiency. This is most
noticeable in our QR-based scheme, where the encryption of one bit requires a
ciphertext containing ` + 1 group elements, each of size roughly the security
parameter k. The situation is somewhat better when relying on DCR: there
each such ciphertext encrypts Ω(k) bits. Improved efficiency can be achieved
by using the same values g1, . . . , g` with many vectors s, however this makes
KDM security hold only with respect to a less natural function class (this is
similar to the more efficient LWE based scheme of [3]) and significantly reduces
leakage resiliency. Coming up with more efficient KDM secure or leakage resilient
schemes remains an interesting open problem.

We prove the following properties for the new encryption scheme.

Property 1: KDM-Security First, we prove that the scheme is KDM(1)-secure
w.r.t. affine functions of the secret key. To show this for QR case, we show that
for any affine function specified by a0, . . . , a`, the encryption of (−1)a0+

∑
i aisi is

indistinguishable from the encryption of (−1)0. For the general case, it is more
natural to view KDM(1) with respect to the affine functions “in the exponent”:
for any h0, h1, . . . , h` ∈ GM where hi = hai , for the generator h, we show that
an encryption of h0 ·

∏
hsi

i = ha0+
∑

i aisi is indistinguishable from an encryption
of h0.

Second, we prove that for any polynomial value of n, the above encryption
scheme satisfies KDM(n) security, if ` is larger than, roughly, n log L. We note
thus that the public key size and ciphertext size grow with n to achieve provable
KDM(n) security. Interestingly, in the works of [6, 3], ` did not need to grow with
n. This seems difficult to achieve without the complete “re-randomization” prop-
erty discussed above which does follow from the DDH and LWE assumptions,
but not from ours.

Finally, we can also show that our scheme can be used to obtain KDM security
for larger classes of functions than affine function: The scheme is entropy-κ KDM-
secure (for proper values of `), as required in [8] and therefore implies a scheme
that is secure w.r.t. functions of the form a0 +

∑
i aifi(sk) for (roughly) any set

of polynomially-many efficiently computable functions {f1, . . . , f`}. Our scheme



also implies a targeted encryption scheme, as required in [4], and therefore implies
that for any polynomial bound p, there is a scheme that is secure w.r.t. all
functions computable by size-p circuits.

Property 2: Improved Key-Leakage Resiliency We prove that the new
scheme is resilient to any leakage of a (1− o(1)) fraction of the bits of the secret
key. Stated differently, if one specifies in advance the amount of leakage λ (a
polynomial in the security parameter) to be tolerated, we can choose ` to obtain
a scheme that is secure against a leakage of λ bits. The growth of ` is additive
in λ (i.e. ` = `0 +λ) and therefore we can select the value of ` to obtain schemes
that are resilient to leakage of a (1 − (`0/`)) = (1 − o(1)) fraction of the secret
key.

We emphasize that while schemes with the above guarantees were known
under LWE [2] or DDH [22], and even (implicitly) under DCR [22, 10], this
was not the case under QR. Previous results with regards to QR-based leakage
resiliency [22, 10] could only approach a leakage rate of 1/k = o(1) (recall that
k is the security parameter, or the bit-length of the modulus N), compared to
(1− o(1)) in our scheme.

In addition, previous constructions of QR and DCR based hash proof systems
required that the modulus used N = p ·q is such that p, q are safe primes. We do
not impose this restriction. In the QR case we only require that p, q = 3 (mod 4)
(i.e. N is a Blum integer) and in the DCR case we only require that p, q have
the same bit-length.

Property 3: Auxiliary Input Security We prove that our schemes remain
secure when the attacker has access to additional information on the secret
key sk, in the form of fpk(sk), where fpk is a polynomial time function (which
may depend on the public key) that is evaluated on the secret key sk. First,
we consider the case where f is such that the transition (fpk(sk), pk) → sk is
computationally hard. Namely, that retrieving the secret key sk given the public
key pk and the auxiliary information fpk(sk), is sufficiently hard. This notion was
termed weak auxiliary-input security in [12]. In turn, [12] show how to leverage
weak auxiliary-input security to achieve security when the requirement on f is
weaker: now, only the transition fpk(sk) → sk needs to be hard. The latter is
called auxiliary-input security.

We conclude that for all δ > 0, we can select the value of ` such that the
scheme is auxiliary-input secure relative to any function that is hard to invert (in
polynomial time) with probability 2−`δ

. We note that the input to the function
is the secret key – a length ` binary string, and therefore we measure hardness
as a function of ` (and not of the security parameter k).

