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Abstract. The problem of carrying out cryptographic computations
when the participating parties are rational in a game-theoretic sense
has recently gained much attention. One problem that has been studied
considerably is that of rational secret sharing. In this setting, the aim is
to construct a mechanism (protocol) so that parties behaving rationally
have incentive to cooperate and provide their shares in the reconstruc-
tion phase, even if each party prefers to be the only one to learn the
secret.
Although this question was only recently asked by Halpern and Teague
(STOC 2004), a number of works with beautiful ideas have been pre-
sented to solve this problem. However, they all have the property that
the protocols constructed need to know the actual utility values of the
parties (or at least a bound on them). This assumption is very prob-
lematic because the utilities of parties are not public knowledge. We ask
whether this dependence on the actual utility values is really necessary
and prove that in the basic setting, rational secret sharing cannot be
achieved without it. On the positive side, we show that by somewhat
relaxing the standard assumptions on the utility functions, it is possi-
ble to achieve utility independence. In addition to the above, observe
that the known protocols for rational secret sharing that do not assume
simultaneous channels all suffer from the problem that one of the par-
ties can cause the others to output an incorrect value. (This problem
arises when a party gains higher utility by having another output an
incorrect value than by learning the secret itself; we argue that such a
scenario is not at all unlikely.) We show that this problem is inherent
in the non-simultaneous channels model, unless the actual values of the
parties’ utilities from this attack is known, in which case it is possible to
prevent this from happening.

1 Introduction

Recently, there has been much interest in the intersection between cryptography
and game theory [6, 5, 10, 3, 1, 9, 10]. One specific question that has gained much
attention is that of rational secret sharing. The basic problem that arises when
considering secret sharing (or to be more exact, protocols for the reconstruction
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phase) is that the parties actually have no incentive to reveal their share. Specif-
ically, assume that t parties get together to reconstruct a secret that was shared
using a t-out-of-n secret sharing scheme. The way that this reconstruction takes
place is simply for each party to broadcast its share to all others. However, if one
party does not broadcast its share, it can still reconstruct the secret (because it
received the t− 1 shares of all other parties and so has t shares overall), but the
others cannot (because they only have t−1 shares). Thus, under the assumption
that parties prefer to be the only one to learn the secret, the rational behavior
in the above naive reconstruction procedure is for every party to remain quiet
and not broadcast its share [6]. The aim of rational secret sharing is therefore
to construct a mechanism so that it is in the interest of rational parties to co-
operate, with the result being that all parties learn the reconstructed secret.
The fact that the parties are rational essentially means that they each have a
utility function assigning a value to every possible outcome of the protocol (this
value represents the gain that the party achieves if the given outcome occurs).
Furthermore, the parties’ aim is to maximize their utility. We remark that a
mechanism is considered successful if it achieves a Nash equilibrium (or one of
its variants) for the strategy which instructs all parties to cooperate. Loosely
speaking, this means that if any one of the parties deviates from the prescribed
strategy (while others follow it), then it will not obtain a higher utility (and
may even lose). Thus, it is in the interest of all parties to follow the prescribed
strategy and cooperate.

In order to construct a mechanism with the above properties, certain natural
assumptions are made regarding the utilities of the parties. In particular, it
is assumed that a party always prefers to learn the secret than to not learn
it (this is essential to assume, or else there is no reason for a party to ever
participate in the reconstruction). Furthermore, it is assumed that parties prefer
to learn the secret, and have some or all of the other parties not learn it (when
knowledge is power, this makes a lot of sense). Although the above assumptions
are very reasonable, a concern with all of the known protocols is that they don’t
just assume that this “learning preference” holds. Rather, they assume that the
actual utility values of the parties (or at least bounds on them) are known to
all, and the mechanism itself depends on these values. The problem with this
assumption is that in reality the utility of a party may not even be known to
itself, let alone to others. Furthermore, even if a party knows its own utility, it
is unclear how others can learn this value (it would not necessarily be rational
for a party to be honest about its utility; rather, it may gain something by
providing incorrect information about its utility function). This problem stands
at the center of this work, and we ask the following fundamental question:

Is it possible to construct a single reconstruction mechanism for rational
secret sharing that achieves a Nash equilibrium for all possible values
of utility functions that fulfill the aforementioned assumptions regarding
learning preference?

