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Abstract. We consider the cryptographic group of Signed Quadratic
Residues. This group is particularly useful for cryptography since it is
a “gap-group,” in which the computational problem (i.e., computing
square roots) is as hard as factoring, while the corresponding decisional
problem (i.e., recognizing signed quadratic residues) is easy. We are able
to show that under the factoring assumption, the Strong Diffie-Hellman
assumption over the signed quadratic residues holds. That is, in this
group the Diffie-Hellman problem is hard, even in the presence of a De-
cisional Diffie-Hellman oracle.
We demonstrate the usefulness of our results by applying them to the
Hybrid ElGamal encryption scheme (aka Diffie-Hellman integrated en-
cryption scheme — DHIES). Concretely, we consider the security of the
scheme when instantiated over the group of signed quadratic residues.
It is known that, in the random oracle model, the scheme is chosen-
ciphertext (CCA) secure under the Strong Diffie-Hellman assumption
and hence, by our results, under the standard factoring assumption. We
show that furthermore, in the standard model, Hybrid ElGamal is CCA
secure under the higher residuosity assumption, given that the used hash
function is four-wise independent. The latter result is obtained using the
recent “randomness extraction framework” for hash proof systems.

Keywords. Public-key encryption, chosen-ciphertext security, Hybrid
ElGamal/DHIES

1 Introduction

1.1 Quadratic Residues

The group of quadratic residues QRN over a Blum integer N = PQ (where
P ≡ Q ≡ 3 mod 4) has proven to be a useful group for cryptographic purposes.
For example, Rabin [30] proved that computing square roots in this group is
equivalent to factoring the modulus N . The latter is believed to be hard in
general (“factoring assumption”). Rabin’s fundamental observation is the basis
for a number of cryptographic protocols that are provably secure under the
factoring assumption (e.g., the encryption and signature schemes [30, 5, 21]).

The quadratic residues have yet another useful property. Namely, given a
uniformly random element modulo N (with Jacobi symbol 1), it is believed to
be hard to decide whether the element is a square or not. This is the quadratic
residuosity assumption, a stronger assumption than the factoring assumption.
? CWI, Amsterdam, Dennis.Hofheinz@cwi.nl. Work supported by NWO.
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On the bright side, there are again numerous cryptographic protocols whose
security relies on the quadratic residuosity assumption (e.g., [18, 11]).

However, the quadratic residuosity assumption also has a dark side. Namely,
whenever an active adversary may choose group elements as protocol inputs
(such as ciphertexts submitted for decryption), the receiving (honest) party may
not be able to distinguish quadratic residues from quadratic non-residues. In par-
ticular, the adversary may learn some secret information by observing the proto-
col’s different behaviour on quadratic residues and non-residues. Concretely, this
problem naturally occurs when trying to reduce the chosen-ciphertext security
(CCA security) of an encryption scheme (defined over the quadratic residues)
to the factoring assumption. Specifically, during such a reduction, a decryption
oracle has to be implemented without the knowledge of the factorization of N .
Hence, the decryption oracle cannot distinguish quadratic residues from non-
residues. This allows an adversary that uses the decryption oracle to submit,
say, both C ∈ Z∗N and −C ∈ Z∗N (one of which is not a square) for decryption.
This makes implementing a decryption oracle harder, in particular since the the
submitted non-squares could be related to the challenge ciphertext.

Another intractability problem commonly used in cryptography is the Diffie-
Hellman (DH) problem [13]. Given a generator g of a cyclic group G and X =
gx, Y = gy, the DH key is defined as DHg(X,Y ) = gxy. The (Computational) DH
problem is to compute DHg(X,Y ) from g,X, Y . For passive (chosen-plaintext)
adversaries the security of the DH key exchange protocol [13] and the ElGamal
encryption scheme [15] is equivalent to the DH problem. Over the group of
quadratic residues (i.e., if G = QRN ), Shmuely [32] and McCurley [27] proved
that the DH problem is at least as hard as factoring N .

The Strong Diffie-Hellman (SDH) problem [1] is to compute DHg(X,Y ) from
g,X, Y while having access to a (Decisional) DH oracle that returns 1 on input
(Ŷ , Ẑ) if DHg(X, Ŷ ) = Ẑ and (Ŷ , Ẑ) ∈ G × G (and 0 otherwise). Interest-
ingly, for active (chosen-ciphertext) adversaries, the security of the (hashed)
Diffie-Hellman key exchange protocol [13] and the Hybrid ElGamal encryption
scheme [15] is equivalent to the SDH problem [9] in the random oracle model [3].
However, the result of Shmuely does not extend to prove that the SDH problem
is at least as hard as factoring, since to simulate the DH oracle, one must be
able to determine membership in the quadratic residues.

1.2 Signed Quadratic Residues

We propose to use a cryptographic group we call the Signed Quadratic Residues
(QR+

N ). This group has been suggested already by Fischlin and Schnorr in [16,
Section 6] (in the different context of hard-core bits for generalized Rabin func-
tions), but has not been investigated any further. This group is useful for cryptog-
raphy since membership in QR+

N can be publicly (and efficiently) verified while it
inherits some nice intractability properties of the quadratic residues. For exam-
ple, computing square roots in QR+

N is also equivalent to factoring the modulus
N . We therefore have a “gap group” [29], in which the computational problem
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(i.e., computing a square root) is as hard as factoring, whereas the correspond-
ing decisional problem (i.e., deciding if an element is a signed square) is easy.
We can apply this observation to the Diffie-Hellman assumption. Namely, we
extend Shmuely’s result to show that in the group of signed quadratic residues,
the Strong Diffie-Hellman problem is implied by the factoring assumption.