1.3 Our Techniques

The circular security, leakage resiliency and auxiliary-input security properties
of our scheme are proved using a new technical tool introduced in this work:



the interactive vector game. This proof technique can also provide an alternative
proof for the KDM(1)-security, leakage resiliency and auxiliary-input security of
(known) public-key encryption schemes based on DDH and LWE, thus providing
an alternative, more generic proof for some of the results of [6, 3, 22, 12].7

This suggests an alternative explanation to the folklore belief that the three
notions are related: that it is the proof technique that is related in fact. Namely,
the proof techniques for each property can be generalized to interactive vector
games which, in turn, imply the other properties.

We proceed to overview the proofs of security for the various properties of
our scheme. Again, let us consider the groups GU = GM × GL with h being a
generator for GM , such that the subgroup indistinguishability assumption holds.

To best explain the ideas of the proof, let us consider, as a first step, a
simple semantically secure encryption scheme (which is a generalization of the
Goldwasser-Micali scheme [15]). An encryption of 0 is a random element g ∈ GL

and an encryption of 1 is h · g (in the QR case, the encryption of (+1) is a
random quadratic residue and the encryption of (−1) is a random quadratic
non-residue). The two distributions are clearly indistinguishable (consider the
indistinguishable experiment where g is uniform in GU ). In order to decrypt,
one needs some “trapdoor information” that would enable to distinguish between
elements in GL and GU (such as the factorization of the modulus N in the QR
(and DCR) case).

The first modification of this simple idea was to fix g and put it in the public
key, and set the ciphertext for hm to hm · gr for r large enough. Note that the
sender does not know the order of GU : Indeed, in the QR case, knowing the
order of the group JN , which is ϕ(N)

2 , enables to factor N . For the QR case, this
modification still amounts to encrypting (+1) by a random square, and (−1) by
a random non-square.

The second modification does away with the need of the secret key owner
to distinguish between elements in GL and GU (e.g. with the need to know the
factorization of N in the QR case), by replacing the “trapdoor information” with
a secret key that is a uniform binary vector s = (s1, . . . , s`). Holding the secret
key will not enable us to solve subgroup indistinguishability, but will enable us
to decrypt as in [6]. We take a set of random elements g1, . . . , g` ∈ GL and define
g0 =

∏
g−si

i . If ` is large enough, then the leftover hash lemma implies that g0

is almost uniform. As the ciphertext is (gr
1, . . . , g

r
` , hm · gr

0), one can recover hm

using s. Recovering m itself is also possible if the discrete logarithm problem in
GM is easy, as is the case in the QR scenario.

The crux of the idea in proving security is as following. First, we note
that the distribution of g0 is close to uniform in GL, even given g1, . . . , g`

(by the leftover hash lemma). Recall that in a DDH-based proof, we could
claim that ((g1, . . . , g`, g0), (gr

1, . . . , g
r
` , gr

0)) is computationally indistinguishable
from ((g1, . . . , g`, g0), (g′1, . . . , g

′
`, g

′
0)) (where g′i are uniform). However, based

on subgroup indistinguishability, a different method is required: Consider re-

7 In this work, the interactive vector game is defined only for our subgroup indistin-
guishability assumptions, but it easily extends to other assumptions.



placing g0 with g′0 = h · g0, the distribution ((g1, . . . , g`, g0), (gr
1, . . . , g

r
` , gr

0)) is
computationally indistinguishable from ((g1, . . . , g`, h · g0), (gr

1, . . . , g
r
` , hr · gr

0))
under the subgroup indistinguishability assumption. The crucial observation
now is that since the orders of GM and GL are relatively prime, then in fact
g′r0 = hr′ · gr

0, where r′ is independent of r. Combined with the fact that GM

is cyclic, we get that ((g1, . . . , g`, g0), (gr
1, . . . , g

r
` , gr

0)) is indistinguishable from
((g1, . . . , g`, h · g0), (gr

1 . . . gr
` , h′ · gr

0)), for a random h′ ∈ GM . Semantic security
now follows.

To address the issues of circular security, leakage resiliency and auxiliary-
input, we generalize the idea presented above, and prove that the distributions
((g1, . . . , g`), (ha1 · gr

1, . . . , h
a` · gr

` )) and ((g1, . . . , g`), (gr
1, . . . , g

r
` )) are indistin-

guishable. We provide an interactive variant of this claim, which we call an
interactive `-vector game, where the values of a1, . . . , a` ∈ Z are selected by the
distinguisher and can depend on (g1, . . . , g`), and show that the above is hard
even in such case. The interactive vector game will be employed in the proofs of
all properties of the scheme.