In addition to the above, we observe that some of the known protocols suffer
from a correctness issue. Specifically, most of the positive results on this topic



assumed that the parties have access to a simultaneous channel (meaning that
all parties can simultaneously send messages meaning that no party can see
what the others broadcast before sending its own). Since simultaneous channels
are problematic to implement in practice, a recent breakthrough was made that
achieved rational secret sharing in non-simultaneous channels [10]. However, the
protocol of [10] (and a follow-up protocol by [7]) has the problem that one of
the parties can cause the others to output an incorrect value, at the expense of
not learning the secret itself. Thus, the assumption made by [10] is that since
a party always prefers to learn the secret, it will never follow such a strategy.
However, we do not believe that this assumption is always reasonable. Rather,
there are certainly scenarios where a party can gain more by having another
learn incorrect information than by learning the information itself (for example,
consider the case where the use of incorrect information can result in a loss of
reputation, to the potential gain of others). In any case, it would certainly be
preferable to not have to assume this. Noting that this problem of correctness
does not arise in any of the protocols using simultaneous channels, we ask:

Is it possible to construct a reconstruction mechanism for rational secret
sharing that uses non-simultaneous channels and achieves Nash equilib-
rium even if a party’s utility when another party outputs an incorrect
value is higher than its utility when it learns the secret? Furthermore,
is it possible to achieve this without assuming knowledge of the actual
utility value?

Our results. We focus mainly on 2-out-of-2 secret sharing. Let U+
i denote the

utility of party Pi when it learns the secret and the other party does not. Fur-
thermore, let Uf

i denote the utility of party Pi when the other party outputs
an incorrect (false) value, even if Pi itself did not learn the output. We call a
mechanism U+-independent if it achieves Nash equilibrium for all possible (poly-
nomial) values of (U+

1 , U+
2 ) that fulfill the aforementioned learning-preference

assumptions (i.e., that a party prefers to learn than not learn, and prefers to be
the only one to learn). We define Uf -independence similarly. We stress that when
a mechanism is U+ or Uf -independent, it may still know the values of the other
utilities (i.e., the utility when all parties learn the secret or when none learn it).
We begin by proving an interesting connection between U+-independence and
complete fairness, and between Uf -independence and correctness (where fair-
ness and correctness here are in the presence of malicious adversarial behavior
that may not be rational and is aimed only to break the protocol). In Section 3,
we prove the following informally stated theorem:

Theorem 1 Any two-party mechanism that achieves U+-independence guaran-
tees complete fairness in the presence of malicious adversarial behavior. Fur-
thermore, any two-party mechanism that achieves Uf -independence guarantees
correctness in the presence of malicious adversarial behavior.

Intuitively, Theorem 1 holds because if a mechanism is U+-independent,
then it must be in a party’s interest to cooperate even if its U+ utility is very



high. However, if a party’s U+ utility is high enough – but still polynomial –
then it can be shown that its best strategy is to just try and break fairness
(because then it gains U+). Since, it should not be able to succeed in doing this,
it follows that a malicious adversary also can only break fairness with negligible
probability. The connection between Uf independence and correctness is proven
in a similar way. It is possible to use Theorem 1 in order to prove that there do not
exist two-party reconstruction mechanisms for rational secret sharing that are
independent of U+, by showing how to toss a fair coin given any such mechanism.
(Intuitively, given such a mechanism, we construct a protocol where in the first
stage multiparty computation is used to generate shares of an unbiased coin, and
then the mechanism is used to fairly reveal the coin.) Using the impossibility
result of Cleve [2] for coin tossing, we then conclude that such a mechanism
does not exist. However, we stress that unbiased coin tossing is only impossible
in the non-simultaneous channels model, and thus this would only prove the
impossibility of obtaining U+-independence in this model, and leaves open the
possibility that there do exist U+-independent mechanisms in the simultaneous
channels model.