Concretely, the signed quadratic residues, QR+
N , are defined as the group

QR+
N := {|x| : x ∈ QRN}, where |x| is the absolute value when representing

elements of ZN as the set {−(N − 1)/2, . . . , (N − 1)/2}. We have that (QR+
N , ◦)

is a cyclic group, where the group operation is given by a ◦ b := |a · b mod N |.
As already noted in [16], membership in QR+

N can be efficiently verified since
QR+

N = J+
N , where JN is the group of elements with Jacobi symbol 1 and J+

N :=
{|x| : x ∈ JN} = JN/±1.

1.3 Hybrid ElGamal over the Signed Quadratic Residues

The Hybrid ElGamal encryption scheme combines the original ElGamal encryp-
tion scheme with a hash function for key derivation and a symmetric cipher.
As “Diffie-Hellman integrated encryption scheme” (DHIES) [1] it is contained
in several standards bodies for public-key encryption, e.g., in IEEE P1363a,
SECG, and ISO 18033-2. We consider the security of Hybrid ElGamal when
implemented over the group of signed quadratic residues.

CCA security in the random oracle model under the factoring as-
sumption. It is well known [1, 12] that Hybrid ElGamal is CCA secure in the
random oracle model under the SDH assumption. Recall that we show that the
SDH assumption in the group of signed quadratic residues is implied by the
factoring assumption. Hence, as an immediate application of our results, we ob-
tain that Hybrid ElGamal over the signed quadratic residues is CCA secure in
the random oracle model under the factoring assumption. (We emphasize that
while the security proofs for Hybrid ElGamal from [1, 12] are formulated for
prime-order subgroups of Z∗p, they do not use knowledge about the order of the
platform group, and hold literally in the group of signed quadratic residues.)

CCA security in the standard model under the higher residuosity
assumption. Using completely different techniques, we show the Hybrid ElGa-
mal over the signed quadratic residues is CCA secure in the standard model
under the higher residuosity assumption [19].1 This result is obtained by apply-
ing the recent “randomness extraction framework” by [22] to a specific “high-
entropic” hash proof system whose subset membership problem is hard assuming
the higher residuosity assumption. We stress that this is the first security result
for Hybrid ElGamal in the standard model from a non-interactive computational
assumption.

1 The higher residuosity assumption states that it is hard to distinguish random el-
ements of QRN from random elements of GS , where GS is a subgroup of QRN of
unknown (large) order S.
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1.4 Other applications

Security of Diffie-Hellman key exchange. Similar to the Hybrid El-
Gamal scheme, the (hashed) Diffie-Hellman key exchange protocol [13] can be
proven secure against active attacks in the random oracle model under the SDH
assumption ([9, Theorem 5]). As with Hybrid ElGamal, the security proof does
not use knowledge about the order of the platform group, and hence holds liter-
ally over the signed quadratic residues. In particular, we can employ our result
about the SDH assumption in the group of signed quadratic residues. We get
that the (hashed) Diffie-Hellman key exchange protocol is secure against ac-
tive attacks in the random oracle model under the factoring assumption, when
implemented over the signed quadratic residues.

Simplifying security proofs. As hinted above, encryption schemes that are
already formulated over the quadratic residues have to take into account that
the set of quadratic residues is not (or, rather, not known to be) efficiently
recognizable. In particular, e.g., ciphertexts submitted for decryption may be
non-squares. The usual way to deal with this problem is to first square the group
elements supplied to decryption, and to “make up for this additional squaring” in
the subsequent processing. Additionally, these works already propose to restrict
the set of allowed ciphertexts to signed quadratic residues (e.g., to prevent an
adversary to submit both C and −C for decryption). Hence, the group of signed
quadratic residues is implicitly used, but only to “transport” quadratic residues.
Our proposal here is to work in the group of signed quadratic residues altogether,
whenever a reduction to the factoring assumption is desired. Because the group of
signed quadratic residues is efficiently recognizable, this avoids the extra squaring
step and the connected complications. In particular, we can simplify both scheme
and security proof of the CCA-secure encryption scheme from [21]. This results
in a slight efficiency gain, since we save a few modular squarings. We stress that
these modifications do not affect the actual reduction to factoring.2

1.5 Related work

To the best of our knowledge, the group of signed quadratic residues appears
first in [16] in the context of hard-core bits for generalized Rabin functions. Fur-
thermore, as explained above, it has been used implicitly in several encryption
schemes to “transport” quadratic residues, e.g., in [26, 8, 21]. The security of Hy-
brid ElGamal has been investigated in [12, 25] in the random oracle model, and
in [1] in the standard model. In particular, the latter work derives CCA secu-
rity results for Hybrid ElGamal under the (interactive) “oracle Diffie-Hellman”
assumption. The (non-interactive) computational assumption that we employ
to show CCA security of Hybrid ElGamal has been suggested and used in [17,
2 It is easy to see that squaring is a one-way permutation (as hard to invert as factoring