For key-dependent message security, we consider the ciphertext (gr
0, g

r
1, . . . , h·

gr
i , . . . , gr

` ). This ciphertext will be decrypted to hsi and in fact can be shown
(using an interactive vector game) to be computationally indistinguishable from
a legal encryption of hsi . Key-dependent message security follows from this fact.

Proving KDM(n)-security for our scheme is more complex. To illustrate this,
we contrast it with the ideas in the proof of [6]. They used homomorphism and
re-randomization to achieve KDM(n)-security: Their scheme is shown to have
homomorphic properties that enable to “shift” public keys and ciphertexts that
are relative to a certain secret key, into ones that are relative to another se-
cret key. In order to apply these “shifts”, one only needs to know the relation
between the original and final keys (and not the keys themselves). In addition,
their scheme is shown to have re-randomization properties that enable to take
a public key (or ciphertext) and produce an independent public key (or cipher-
text) that corresponds to the same secret key (and message, in the ciphertext
case). These two properties enable simulating the KDM(n)-security game using
only one “real” secret key, fabricating the n required keys and ciphertexts using
homomorphism and re-randomization. In [3], similar ideas are employed, but
the re-randomization can be viewed as implicit in the assumption (the ability to
generate independently looking vectors that are in fact linearly related).

Our scheme can be shown to have such homomorphic properties, but it
doesn’t enjoy as strong re-randomizability as required to use the above tech-
niques. As an example, consider a public key pk = (g0, g1, . . . , g`) corresponding
to a secret key sk = (s1, . . . , s`), i.e. g0 =

∏
g−si

i . Let j ∈ [`] and consider
p̂k = (ĝ0, ĝ1, . . . , ĝ`) defined as follows: for all i 6∈ {j, 0}, set ĝi = gi; for j, set
ĝj = g−1

j ; and finally set ĝ0 = gj · g0 = ĝ
−(1−sj)
j ·∏i 6=j ĝ−si

i . We get that p̂k is a
properly distributed public key corresponding to the secret key ŝk = sk⊕ ej (sk
XORed with the jth unit binary string). Namely, we were able to “shift” a public
key to correspond to another (related) secret key, without knowing the original
key. However, the joint distribution of pk, p̂k is easily distinguishable from that



of two independent public keys. What we lack is the ability to re-randomize p̂k
so that it is distributed as a public key for ŝk which is independent of pk.

Intuitively, this shortcoming requires us to use more “real randomness”. Our
proof simulates the KDM(n)-security game using only one “real” secret key, as
in the idea presented above. This secret key is used to fabricate n secret and
public keys. However, when we want to apply the leftover hash lemma to claim
that the g0 components of all n fabricated public keys are close to uniform, we
need the one real secret key to have sufficient entropy. This requires a secret
key whose size is linear in n. These ideas, combined with the ones used to prove
KDM(1) security, give our final proof.

The property of entropy-κ KDM-security requires that the scheme remains
secure even when the secret key is sampled from a high-entropy (but not nec-
essarily uniform) distribution. This is shown to hold using the leftover hash
lemma, since

∏
gsi

i is a 2-universal hash function. A targeted encryption scheme
is obtained similarly to the other constructions in [4], by using the fact that we
can “fabricate” ciphertexts that correspond to affine functions of the secret key
without knowing the secret key itself.

Leakage resiliency and auxiliary-input security are proven by an almost iden-
tical argument: consider a case where we replace the ciphertext (hm·gr

0, g
r
1, . . . , g

r
` )

with a computationally indistinguishable one: (h−
∑

σisi ·hm ·gr
0, h

σ1 ·gr
1, . . . , h

σ` ·
gr

` ), where σi ∈ ZM are uniform. Computational indistinguishability (even for
a known secret key) follows from the interactive vector game mentioned above.
For leakage-resilience, the leftover hash lemma implies that so long as there is
sufficient entropy in s after the leakage,

∑
σisi will be close to uniform and will

“mask” the value of m. For auxiliary input we use the generalized Goldreich-
Levin theorem of [12] to show that

∑
σisi is close to uniform in the presence of

a function of s that is hard to invert, even given the public key. Thus obtaining
weak auxiliary-input security. In the QR case, the inner product is over Z2 and
therefore we can use the “standard” Goldreich-Levin theorem [14], which implies
better parameters. We use leveraging (as used in [12]) to obtain the full result.