We therefore provide a direct proof, ruling out the possibility of obtaining
U+-independence even when given a simultaneous channel. That is, we prove
the following:

Theorem 2 There does not exist a two-party reconstruction mechanism for ra-
tional secret sharing that is independent of U+ in either the simultaneous or
non-simultaneous channels model.

In order to prove this, we actually present a lower bound on the number of
rounds needed for achieving fair reconstruction and show that this number is
dependent on the actual utility functions of the parties (or, to be more exact,
a bound on them). Thus, no mechanism can be independent of the utilities
because this implies that its number of rounds is also independent. Our lower
bound is proven in the simultaneous-channels model and therefore also holds for
non-simultaneous channels.

Having established that U+-independence is impossible to achieve, we ask
whether the other utility values must also be known. For example, we know
that Uf -independence is possible in the simultaneous-channels model, because
all of the known protocols for the simultaneous-channels model (cf. [5, 10]) are
Uf -independent. This leaves open the question regarding Uf -independence with
non-simultaneous channels. We prove that:

Theorem 3 There does not exist a two-party reconstruction mechanism for ra-
tional secret sharing that is Uf -independent in the non-simultaneous channels
model.

The proof of this theorem uses Theorem 1 that states that a Uf -independent
mechanism guarantees correctness. We then prove that in the non-simultaneous
channels model, it is not possible to construct a correct reconstruction mecha-
nism.



Positive results. In Section 5, we present two positive results as follows:

1. We present a two-party reconstruction mechanism for rational secret sharing
that works in the non-simultaneous model. This mechanism uses the actual
values of Uf ; given the impossibility result of Theorem 3, this is inherent.

2. We present a multiparty reconstruction mechanism that uses simultaneous
channels and is independent of all utility values, under a relaxation of the
learning-preference assumptions. Namely, we assume that a party prefers to
be the only one to learn the secret but once one other party has learned the
secret it makes no difference if all learn it. In fact, it suffices to assume that
even though each party prefers that as few other parties as possible learn
the secret, the utility if all but 1 or all but 2 parties learn is the same (i.e.,
it makes no difference if all parties learn the secret or if almost all parties
learn the secret).

The above results show that (a) correctness need not be forfeited in the model
with non-simultaneous channels, and (b) utility independence is possible to
achieve in some settings, depending on the assumptions on the utility functions.

Related work. The question of rational secret sharing was first introduced
by [6]. They showed that there does not exist a mechanism with a constant
number of rounds, with a Nash Equilibrium that survives iterated deletions of
weakly dominated strategies. Moreover, they presented a protocol for n ≥ 3
(that is U+-dependent) in the simultaneous model. More protocols, dealing with
other settings, were presented for the simultaneous model in [5, 1, 9, 10], and for
the non-simultaneous model in [10, 7]. The basic question that we ask regarding
utility independence was proposed in [6]. The first partial answer to this question
was given by [1] who showed that utility independence is possible for t-out-of-n
secret sharing as long as t < n/3. This question was also considered by [14] who
gave a partial answer in their model. Among other things, we have shown that
it is not possible for the important case of 2-out-of-2 secret sharing. The works
of [13, 11] can be used to obtain fair secret sharing, but assume stronger physical
assumptions than a simultaneous channel. Other works have also considered a
mix of rational, honest and malicious parties [16, 14, 1].

2 Definitions and Preliminaries

We denote by S an efficiently samplable distribution for choosing the secret to
be shared, by share the secret sharing scheme and by (Γ, σ) the reconstruction
mechanism. Definitions of secret sharing and Nash equilibria can be found in the
full version.

Outcome and utilities. The outcome of an execution of a game Γ with some
strategy profile σ is denoted o and consists of the output of all of the parties.
In the case of 2-out-of-2 secret sharing, each party may learn or may not learn
the secret, and there are therefore exactly four possible outcomes. (This ignores
the issue of correctness which we introduce in this paper and discuss below.)