N) also in the signed quadratic residues. Furthermore, the least significant bit of the
squaring function (over the signed quadratic residues) is hard-core, see [16] who
consider the “absolute Rabin function Ea

N .”
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6], also with the goal to construct hash proof systems for the use in encryption
schemes. However, the encryption schemes from [17, 6] are less efficient than
Hybrid ElGamal due to the fact that they do not use randomness extraction
techniques, but instead build on the Cramer-Shoup, resp. Kurosawa-Desmedt
paradigms [11, 23]. The paper [9] has a similar overall goal as ours. They propose
the “Twin Diffie-Hellman” (2DH) assumption and show that the (interactive)
Strong 2DH assumption is implied by the standard DH assumption. However, to
be able to use this new assumption to prove security of the schemes of interest
(among others also the Hybrid ElGamal and the Diffie-Hellman key-exchange
protocol) they have to modify the schemes. Our results directly yield a security
proof for the above schemes when instantiated in the specific group of signed
quadratic residues.

2 Preliminaries

2.1 Notation

If k ∈ N then 1k denotes the string of k ones. If r ≥ 1 is a rational number then
[r] = {1, . . . , dre}. If S is a set then s ←R S denotes the operation of picking
an element s of S uniformly at random. We write A(x, y, . . .) to indicate that
A is an algorithm with inputs x, y, . . . and by z ←R A(x, y, . . .) we denote the
operation of running A with inputs (x, y, . . .) and letting z be the output. We
write lg x for logarithms over the reals with base 2. The min-entropy of a random
variable X is defined as H∞(X) = − lg(maxx∈X Pr[X = x]). If X is an element
of a cyclic group G = 〈g〉, we write dloggX for the smallest non-negative integer
x with X = gx.

2.2 Public-Key Encryption

A public key encryption scheme PKE = (Kg,Enc,Dec) with message spaceM(k)
consists of three polynomial time algorithms (PTAs), of which the first two, Kg
and Enc, are probabilistic and the last one, Dec, is deterministic. Public/secret
keys for security parameter k ∈ N are generated using (pk , sk) ←R Kg(1k).
Given such a key pair, a message m ∈M(k) is encrypted by C ←R Enc(pk ,m);
a ciphertext is decrypted by m←R Dec(sk,C ), where possibly Dec outputs ⊥ to
denote an invalid ciphertext. For consistency, we require that for all k ∈ N, all
messages m ∈ M(k), it must hold that Pr[Dec(sk ,Enc(pk ,m)) = m] = 1 where
the probability is taken over the above randomized algorithms and (pk , sk)←R

Kg(1k).
The security we require for PKE is IND-CCA security [31, 14]. We define the

advantage of an adversary A = (A1,A2) as

Advcca
PKE,A(k) def=

∣∣∣∣∣∣∣∣Pr

b̂ = b :

(pk , sk)←R Kg(1k)
(m0,m1,St)←R ADec(sk ,·)

1 (pk)
b←R {0, 1} ; C ∗ ←R Enc(pk ,mb)
b′ ←R ADec(sk ,·)

2 (C ∗,St)

− 1
2

∣∣∣∣∣∣∣∣ .
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The adversary A2 is restricted not to query Dec(sk , ·) with C ∗. PKE scheme
PKE is said to be indistinguishable against chosen-ciphertext attacks (IND-CCA
secure in short) if the advantage function Advcca

PKE,A(k) is a negligible function in
k for all efficient A.

2.3 Symmetric Encryption

A symmetric encryption scheme SE = (E,D) is specified by its encryption algo-
rithm E (encrypting m ∈M(k) with keys S ∈ KSE(k)) and decryption algorithm
D (returning m ∈ M(k) or ⊥). Here we restrict ourselves to deterministic algo-
rithms E and D.

The most common notion of security for symmetric encryption is that of
(one-time) ciphertext indistinguishability (IND-OT), which requires that all ef-
ficient adversaries fail to distinguish between the encryptions of two messages
of their choice. Another common security requirement is ciphertext authenticity.
(One-time) ciphertext integrity (INT-OT) requires that no efficient adversary
can produce a new valid ciphertext under some key when given one encryption
of a message of his choice under the same key. A symmetric encryption scheme
which satisfies both requirements simultaneously is called secure in the sense of
authenticated encryption (AE-OT secure). Symmetric ciphers secure in the sense
of AE-OT can be constructed (following the encrypt-then-mac approach [2, 12])
from a IND-OT secure symmetric encryption scheme and a MAC. Note that
AE-OT security is a stronger notion than one-time chosen-ciphertext security
(IND-OTCCA) [2, 12]. Formal definitions and constructions appear in, e.g., [20].

2.4 Hash functions

Let H be a family of hash functions H : X → Y . With |H| we denote the number
of functions in this family and when sampling from H we assume a uniform
distribution. Let k > 1 be an integer, the hash-family H is k-wise independent
if for any sequence of distinct elements x1, . . . , xk ∈ X the random variables
H(x1), . . . ,H(xk), where H←R H, are independent and uniformly random.