1.4 Other Related Work

Cramer and Shoup [10] presented the notion of hash proof systems, which are sim-
ilar to subgroup indistinguishability assumptions. Their implementations from
QR and DCR also do not require the factorization of N in order to decrypt. How-
ever they use the discrete logarithm of (their analog to) the gi’s as a secret key
for the system. Our scheme can be seen as taking another step towards “strip-
ping” the secret key of all structure: in our scheme, it is just a uniform sequence
of bits (resulting in a weaker form of a hash proof system that is “universal on
average”).

Hemenway and Ostrovsky [19] show how to construct lossy trapdoor func-
tions (see [24] for definition) from the QR and DCR assumptions (among other
assumptions). Similar ideas can be used in a straightforward manner to con-
struct lossy trapdoor functions from subgroup indistinguishability assumptions
with special properties.



1.5 Paper Organization

Due to space constraints, this extended abstract only discusses the construction
based on the QR assumption. In addition, some of the proofs are omitted. We
refer the reader to the full version of this paper [7] for the complete presentation,
including all details.

Preliminaries and definitions are presented in Section 2. The definition of
subgroup indistinguishability assumptions and instantiations from QR and DCR
appear in Section 3.

Our QR-based encryption scheme is presented in Section 4, followed, in Sec-
tion 5, by introduction of the interactive vector game: a central technical tool
to be used for the analysis throughout the paper. KDM-security is discussed in
Section 6, leakage-resilience in Section 7 and auxiliary-input security in Section 8.

2 Preliminaries

We denote scalars in plain lowercase (x ∈ {0, 1}) and vectors in bold lowercase
(x ∈ {0, 1}n). The ith coordinate of x is denoted xi.

For vectors g,h ∈ Gn, where G is a multiplicative commutative group, we
denote by gr the vector whose ith coordinate is gr

i . We denote by h ·g the vector
whose ith coordinate is hi · gi. Note that this does not denote an inner product.
For a group element g ∈ G and a vector x ∈ Z, we let gx denote the vector
whose ith coordinate is gxi .

Let X be a probability distribution over a domain S, we write x
$← X to

indicate that x is sampled from the distribution X. The uniform distribution
over a set S is denoted U(S). We use x

$← S as abbreviation for x
$← U(S).

An ensemble X = {Xk}k is ε = ε(k)-uniform if for all k, Xk is within statis-
tical distance ε(k) from the uniform distribution. Statistical and computational
indistinguishability are defined in the standard way. We write negl(k) to denote
an arbitrary negligible function, i.e. one that vanishes faster than the inverse of
any polynomial.

We use the following simple lemma.

Lemma 2.1. Let T, N ∈ N and let x
$← [T ], then x (modN) is (N/T )-uniform

in ZN .

We use the following lemma which is an immediate corollary of the leftover
hash lemma and explicitly appears in [6, Lemma 2].

Lemma 2.2. Let H be a 2-universal hash family from a set X to a set Y . Then

the distribution (h, h(x)) where h
$← H, x

$← X is
√

|Y |
4|X| -uniform in H × Y .

The following lemma states the properties of a class of hash functions that
we use.

Lemma 2.3. Let G be any finite commutative group and let ` ∈ N. Then the
set of functions H = {hg1,...,g`

: {0, 1}` → G}g1,...,g`∈G where hg1,...,g`
(x) =∏

i∈[`] g
xi
i , is 2-universal.



We use the standard definitions of KDM security, leakage resilience and aux-
iliary input security as appear, e.g., in [6, 22, 12], respectively.

3 Subgroup Indistinguishability Assumptions

We present the class of subgroup indistinguishability assumptions in Section 3.1
and then discuss instantiations under the QR and DCR assumptions in Sec-
tion 3.2.

3.1 Definition of a Subgroup Indistinguishability (SG) Problem

Let GU be a finite commutative multiplicative group, such that GU is a direct
product of two groups: GU = GM ×GL (interpreted as the “message group” and
the “language group”), where GM is cyclic of order M , GL is of order L (and is
not necessarily cyclic) and GU is of order M ·L (we abuse notation and use M,L
to index the groups and to denote their orders). We require that gcd(M, L) = 1.
Let h be a generator for GM such that h is efficiently computable from the
description of GU . We require that there exists an efficient algorithm OPGU

to
perform group operations in GU , and also that there exist efficient sampling
algorithms SGM

, SGL
that sample a random element from GM , GL respectively.

We further require that an upper bound T ≥ M · L is known.
We stress that as always, all groups described above are in fact families of

groups, indexed by the security parameter k. To be more precise, there exists
a polynomial time randomized algorithm that given the security parameter 1k,
outputs IGU

= (OPGU
, SGM

, SGL
, h, T ). We refer to IGU

as an instance of GU .
For any adversary A we denote the subgroup distinguishing advantage of A

by
SGAdv[A] =

∣∣∣ Pr
x

$←GU

[A(1k, x)]− Pr
x

$←GL

[A(1k, x)]
∣∣∣ .