Each party’s utility is a function of these outcomes, and there are therefore also
four possible utility values for each party. The notations for the four possible
outcomes, and the associated utility for each party, are described in Table 1.

P1 receives s P2 receives s Outcome notation P1’s Utility P2’s Utility

NO NO onone U−1 U−2
NO YES o+

2 U−−1 U+
2

YES NO o+
1 U+

1 U−−2

YES YES oboth U1 U2

Table 1. Outcome and Utility

In this paper, we consider the possibility that parties may output incorrect
values and introduce a utility Uf for this event (informally, a party gains Uf

i if it
succeeds in having the other party output a false/incorrect value). This results
in nine possible outcomes of the game (each party may learn the correct value,
not learn, or output an incorrect value). For simplicity we will consider only the
outcome where one party does not learn the secret while the other outputs an
incorrect (or false) value. We denote this event by ofalse

−i , where P−i is the party
who outputs the incorrect value. (We explicitly consider this event because this
is the one that occurs naturally. Needless to say, when analyzing mechanisms all
possibilities need to be taken into account.)

Assumptions on the utility functions. We assume that the utility functions
of all parties are polynomial in the security parameter. Formally, a party’s utility
function ui is a function of the outcome and the security parameter k. We there-
fore write Ui(1k) = ui(1k, oboth), U+

i (1k) = ui(1k, o+
i ), U−

i (1k) = ui(1k, onone),
U−−

i (1k) = ui(1k, o+
−i), and Uf

i (1k) = ui(1k, ofalse
−i ). As is now standard [6, 5, 10],

we assume that each party always prefers to learn the secret than to not learn
it, and that each party most prefers to be the sole party to learn the secret. We
add an additional assumption being that a party prefers to have the other party
output an incorrect value than not, when in both cases the first party does not
learn anyway. We do not make any assumption on Uf

i beyond this. (In [10] they
implicitly assume that Uf

i < Ui for all parties.) For lack of a better name, we
call utility functions that fulfill these assumptions “natural”. Formally:

Definition 4 Let U = {(U+
i , Ui, U

−
i , U−−

i , Uf
i )i∈{1,2}} be a set of utility func-

tions for the parties. We say that U is natural if for every i ∈ {1, 2} and for every
k ∈ N it holds that U+

i (k) ≥ Ui(k) ≥ U−
i (k) ≥ U−−

i (k) ≥ 0 and Uf
i (k) ≥ U−

i (k).

We remark that in all previous works, it was formally assumed that U−
i (k) =

U−−
i (k), even though none of the protocols utilized this fact. We have not defined

it in this way because we find it unsatisfactory to assume that once a party has
not learned, it makes no difference to its utility if others did or did not learn.
On the contrary, it can be a lot worse if a party does not learn while others do
learn and so protocols should take this into account. We note that all previous
protocols can be modified to work with the value U−−

i . We also note that our



lower bounds hold even if U−
i = U−−

i , and so we do not assume anything about
the value U−−

i .

Fair secret sharing. A number of different notions have been used regarding
the desired equilibrium for rational secret sharing. Our impossibility results refer
to the weakest of these assumptions, which is ε-Nash equilibrium for a negligible
function ε(·) [10, 8]. However, we also require that the number of rounds be
polynomial (this is needed for our lower bounds, but we argue that this does not
significantly weaken our results because a mechanism with a super-polynomial
of rounds is not computationally feasible to run). The natural way to model this
is as a computational Nash equilibrium [3, 8] (although our results hold even if
local computation by each party is unbounded). We define computationally fair
reconstruction mechanisms in this light:

Definition 5 Let U be a set of natural utility functions for P1 and P2 (as in
Definition 4). We say that a mechanism (Γ, σ) is a fair reconstruction mechanism
for U if σ is a computational Nash Equilibrium and if the probability that the
result is not oboth when both parties follow σ is negligible.

3 Utility-Independent Mechanisms and Properties

3.1 Definitions

We now formalize the notion of utility independence. Loosely speaking, a mecha-
nism is independent of a given utility function if it achieves its desired properties
for any value of that utility for all parties.