3 The group of Signed Quadratic Residues

3.1 Quadratic Residues

An n-bit integer N = PQ is called an RSA modulus if P and Q are two distinct
n/2-bit odd primes. In what follows, we will assume that N is a Blum integer,
i.e., an RSA modulus N = PQ such that P and Q are both congruent 3 modulo
4. The group Z∗N consists of all elements of ZN that have an inverse modulo N .
Z∗N has order φ(N) = (P −1)(Q−1), where φ(N) is Euler’s totient function. By
JN we denote the subgroup of all elements from Z∗N with Jacobi symbol 1. JN
has index 2 in Z∗N and has order (P − 1)(Q− 1)/2. Since N is Blum, −1 ∈ JN .
By QRN we denote the group of quadratic residues modulo N . Note that QRN
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is a subgroup of JN with index 2 and has order (P − 1)(Q − 1)/4. We remark
that recognizing elements in QRN is generally believed to be a hard problem
(the quadratic residuosity problem).

3.2 Signed Quadratic Residues

Let N be an integer. For x ∈ ZN we define |x| as the absolute value of x, where
x is represented as a signed integer in the set {−(N − 1)/2, . . . , (N − 1)/2}. For
a sub-group G of Z∗N we define the “signed group”, G+, as the group

G+ := {|x| : x ∈ G}

with the following group operation. Namely, for g, h ∈ G+ and an integer x we
define

g ◦ h :=|g · h mod N |, gx := g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
x times

= |gx mod N | . (1)

More complicated expressions in the exponents are computed modulo the group
order, e.g., g1/2 = g2−1 mod ord(G+). Note that taking the absolute value is a
surjective homomorphism from G to G+ with trivial kernel if −1 6∈ G, and with
kernel {−1, 1} if −1 ∈ G.

Let N be a Blum integer such that −1 6∈ QRN . We will mainly be interested
in QR+

N , which we call signed quadratic residues (modulo N). QR+
N is a subgroup

of Z∗N/±1, with absolute values as a convenient computational representation.
The following basic facts have already been noted in [16].

Lemma 1. Let N be a Blum integer. Then:
1. (QR+

N , ◦) is a group of order φ(N)/4.
2. QR+

N = J+
N . In particular, QR+

N is efficiently recognizable (given only N).
3. If QRN is cyclic, so is QR+

N .

Proof. First, note that | · | : (ZN , ·) → (Z+
N , ◦) is a group homomorphism so

(QR+
N , ◦) is a group. Since −1 6∈ QRN , the map QRN → QR+

N has kernel {1},
and so ord(QR+

N ) = ord(QRN ) = φ(N)/4. On the other hand, the map JN → J+
N

has kernel {±1}, and so ord(J+
N ) = ord(JN )/2 = φ(N)/4. Since QRN ⊆ JN , we

have QR+
N ⊆ J+

N , so ord(QR+
N ) = ord(J+

N ) implies QR+
N = J+

N . Elements in QR+
N

can be efficiently recognized since QR+
N = J+

N = JN ∩ [(N − 1)/2]. If QRN is
cyclic, a generator g of QRN is mapped to a generator |g| of QR+

N , so QR+
N is a

cyclic group.

3.3 Factoring Assumption

RSA Instance Generator. Let 0 ≤ δ < 1/2 be a constant and n(k) be a
function. Let RSAgen be an algorithm that generates elements (N,P,Q), such
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that N = PQ is an n-bit Blum integer and all prime factors of φ(N)/4 are
pairwise distinct and at least δn bit integers.3

Factoring assumption. The factoring assumption is that computing P,Q
from N (generated by RSAgen) is hard. We write

Advfac
A,RSAgen(k) := Pr[{P,Q} ←R A(N) : (N,P,Q)←R RSAgen(1k)].

The factoring assumption for RSAgen holds if Advfac
A,RSAgen(k) is negligible for all

efficient A.

3.4 Strong Diffie-Hellman assumption

Let G be a finite cyclic group whose order is not necessarily known. The Diffie-
Hellman (DH) problem in G is to compute DHg(X,Y ) := g(dloggX)(dloggY ) from
(G, g,X, Y ) for a uniform generator g and uniform X,Y ∈ G. The strong Diffie-
Hellman problem [1] is the same as the DH problem, but now the adversary has
access to a Decision Diffie-Hellman oracle for fixed g and X, which is defined
as DDHg,X(Ŷ , Ẑ) = 1 if Ŷ dloggX = Ẑ (and DDHg,X(Ŷ , Ẑ) = 0 else), where
(Ŷ , Ẑ) ∈ G×G. We do not define DDHg,X in inputs (Ŷ , Ẑ) 6∈ G×G, since we
assume that G is efficiently recognizable. For our purposes, we will consider the
group (QR+

N , ◦), i.e., the group of signed quadratic residues.
To an adversary A and RSAgen we associate

Advsdh
A,RSAgen(k) := Pr

Z = DHg(X,Y ) :

(N,P,Q, S)←R RSAgen(1k) ;
unif. choose g with 〈g〉 = QR+

N ;
X,Y ←R QR+

N ;
Z ←R ADDHg,X(·,·)(N, g,X, Y )

 .
The Strong DH assumption holds relative to RSAgen if Advsdh

A,RSAgen(k) is negli-
gible for all efficient A.