That is, the advantageA has in distinguishing betweenGU andGL. The subgroup
indistinguishability (SG) assumption is that for any polynomial A it holds that
for a properly sampled instance IGU

, we have SGAdv[A] = negl(k) (note that in
such case it must be that 1/L = negl(k)). In other words, thinking of GL ⊆ GU

as a language, the assumption is that this language is hard on average. We define
an additional flavor of the assumption by

SG′Adv[A] =
∣∣∣ Pr

x
$←GL

[A(1k, h · x)]− Pr
x

$←GL

[A(1k, x)]
∣∣∣ .

It follows immediately that for any adversary A there exists an adversary B such
that SG′Adv[A] ≤ 2 · SGAdv[B].

3.2 Instantiations

We instantiate the SG assumption based on the QR and DCR assumptions.



For both instantiations we consider a modulus N defined as follows. For
security parameter k, we sample a random RSA number N ∈ N: this is a number
of the form N = pq where p, q are random k-bit odd primes.

We note that our instantiations work even when the modulus N is such that
QRN is not cyclic.

Instantiation Under the QR Assumption with Any Blum Integer Con-
sider a modulus N as described above. We use JN to denote the set of elements
in Z∗N with Jacobi symbol 1, we use QRN to denote the set of quadratic residues
(squares) modulo N . Slightly abusing notation JN ,QRN also denote the respec-
tive groups with the multiplication operation modulo N . The groups JN ,QRN

have orders ϕ(N)
2 , ϕ(N)

4 respectively and we denote N ′ = ϕ(N)
4 . We require that

N is a Blum integer, namely that p, q = 3 (mod4). In such case it holds that
gcd(2, N ′) = 1 and (−1) ∈ JN \QRN .

The quadratic residuosity (QR) assumption is that for a properly generated
N , the distributions U(JN ) and U(QRN ) are computationally indistinguishable.8

This leads to the immediate instantiation of the SG assumption by setting GU =
JN , GM = {±1}, GL = QRN , h = (−1), T = N ≥ 2N ′.

Instantiation Under the DCR Assumption The decisional composite resid-
uosity (DCR) assumption, introduced by Paillier [23], states that for a properly
generated RSA number N , it is hard to distinguish between a random element in
Z∗N2 and a random element in the subgroup of N th-residues {xN : x ∈ Z∗N2}. The
group Z∗N2 can be written as a product of the group generated by 1 + N (which
has order N) and the group of N th residues (which has order ϕ(N)). This implies
that setting GU = Z∗N2 , GL = {xN : x ∈ Z∗N2} and GM = {(1 + N)i : i ∈ [N ]}
provides an instantiation of the SG assumption, setting h = (1+N) and T = N2.
It is left to check that indeed gcd(N,ϕ(N)) = 1. This follows since p, q are odd
primes of equal length: assume w.l.o.g that p/2 < q < p, then the largest prime
divisor of ϕ(N) = (p− 1)(q − 1) has size at most (p− 1)/2 < p, q and the claim
follows.9

4 Description of the Encryption Scheme

We now present our QR-based scheme E [`].
Parameters. The scheme is parameterized by ` ∈ N which is polynomial in
the security parameter. The exact value of ` is determined based on the specific
properties we require from the scheme.

8 The QR assumption usually refers to random RSA numbers, which are not necessar-
ily Blum integers. However, since Blum integers have constant density among RSA
numbers, the flavor we use is implied.

9 If greater efficiency is desired, we can use a generalized form of the assumption,
presented in [11].



The message space of E [`] is M = {0, 1}, i.e. this is a bit-by-bit encryption
scheme.
Key generation. The key generator first samples a Blum integer N . We note
that the same value of N can be used by all users. Furthermore we stress that
no entity needs to know the factorization of N . Therefore we often refer to N as
a public parameter of the scheme and assume that it is implicitly known to all
users.

The key generator also samples s $← {0, 1}` and sets sk = s. It then samples
g $← QR`

N and sets g0 = (
∏

i∈[`] g
si
i )−1. The public key is set to be pk = (g0,g)

(with N as an additional implicit public parameter).
Encryption. On inputs a public key pk = (g0,g) and a message m ∈ {0, 1},
the encryption algorithm runs as follows: it samples r

$← [N2],10 and computes
c = gr and c0 = (−1)m · gr

0. It outputs a ciphertext (c0, c).
Decryption. On inputs a secret key sk = s and a ciphertext (c0, c), the decryp-
tion algorithm computes (−1)m = c0 ·

∏
i∈[`] c

si
i and outputs m.