Definition 6 Let Û ∈ {U+, U, U−, U−−, Uf} be a utility type and let U ′ =
{U+

i , Ui, U
−
i , U−−

i , Uf
i }n

i=1 \ {Ûi}n
i=1 be a set of polynomial utility functions (ex-

cluding all the Ûi values). We say that the mechanism (Γ, σ) is a Û -independent
fair reconstruction mechanism if for all polynomial utility functions {Ûi}n

i=1 for
which U = U ′ ∪ {Ûi}n

i=1 is natural, it holds that (Γ, σ) is a fair reconstruction
mechanism for U .

Note that our definition of utility independence includes the assumption that
U is natural. In our results, we focus on U+ and Uf independence.

Fairness and correctness. In this section, we show that U+ and Uf indepen-
dence implies the properties of complete fairness and correctness in the presence
of adversarial behavior.1 We stress that we define these notions in an adversarial
context and not in a game theoretic one. That is, we say that a protocol or mech-
anism is completely fair/correct if it maintains this property when one of the

1 We consider the two-party case only because we only deal with the case of no coali-
tions in this paper, and in the case of no coalitions we have an honest majority
and so fairness and correctness (in the presence of a malicious adversary) can be
achieved. This case is therefore not interesting.



parties follows a worst-case strategy (meaning that it has no aim to gain utility
and its aim is simply to break this property of the protocol). We remark that
we will move freely between protocols in a cryptographic setting with an adver-
sary A and mechanisms involving rational adversaries playing a game in order
to achieve utility. This is due to the fact that a mechanism trivially defines a
protocol and vice versa. We now proceed to define complete fairness and correct-
ness. We present the definitions in a “protocol context”; their translation to the
game-theoretic context is discussed below. Intuitively, a two-party reconstruc-
tion protocol is completely fair if whenever one party learns the secret the other
party is also guaranteed to learn the secret, except with negligible probability.
Likewise, a reconstruction protocol is correct if the honest party is guaranteed
to either output the correct value (i.e., the secret that was shared) or a special
abort symbol ⊥. Although it is difficult to formalize these notions for general
secure computation without resorting to a full ideal model/real model definition
(since the output depends on the actual inputs used by the possibly malicious
parties), in the case of secret sharing it is much simpler because the output of the
protocol is well defined. In particular, the output can only be the shared secret s
or an abort symbol ⊥. We assume that any reconstruction protocol is non-trivial
meaning that if both parties are honest, then they both learn the secret except
with negligible probability.

We first introduce some notation. Let realπ,A,i(share(S)) denote the out-
come o of an execution of the reconstruction protocol π, with the parties P1

and P2, an adversary A controlling party Pi (i ∈ {1, 2}), and a share s that
was chosen by S and shared as in share; recall that an outcome is simply
the concatenation of the outputs of all participating parties (since A controls
Pi, we consider only the output of A and the honest party). Next, denote by
outputX(realπ,A,i(share(S)) the output of party X (where X may be A or
the honest party P−i). Recall that the security parameter is denoted k.

Definition 7 Let share be a share generation algorithm for a 2-out-of-2 secret
sharing scheme, and let π be the reconstruction protocol for the scheme.

1. We say that π is completely fair if for every probabilistic polynomial-time
adversary A that controls the party Pi there exists a negligible function µ(·)
such that Pr[outputA(realπ,A,i(share(S))) = S]

≤ Pr[outputP−i(realπ,A,i(share(S))) = S] + µ(k).

2. We say that π is correct if for every probabilistic polynomial-time adversary
A that controls the party Pi there exists a negligible function µ(·) such that

Pr[outputP−i(realπ,A,i(share(S))) /∈ {S,⊥}] ≤ µ(k).