Theorem 2. If the factoring assumption holds then the strong DH assumption
holds relative to RSAgen. In particular, for every strong DH adversary A, there
exists a factoring adversary B (with roughly the same complexity as A) such that

Advsdh
A,RSAgen(k) ≤ Advfac

B,RSAgen(k) +O(2−δn(k)). (2)

Proof. We construct B from a given A. Concretely, B receives a challenge N =
PQ, chooses uniformly u ←R (Z∗N )+ \ QR+

N and sets h := u2. Note that by
definition of N , we have 〈h〉 = QR+

N except with probability O(2−δn(k)). Then
B chooses a, b ∈ [N/4] and sets

g := h2 X := h ◦ ga Y := h ◦ gb.
3 The “only large prime-factors” requirement is needed to ensure that the square of a

random element in Z∗N is a generator of QRN with high probability 1−O(2−δn(k)).
The requirement that all prime factors are distinct ensures that JN is cyclic.
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This implicitly defines

dloggX = a+ 1/2 mod ord(QR+
N ), and dloggY = b+ 1/2 mod ord(QR+

N ),

where the discrete logarithms are of course considered in (QR+
N , ◦). Again, by

definition of N , the statistical distance between these (g,X, Y ) and the input of
A in the strong DH experiment is bounded by O(2−δn(k)). So B runs A on input
(g,X, Y ), and answers A’s oracle queries (Ŷ , Ẑ) as follows. First, we may assume
that Ŷ , Ẑ ∈ QR+

N since (by Lemma 1) QR+
N = J+

N is efficiently recognizable.
Next, since N is a Blum integer, the group order ord(QR+

N ) = (P − 1)(Q− 1)/4
is odd, and hence

Ŷ
dloggX = Ẑ ⇐⇒ Ŷ

2dloggX = Ẑ2 ⇐⇒ Ŷ 2a+1 = Ẑ2.

Thus, B can implement the strong DH oracle by checking whether Ŷ 2a+1 ?= Ẑ2.
Consequently, with probability Advsdh

A,RSAgen(k) − O(2−δn(k)), A will finally
output

Z = g
(dloggX)(dloggY ) = g(a+1/2)(b+1/2) = h2ab+a+b+1/2 ∈ QR+

N ,

from which B can extract v := h1/2 ∈ QR+
N (using its knowledge about a and

b). Since u 6∈ QR+
N and v ∈ QR+

N are two non-trivially different square roots of
h, B can factor N by computing gcd(u− v,N).

4 Hybrid ElGamal over the signed quadratic residues

We recall the Hybrid ElGamal (aka DHIES) scheme from [1, 12]. There the
scheme is described in a more general form over arbitrary cyclic groups. Here we
restrict ourselves to the special case of QR+

N , for the following choice of N :

RSA Instance Generator. Let 0 ≤ δ ≤ 1/4 be a constant and n(k) be a
function. Let RSAgen′ = RSAgen′δ,n(k) be an algorithm that generates elements
(N,P,Q, S), such that
– N = PQ is an n-bit Blum integer such that the prime factors of φ(N)/4 are

pairwise distinct and at least δn-bit integers;
– S > 1 is a divisor of φ(N)/4 with 1 < gcd(S, (P − 1)/2) < (P − 1)/2 and

1 < gcd(S, (Q− 1)/2) < (Q− 1)/2 (so S splits up into large prime factors of
both (P −1)/2 and (Q−1)/2, but such that neither (P −1)/2 nor (Q−1)/2
divides S).

Note that by construction, gcd(S, φ(N)/(4S)) = 1. We stress that we need this
choice of N only for the security proof of Hybrid ElGamal in the standard
model. The security proof in the random oracle model (based on the hardness
of factoring N) works with RSA instances as generated by RSAgen′ or RSAgen.

4.1 The encryption scheme

Let SE = (E,D) be a symmetric cipher with key-space {0, 1}`(k), letH = (Hk)k∈N
be a family of hash functions with H : {0, 1}2n(k) → {0, 1}`(k) for each H ∈ Hk.
Define the following encryption scheme HEG = (Kg,Enc,Dec):
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Key generation. Kg(1k) chooses uniformly at random
• an RSA modulus N = PQ generated with RSAgen′(1k),
• a generator g of QR+

N ,
• an exponent x ∈ [N/4],
• a hash function H ∈ Hk.

Kg then sets X = gx ∈ QR+
N and outputs a public key pk and a secret key

sk , where

pk = (N, g,X,H) sk = (N, x,H).

Encryption. Enc(pk ,m) chooses uniformly y ∈ [N/4], sets

Y = gy K = H(Y,Xy) ψ = EK(m)

and outputs the ciphertext (Y, ψ) ∈ QR+
N × {0, 1}∗.

Decryption. Dec(sk , (Y, ψ)) verifies that Y ∈ QR+
N and rejects if not. Then,

Dec computes K = H(Y, Y x) and outputs DK(ψ).
Note that we present the HEG scheme in a slightly generalized form for general
symmetric ciphers SE, whereas in [1], SE consisted of a particular “encrypt-then-
mac”-based cipher (which is AE-OT and therefore also IND-OTCCA secure).