The completeness of the scheme follows immediately by definition.

5 The Interactive Vector Game

We define the interactive `-vector game played between a challenger and an
adversary. We only present the QR-based game and refer the reader to [7] for
full details.
Initialize. The challenger samples b

$← {0, 1} and also generates a Blum integer
N and a vector g $← QR`

N . It sends N and g to the adversary.
Query. The adversary adaptively makes queries, where each query is a vector
a ∈ {0, 1}`. For each query a, the challenger samples r

$← [N2] and returns
(−1)a · gr if b = 0 and gr if b = 1.
Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The advantage of an adversary A in the game is defined to be

IV`Adv[A] = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

Under the QR assumption, no poly(k)-time adversary (where k is the security
parameter) can obtain a non-negligible advantage in the game, as formally stated
below.

Lemma 5.1. Let A be an adversary for the interactive `-vector game that makes
at most t queries, then there exists an adversary B for QR such that

IV`Adv[A] ≤ 4t` ·QRAdv[B] + 2t`/N .

10 A more natural choice is to sample r
$← [|JN |], but since |JN | = 2N ′ = ϕ(N)

2
is hard

to compute, we cannot sample from this distribution directly. However, since r is
used as an exponent of a group element, it is sufficient that (r mod 2N ′) is uniform
in Z2N′ , and this is achieved by sampling r from a much larger domain. We further

remark that for the QR case, it is in fact sufficient to use r
$← [(N − 3)/4].



Proof. A standard hybrid argument implies the existence of A1 which is an
adversary for a 1-round game (t = 1 in our notation) such that IV`Adv[A] ≤
t · IV`Adv[A1].

We consider a series of hybrids (experiments). For each hybrid Hi, we let
Pr[Hi] denote the probability that the experiment “succeeds” (an event we define
below).

Hybrid H0. In this experiment, we flip a coin b
$← {0, 1} and also sample i

$← [`].
We simulate the 1-round game with A1 where the challenger answers a query a
with (gr

1, . . . , g
r
i−1, (−1)b·ai · gr

i , (−1)ai+1 · gr
i+1, . . . , (−1)a` · gr

` ). The experiment
succeeds if b′ = b.

A standard argument shows that

IV`Adv[A1]
2`

=
∣∣∣∣Pr[H0]− 1

2

∣∣∣∣ .

Hybrid H1. In this hybrid we replace gi (which is a uniform square) with (−gi).
We get that there exists B such that |Pr[H1]− Pr[H0]| ≤ 2 ·QRAdv[B].

We note that in this hybrid the adversary’s query is answered with

(gr
1, . . . , g

r
i−1, (−1)b·ai · (−gi)r, (−1)ai+1 · gr

i+1, . . . , (−1)a` · gr
` ) .

Hybrid H2. In this hybrid the only change is that now r
$← Z2N ′ (recall that

N ′ = ϕ(N)
4 ) rather than U([N2]). By Lemma 2.1 it follows that |Pr[H2]− Pr[H1]| ≤

1/N . We note that while N ′ is not explicitly known to any entity, this argument
is statistical and there is no requirement that this hybrid is efficiently simulated.

We denote r1 = (r mod 2) and r2 = (r mod N ′). Since N ′ is odd, the Chinese
Remainder Theorem implies that r1, r2 are uniform in Z2,ZN ′ respectively and
are independent. The answer to the query in this scenario is therefore

(gr
1, . . . , g

r
i−1, (−1)b·ai · (−gi)r, (−1)ai+1 · gr

i+1, . . . , (−1)a` · gr
` ) =

(gr2
1 , . . . , gr2

i−1, (−1)b·ai+r1 · gr2
i , (−1)ai+1 · gr2

i+1, . . . , (−1)a` · gr2
` ) .

However since r1 is a uniform bit, the answer is independent of b. It follows
that Pr[H2] = 1

2 . Thus IV`Adv[A1] ≤ 4` · QRAdv[B] + 2`/N , and the result
follows. ut

6 KDM Security

In this section, we discuss the KDM-security related properties of our QR-based
scheme (for the general discussion and full details, see full version [7]). We prove
the KDM(1)-security of E [`], for ` ≥ log N + ω(log k), in Section 6.1. Then, in
Section 6.2, we state that for ` ≥ n · log N +ω(log k), E [`] is also KDM(n)-secure.
Finally, extensions beyond affine functions are stated in Section 6.3.