An equivalent formulation of the above for mechanisms is obtained by re-
quiring that the result of an execution where one party follows the prescribed
strategy and the other may follow any arbitrary alternative strategy is fair (or
correct). For example, correctness of a mechanism (Γ, σ) can be formalized by



saying that for every arbitrary strategy σ′i followed by party Pi (i ∈ {1, 2}) there
exists a negligible function µ such that:

Pr[outputP−i(realΓ,Pi(σ′i),P−i(σ−i)(share(S))) 6∈ {⊥,S}] ≤ µ(k).

(Observe that correctness is guaranteed only when party P−i follows the pre-
scribed strategy σ−i.)

3.2 U+-Independence vs Fairness and Uf -Independence vs
Correctness

We now prove that the existence of a U+-independent reconstruction mechanism
implies the existence of a completely fair reconstruction protocol. Intuitively this
holds because if complete fairness is not achieved, then there exists an adversary
who can participate in the protocol induced from the mechanism and with non-
negligible probability can learn the secret while the honest party does not. Given
such an adversary, we can set the utility U+ of one of the parties to be high
enough so that its expected gain by following the adversarial strategy is high
enough. Our proof holds for both simultaneous and non-simultaneous channels.

Proposition 8 If there exists a U+-independent fair reconstruction mechanism
for a 2-out-of-2 secret sharing scheme (as in Definition 6), then there exists a
completely fair reconstruction protocol (as in Definition 7) for the scheme.

Proof: Let (Γ, σ) be a U+-independent fair reconstruction mechanism and let
U ′ be a set of utilities specifying {U,U−, U−−, Uf} for both parties. Denote by
π the protocol derived from (Γ, σ) as described above. Assume by contradiction
that π is not a completely fair reconstruction protocol. This implies that there
exists a probabilistic polynomial-time adversary A that controls some party Pi

(i ∈ {1, 2}) and a polynomial p(·) such that for infinitely many k’s:
Pr [outputA (realπ,A,i (share (S))) = S]

> Pr
[
outputP−i (realπ,A,i (share (S))) = S]

+
1

p(k)

Let σA be the corresponding behavioral strategy of the adversary A in the game
Γ . Note that the outcome of the game when party Pi plays according to σA,
while the other party plays according to the prescribed strategy σ, is o+

i with
probability 1/p(k).

We now define the utility function U+
i for party Pi by U+

i ≥ p(k)·(Ui+1). We
show that for infinitely many k’s, Pi’s utility is greater if it follows σA than if it
follows σi, which is a contradiction to the assumption that σ is a (computational)
Nash equilibrium. Let O denote the set of all possible outcomes, and recall that
ui(o) is the utility of Pi upon outcome o. We have that for infinitely many k’s:

ui

(
σAi , σ−i

)
=

∑

o∈O
Pr[o | (σAi , σ−i)] · ui(o)

≥ Pr
[
o+

i | (σAi , σ−i)
] · U+

i

≥ 1
p(k)

· (p(k) · (Ui + 1)) = Ui + 1.



In contrast, ui (σi, σ−i) = Ui. Thus, there exists a non negligible function ε′

(even if Ui is negligible), such that:

ui

(
σAi , σ−i

) ≥ ui (σi, σ−i) + ε′(k)

in contradiction to the assumption that σ is a computational Nash equilibrium
for Γ . We therefore conclude that the protocol π induced from (Γ, σ) is com-
pletely fair, as in Definition 7.

Uf -independence implies correctness. The following is proved analogously
to Proposition 8:

Proposition 9 If a fair reconstruction mechanism for a 2-out-of-2 secret shar-
ing scheme is Uf -independent (as in Definition 6), then it achieve correctness
(as in Definition 7).

4 Negative Results

4.1 Impossibility for U+-Independence

As we have mentioned, Proposition 8 can be used to prove the impossibility of ob-
taining U+-independent fair reconstruction mechanisms in the non-simultaneous
channels model. This is because any such mechanism can be used to toss a fair
coin, in contradiction to [2]. (Specifically, secure computation can be used to
generate shares of a random bit, which are then reconstructed using the mech-
anism. By Proposition 8, this mechanism guarantees complete fairness in the
presence of malicious behavior and so neither party can bias the outcome.) Such
a proof leaves open the possibility of obtaining U+-independence in the simul-
taneous channels model. In this section we therefore prove a lower bound on the
number of rounds that are needed in any fair reconstruction mechanism, even in
the simultaneous model. As we will see, the number of rounds depends on the
U+ utilities of the parties; U+-independence is therefore not achievable.