4.2 Security

We now state our claims about the security of HEG. We will prove that the same
scheme HEG is secure in the standard and in the random oracle model, under
different assumptions.

Theorem 3. Assume the factoring assumption holds for RSAgen′n(k),δ, H is
modeled as a random oracle, and SE is IND-OTCCA secure. Then HEG is IND-
CCA secure.

[12, Theorem 9] show that the IND-CCA security of hashed ElGamal (viewed
as a key encapsulation mechanism) in the random oracle model is implied by
the strong DH assumption. In Theorem 9 (Appendix A) we formally show that
their result does not use a specific group structure and can also be applied to
our case. Putting Theorem 2 and Theorem 9 together yields Theorem 3. The
following theorem will be proved in Section 5.

Theorem 4. Assume the Higher Residuosity assumption (to be introduced in
Section 5) holds relative to RSAgen′δ,n(k), H is a family of 4-wise independent
hash functions, and SE is AE-OT secure with `-bit keys. If δn(k) ≥ 4`, then HEG
is IND-CCA secure.

5 A security proof in the standard model

5.1 The computational hardness assumption

To prove the security of HEG in the standard model, we will make use of the
following hardness assumption.
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Let (N,P,Q, S) be generated by RSAgen′. We write GS for the unique sub-
group of order S of Z∗N . The higher residuosity (HR) assumption states that
distinguishing a random element from GS from a random element from QRN
is computationally infeasible. More formally, to an adversary and RSAgen′ we
associate

Advhr
A,RSAgen′(k) := |Pr[1←R A(N, g, c)]− Pr[1←R A(N, g, c̃)]| ,

where (N,P,Q, S) ←R RSAgen′(1k), g, c ←R GS and c̃ ←R QRN . The HR
assumption for RSAgen′ holds if Advhr

A,RSAgen′(k) is negligible for all efficient A.
Note that the HR assumption implicitly depends on the choice of n(k) and δ. For
concreteness, for k = 80 bits security one may choose n(k) = 1024 and δ = 1/8.
Then N can be sampled as N = PQ for P = 2PSPT +1 and Q = 2QSQT +1 for
primes PS , PT , QS , QT , with PS , QT ≈ 2δn, such that for S = PSQS , the order
of GS is about 2256.

In the literature several related assumptions can be found. Closest to our
assumption are the ones in [19, 24, 17, 6] which are as our HR assumption but
with a different distribution of N and/or using the groups JN ,Z∗N instead of
QRN . Other similar assumptions were proposed in [18, 10, 24, 4, 28]. In all these
assumptions the adversary is given (N,S) where S | φ(N)/4, and has to distin-
guish a “random element” from one of the form xS mod N .

5.2 A variant of HEG

To prove Theorem 4, we will consider a slightly different scheme, HEG′ =
(Kg′,Enc,Dec). It is defined as HEG, with the only difference that in Kg′, the
element g from key generation is a uniform element from G+

S (instead of an
uniform element from QR+

N ). The following lemma is immediate.

Lemma 5. Under the HR assumption, HEG is IND-CCA if and only if HEG′ is
IND-CCA. In particular, for every adversary A there exists an adversary B with

|Advcca
HEG,A(k)− Advcca

HEG′,A(k)| ≤ Advhr
RSAgen′,B(k).

Lemma 6. Under the conditions from Theorem 4, HEG′ is IND-CCA secure.

A combination of the above two lemmas yields Theorem 4. The rest of this
section is devoted to the proof of Lemma 6.

5.3 Hash Proof Systems

We recall the notion of hash proof systems introduced by Cramer and Shoup [11].

Smooth Projective Hashing. Let C,K be sets and V ⊂ C a language. In
the context of public-key encryption (and viewing a hash proof system as a key-
encapsulation mechanism (KEM) [12] with “special algebraic properties”) one
may think of C as the set of all ciphertexts, V ⊂ C as the set of all valid (con-
sistent) ciphertexts, and K as the set of all symmetric keys. Let Λsk : C → K
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be a hash function indexed with sk ∈ SK, where SK is a set. A hash func-
tion Λsk is projective if there exists a projection µ : SK → PK such that
µ(sk) ∈ PK defines the action of Λsk over the subset V. That is, for every
C ∈ V, the value K = Λsk (C) is uniquely determined by µ(sk) and C. In
contrast, nothing is guaranteed for C ∈ C \ V, and it may not be possible
to compute Λsk (C) from µ(sk) and C. Following [22] we make the following
two definitions about projective hash functions. The projective hash function
is κ-entropic if for all C ∈ C \ V, H∞(Λsk (C) | pk) ≥ κ where in the above
pk = µ(sk) for sk ←R SK. We furthermore define the collision probability as
δ = maxC,C∗∈C\V,C 6=C∗(Prsk [Λsk (C) = Λsk (C∗) ]).