We define Faff to be the class of affine functions over Z2. Namely, all functions
of the form fa0,a(x) = a0 +

∑
aixi, where ai, xi ∈ Z2.

We use KDMFAdv[A] to denote the advantage of an adversary A in distin-
guishing between a case where it gets legal encryptions of functions in F and
the case where it gets encryptions of the constant message 0.



6.1 KDM(1)-Security

The intuition behind the KDM(1)-security of E [`] is as follows. Consider a public
key (g0 =

∏
g−si

i ,g) that corresponds to a secret key s, and a function fa0,a ∈
Faff. The encryption of fa0,a(s) = (−1)a0+

∑
aisi is

(c0, c) = ((−1)a0+
∑

aisi · gr
0,g

r) = ((−1)a0 ·
∏

((−1)ai · gr
i )−si ,gr) .

We notice that if s, a0,a are known, then c0 is completely determined by c =
gr. Therefore, if we replace gr with (−1)a · gr (an indistinguishable vector,
even given the public key, by an interactive vector game), we see that (c0, c) is
indistinguishable from (c′0, c

′) = ((−1)a0 · gr
0, (−1)a · gr), even when the secret

key and the message are known. Applying the same argument again, taking
into account that g0 is close to uniform, implies that (c′0, c

′) is computationally
indistinguishable from (gr

0,g
r), which is an encryption of 0. A formal statement

and analysis follow.

Theorem 6.1. Let A be a KDM(1)
Faff

-adversary for E [`] that makes at most t

queries, then there exists an adversary B such that

KDM(1)
Faff

Adv[A] ≤ 4t(2` + 1) ·QRAdv[B] +
√

N · 2−` + O(t`/N) .

The theorem implies that taking ` = log N + ω(log k) is sufficient to obtain
KDM(1)-security.

Proof. The proof proceeds by a series of hybrids. Let b′ denote A’s output.
Hybrid H0. In this hybrid, the adversary gets the public key, queries functions
fa0,a ∈ Faff and gets legal encryptions of the functions of the secret key.
Hybrid H1. In this hybrid, we change the way the challenger answers the ad-
versary’s queries. Recall that in hybrid H0, the query fa0,a ∈ Faff was an-
swered by (c0, c) = ((−1)a0+

∑
aisi · gr

0,g
r). In hybrid H1, it will be answered by

(c0, c) = ((−1)a0 · gr
0, (−1)a · gr).

We prove that
∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]
∣∣∣∣ ≤ IV`Adv[A′] ≤ 4t` ·QRAdv[B1] + O(t`/N) ,

for some A′,B1, even when s is fixed and known.
To see this, we notice that in both hybrids c0 = (−1)a0 ·∏i∈[`]((−1)ai ·c−1

i )si

and g0 =
∏

i∈[`] g
−si
i . Therefore an adversary A′ for the interactive `-vector game

can simulate A, sampling s on its own and using g to generate g0 and “translate”
the challenger answers. Applying Lemma 5.1, the result follows.
Hybrid H2. In this hybrid, we change the distribution of g0, which will now
be sampled from U(QRN ). By Lemma 2.3 combined with Lemma 2.2, (g0,g) is√

N ′
2`+2 ≤

√
N

2`+2 -uniform. Thus

∣∣∣∣Pr
H2

[b′ = 1]− Pr
H1

[b′ = 1]
∣∣∣∣ ≤

√
N

2`+2
.



Hybrid H3. In this hybrid, we again change the way the challenger answers
queries. Now instead of answering (c0, c) = ((−1)a0 ·gr

0, (−1)a·gr)), the challenger
answers (c0, c) = (gr

0,g
r). The difference between H2 and H3 is now a t-query

interactive (` + 1)-vector game and thus by Lemma 5.1,
∣∣∣∣Pr
H3

[b′ = 1]− Pr
H2

[b′ = 1]
∣∣∣∣ ≤ 4t(` + 1) ·QRAdv[B2] + O(t`/N) ,

for some B2.
Hybrid H4. We now revert the distribution of g0 back to the original

∏
i∈[`] g

−si
i .

Similarly to H2, we have
∣∣∣∣Pr
H4

[b′ = 1]− Pr
H3

[b′ = 1]
∣∣∣∣ ≤

√
N

2`+2
.

However, hybrid H4 is identical to answering all the queries of the adversary
by encryptions of 0. Summing the terms above, the result follows. ut

6.2 KDM(n)-Security

A formal statement for the QR case follows.