Hash Proof System. A hash proof system HPS = (Par,Pub,Priv) consists
of three algorithms. The randomized algorithm Par(1k) generates parametrized
instances of par = (group,K, C,V,PK,SK, Λ(·) : C → K, µ : SK → PK), where
group may contain some additional structural parameters. The deterministic
public evaluation algorithm Pub inputs the projection key pk = µ(sk), C ∈ V and
a witness r of the fact that C ∈ V and returns K = Λsk (C). The deterministic
private evaluation algorithm Priv inputs sk ∈ SK and returns Λsk (C), without
knowing a witness. We further assume that µ is efficiently computable and that
there are efficient algorithms given for sampling sk ∈ SK, sampling C ∈ V
uniformly (or negligibly close to) together with a witness r, sampling C ∈ C
uniformly (given sk), and for checking membership in C. Following [23] we also
require that the subset membership problem can be efficiently solved with a
master trapdoor.

Subset Membership Problem. As computational problem we require that
the subset membership problem is hard in HPS. That is, for random C0 ∈ V and
random C1 ∈ C \ V the two elements C0 and C1 are computationally indistin-
guishable. This is captured by defining the advantage function Advsm

HPS,A(k) of
an adversary A as

Advsm
HPS,A(k) def=

∣∣Pr [ 1←R A(C,V, C1) ]− Pr [ 1←R A(C,V, C0) ]
∣∣

where C is taken from the output of Par(1k), C1 ←R C and C0 ←R C \ V.

5.4 IND-CCA secure encryption via randomness extraction

We recall the randomness extraction framework [22] that (building on [23, 11])
transforms any κ-entropic HPS with hard subset membership problem into a
IND-CCA secure encryption scheme.

Let HPS = (Par,Pub,Priv) be a hash proof system, let H be a family of
hash functions with H : K → {0, 1}`(k) and let SE = (E,D) be an AE-OT secure
symmetric encryption scheme with key-space KSE = {0, 1}`(k). We build a public-
key encryption scheme PKEHPS = (Kg,Enc,Dec) as follows.
Key generation. Kg(1k) picks par ←R Par(1k), sk ←R SK and defines pk =

µ(sk) ∈ PK. Next, it picks a random hash function H←R H. The public-key
is (par ,H, pk), the secret-key is (par ,H, sk).
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Encryption. Enc(pk ,m) picks C ←R V together with its witness r that C ∈ V.
Session key K = H(Λsk (C)) ∈ {0, 1}` is computed as K ← H(Pub(pk , C, r)).
The symmetric ciphertext is ψ ← EK(m). The ciphertext is (C , ψ).

Decryption. Dec(sk ,C ) first checks if C ∈ C and rejects if not. Otherwise, it
reconstructs the session key K = H(Λsk (C)) as K ← H(Priv(sk , C)) and
returns {m,⊥} ← DK(ψ).

Theorem 7. [22] Assume HPS is κ(k)-entropic with hard subset membership
problem and negligible collision probability, H is a family of 4-wise independent
hash functions with H : K → {0, 1}`(k), and SE is AE-OT secure. If κ(k) ≥
2(`(k) + k) then PKEHPS is secure in the sense of IND-CCA.

5.5 A hash proof system for HEG′

We now give a hash proof system HPS that yields the encryption scheme HEG′

via the transformation given in the last subsection. Define group = (N, g), where
(N,P,Q, S) ←R RSAgen′(1k) and g is a uniform generator of G+

S . Recall that
N is of bit-length n(k) and S is of bit-length δn(k). Define C = QR+

N and
V = G+

S = {gr : r ∈ ZS}. A value r ∈ Z is a witness of C ∈ V. Note
that it is possible to sample an almost uniform element from V together with
a witness by first picking r ∈ Z[N/4] and defining C = gr ∈ G+

S . Furthermore,
membership in C can be efficiently checked by Lemma 1. Define SK = [N/4],
PK = G+

S , and K = QR+
N ×QR+

N (which we interpret as a subset of {0, 1}2n(k)).
For sk = x ∈ [N/4], define µ(sk) = X = gx ∈ G+

S . This defines the output of
Par(1k). For C ∈ C define

Λsk (C) := (C,Cx) .

This defines Priv(sk , C). Given pk = µ(sk), C ∈ V and a witness r ∈ Z such that
C = gr, public evaluation Pub(pk , C, r) computes K = Λsk (C) as

K = (gr, Xr) .

The trapdoor ω is the order of the group GS . This completes the description of
HPS. Note that PKEHPS is exactly HEG′. Therefore the proof Lemma 6 follows
by combining Theorem 7 with the following.

Lemma 8. Under the HR assumption, the subset membership problem is hard
in HPS. Furthermore, HPS is δn(k)-entropic with collision probability δ = 0.

Proof. The subset membership problem is hard in HPS by definition of the HR
assumption. The collision probability δ is zero since Λsk (C) = (C,Cx) contains
the element C. To show that HPS is δn(k)-entropic we consider an element
C ∈ C \ V = QR+

N \G+
S . We can decompose QR+

N as an internal direct product
QR+

N = G+
T ×G+

S , where G+
T is a cyclic group of order T = (P − 1)(Q− 1)/(4S)

with gcd(T, S) = 1. Since T has only prime factors greater than 2δn(k), and C 6∈
G+
S , we have gcd(ord(C), T ) ≥ 2δn(k). Then, given N , g, pk = µ(sk) = X = gx,
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and any C ∈ C \ V,

H∞((C,Cx) | N, g, pk , C) = H∞(Cx | N, g, gx, C)

= H∞(x mod ord(C) | x mod S, S, T )

≥ H∞(x mod gcd(ord(C), T ) | x mod S, S, T )

gcd(S,T )=1
= H∞(x mod gcd(ord(C), T ) | T ) ≥ δn(k) .

This completes the proof.

5.6 Extensions

If one only requires a scheme that is IND-CCA secure in the standard model
from the HR assumption, the one can turn encryption in HEG′ slightly more
efficient by choosing y ←R [2δn(k)+k] (instead of y ←R [N/4]). Furthermore,
it is possible to prove the HEG instantiated with RSAgen (instead of RSAgen′)
IND-CCA secure under the φ-Hiding assumption [7] which essentially says that
the two distributions (N, g) and (N ′, g′) are computationally indistinguishable,
where (N,P,Q) ←R RSAgen, g ←R QR+

N and (N ′, P ′, Q′, S′) ←R RSAgen′,
g′ ←R G+

S′ .
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A A security proof in the random oracle model

Theorem 9. ([12, 1]) If the strong DH assumption holds relative to RSAgen′,
and if SE is an IND-CCA secure symmetric cipher, then HEG is IND-IND-OTCCA
secure in the random oracle model. In particular, for every adversary A on HEG,
there exist adversaries B, resp. B′ on the strong DH assumption, resp. the IND-
IND-OTCCA security of SE, such that B and B′ have roughly the same complexity
as A, and

Advcca
A,HEG(k) ≤ Advsdh

B,RSAgen′(k) + Advcca
B′,SE(k) +O(2−δn(k)).

The adaptations to [12, Theorem 9] are merely syntactic, and below we provide a
short proof sketch. Putting Theorem 2 and Theorem 9 together yields Theorem 3.

Proof (Theorem 9). (Sketch.) We proceed in games.

Game 0. Let Game 0 be the original IND-CCA experiment with scheme HEG
and adversary A. Here and in the following games, pi denotes the probability
that the experiment outputs 1, i.e., that b = b̂, in Game i. By definition,

Advcca
A,PKE = |p0 − 1/2|. (3)
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Game 1. In Game 1, we modify the encryption of the challenge ciphertext
(Y ∗, ψ∗). Namely, now the symmetric ciphertext ψ∗ is generated with an in-
dependent, uniform symmetric key K ′ as ψ∗ := EK′(mb). Decryption queries
of the form (Y ∗, ψ) (for arbitrary ψ 6= ψ∗) are treated as if Y ∗ decrypted
to key K ′ (and not key K∗ = H(Y ∗, Z∗) for Z∗ = Y ∗x). Let F denote the
event that A queries the random oracle H with (Y ∗, Z∗). (F is defined in
both Game 0 and Game 1.) Note that the views of A are identical in Game 0
and Game 1 unless F occurs. Hence,

|p1 − p0| ≤ Pr[F ]. (4)

Now we can build an adversary B on the strong DH assumption with

Pr[F ] ≤ Advsdh
B,RSAgen′(k) +O(2−δn(k)). (5)

Concretely, BDDHg,X(·,·)(N, g,X, Y ∗) simulates Game 1 with public key pk :=
(N, g,X,H), and challenge ciphertext (Y ∗, ψ∗) := (Y,EK′(mb)). Adversary
A’s decryption queries (Ŷ , ψ̂) are answered as follows (note that B does not
know the secret key x = dloggX, and hence cannot decrypt directly). If A
has already made an H-query H(Ŷ , Ẑ) for which DDHg,X(Ŷ , Ẑ) = 1, then
Ẑ = Ŷ x, so the key K̂ := H(Ŷ , Ẑ) can be used to decrypt ψ̂. If on the other
hand A made no such query, the hash value H(Ŷ , Ẑ) for the “right” Ẑ = Ŷ x

has not yet been defined, and a symmetric key K̂ can be freely invented (and
then be used to decrypt ψ̂). Note that in the latter case, care must be taken
that once A makes an H-query H(Ŷ , Ẑ) with DDHg,X(Ŷ , Ẑ) = 1 later on,
then the right value K̂ is returned.
If at any point, event F occurs, then A has submitted an H-query (Y, Z) for
Z = Y x and effectively solved B’s own DH challenge. This can be noticed
by B (with the help of oracle DDHg,X(·, ·)), and B can return Z. (5) follows.
(A subtlety not yet mentioned is that X and Y ∗ are slightly differently
distributed — but statistically close — in the strong DH experiment and in
Game 0. This explains for the O(2−δn(k)) term in (5).)

Game 2. We now change the symmetric part ψ∗ of the challenge ciphertext
into ψ∗ := EK′(R) for a uniform bit-string R of length |m0| = |m1|. Note
that from Game 1 on, the symmetric key K ′ used to produce ψ∗ is chosen
independently. Furthermore, K ′ is only needed to perform decryptions of
ciphertexts ψ 6= ψ∗ as required for ciphertexts (Y ∗, ψ). Hence, we have

|p2 − p1| ≤ Advcca
B′,SE(k) (6)

for a suitable IND-CCA adversary B′ on SE.
On the other hand, p2 = 1/2 since A’s view in Game 2 is independent of b.

Putting (3,4,5,6) together yields the statement of Theorem 9.