Theorem 6.2. Let A be a KDM(n)
Faff

-adversary for E [`] that makes at most t

queries, then there exists an adversary B such that

KDM(n)
Faff

Adv[A] ≤ 4nt(2` + 1) ·QRAdv[B] + (N · 2−`/n)n/2 + O(nt`/N) .

Thus, taking ` = n · log N + ω(log k) is sufficient for KDM(n)-security.

6.3 Beyond Affine Functions

Two building blocks have been suggested in [8, 4] to obtain KDM-security w.r.t.
a larger class of functions. Our scheme has the properties required to apply both
constructions, yielding the following corollaries (that can be generalized to any
SG assumption, see full version [7]).

The first corollary is derived using [8, Theorem 1.1]. A set of functions H =
{h1, . . . , h` : hi : {0, 1}κ → {0, 1}} is entropy preserving if the function f(x) =
(h1(x)‖ · · · ‖h`(x)) is injective (the operator ‖ represents string concatenation).

Corollary 6.1. Consider E [`] and let κ be polynomial in the security parame-
ter such that κ ≥ log N + ω(log k). Then for any entropy preserving set H =
{h1, . . . , h` : hi ∈ {0, 1}κ → {0, 1}} of efficiently computable functions, with
polynomial cardinality (in the security parameter), there exists a KDM(1)-secure
scheme under the QR-assumption w.r.t. the class of functions

F =
{

f(x) = a0 +
∑

aihi(x) : (a0,a) ∈ Z2 × Z`
2

}
.



The second corollary is derived using [4, Theorem 4.1].

Corollary 6.2. Based on the QR assumption, for any polynomial p there exists
a KDM(1)-secure encryption scheme w.r.t. all functions computable by circuits
of size p(k) (where k is the security parameter).

7 Leakage Resiliency

We prove that the scheme E [`] (our QR based scheme) is resilient to a leakage
of up of λ = ` − log N − ω(log k) bits. This implies that taking ` = ω(log N),
achieves (1− o(1)) leakage rate.

Intuitively, to prove leakage resiliency, we consider the case where instead
of outputting the challenge ciphertext ((−1)m · gr

0,g
r), we output ((−1)m ·

(−1)
∑

σisi · gr
0, (−1)σ · gr), for a random vector σ

$← Z`
2. The views of the ad-

versary in the two cases are indistinguishable (by an interactive vector game).11

Using the leftover hash lemma, so long as s has sufficient min-entropy, even
given g0 and the leakage, then

∑
σisi is close to uniform. In other words, the

ciphertexts generated by our scheme are computationally indistinguishable from
ones that contain a strong extractor (whose seed is the aforementioned σ), ap-
plied to the secret key. This guarantees leakage resiliency.12 The result in the
QR case is formally stated below, where LeakλAdv[A] denotes the advantage of
an adversary A in breaking the security of the scheme using λ bits of leakage.

Theorem 7.1. Let A be a λ-leakage adversary for E [`]. Then there exists an
adversary B such that

LeakλAdv[A] ≤ 8` ·QRAdv[B] +
√

N · 2λ−` + O(`/N) .

8 Auxiliary-Input Resiliency

As in previous work, we start by stating weak auxiliary-input security in Lemma 8.1
below and then derive general auxiliary-input security for sub-exponentially hard
functions in Corollary 8.1.

A function f is ε-weakly uninvertible if for any efficientA, Pr[A(1k, pk, fk(sk, pk)) =
sk] ≤ ε(|sk|).
Lemma 8.1. Let ε(`) and f be such that ε is negligible and f is ε-weakly un-
invertible function (more precisely, family of functions). Then under the QR
assumption, the scheme E [`] is secure even with auxiliary input f(sk).

11 Of course the latter ciphertext can only be generated using the secret key, but the
indistinguishability holds even when the secret key is known.

12 In the spirit of [22], we can say that our scheme defines a new hash proof system
that is universal with high probability over illegal ciphertexts, a property which is
sufficient for leakage resiliency.



We note that the above may seem confusing since it appears to imply auxiliary-
input security, and thus also semantic security, regardless of the value of `.
However, we recall that if ` is too small, then we may be able to retrieve s from
pk without the presence of any auxiliary input. Therefore the value of ` must be
large enough in order for f to be weakly uninvertible.

We can then derive the following corollary.

Corollary 8.1. Assuming that a subgroup indistinguishability assumption holds,
then for any constant δ > 0 there is an encryption scheme that is resilient to
auxiliary input f(sk) any function f is hard to invert with probability 2−`δ

.
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