We prove our lower bound by considering a specific attack (or, an alterna-
tive strategy) that can be carried out on every mechanism. The attack that we
consider is a premature abort. When a party aborts prematurely, it does not
broadcast its message in the round that it quits, while the other party does.
Therefore, intuitively, it may gain more information about the secret than the
other party. The mechanism must therefore guarantee that the amount of infor-
mation gained in any single round is small enough so that carrying out such an
attack is not profitable and will yield a lower utility. We quantify this amount
of information and define an “aborting threshold” for each party as follows:

β1 =
U1 − U−−

1

U+
1 − U−−

1

and β2 =
U2 − U−−

2

U+
2 − U−−

2

We now prove that the number of rounds in any fair reconstruction mechanism
depends on {β1, β2} and so depends on the actual utilities.



Theorem 10 Let (Γ, σ) be a fair reconstruction mechanism, let RΓ
(σ1,σ2)

be a
random variable denoting the number of rounds in Γ when both parties play
according to σ = (σ1, σ2), and let β ≤ min {β1, β2} be as above. Then:

E[RΓ
(σ1,σ2)

] >
1

8
√

β

Proof Sketch: We start with some notation. Denote by ai the output of party
P1 when P2 quits at round i before sending its message (that is, at round i only
P1 broadcast its message); likewise bi denotes the output of P2 when P1 quits
at round i. Note that when P1 quits at round i (before sending its message) and
P2 does not quit in that round, party P1 receives an additional message and
therefore may gain additional knowledge about the secret. In such a case, P1

outputs ai+1, while P2 outputs bi. In the following claim, we bound the amount
of additional knowledge that a party can gain in such a situation:

Claim 11 Let U be a set of natural utility functions for P1 and P2 (as in Defi-
nition 4), and let the mechanism (Γ, σ) be a fair reconstruction mechanism for U
(as in Definition 5). For every round i ≥ 0, the following must hold:

Pr [ai+1 = s] ≤ Pr [bi = s] + 2β1 and Pr [bi+1 = s] ≤ Pr [ai = s] + 2β2

Proof Sketch: Assume by contradiction that the above does not hold. Without
loss of generality, assume that there exists an i such that

Pr [ai+1 = s] > Pr [bi = s] + 2β1.

In the proof, we consider an alternative strategy σi
1 for P1 which is identical to

the prescribed strategy σ1 except that it instructs the party P1 to quit before
broadcasting the message in round i. Assuming that the other party (P2) does
broadcast its share in that round, and that the execution reaches round i, we have
that P1 outputs ai+1 while P2 outputs bi. Using the contradicting assumption,
it follows that:

Pr [ai+1 = s ∧ bi 6= s] ≥ Pr [ai+1 = s]− Pr [bi = s] > 2β1.

That is, with probability at least 2β1 the outcome is o+
1 , and therefore P1 gains

U+
1 while P2 gains only U−−

2 . Thus, the expected utility of P1 is at least

2β1 ·U+
1 +(1−2β1) ·U−−

1 = 2β1(U+
1 −U−−

1 )+U−−
1 = 2U1−2U−−

1 +U−−
1 > U1

where the last equality is by the assumption that Ui is non-negligibly greater
than U− and U−−

i (note that if Ui ≈ U− then Pi has no reason to play at
all). Thus, the strategy σi

1 of stopping in round i is a better strategy for P1, in
contradiction to the assumption that σ = (σ1, σ2) is a Nash equilibrium.

We stress that some important details are omitted from this proof sketch. For
example, it does not take into account the probability that round i is actually
reached in the execution or the possibility of negligible failure; see the full version
for details.



We use the above claim to prove our lower bound. Now, consider the case
that the secret is a uniformly distributed k-bit string. In such a case, the proba-
bility that any party outputs the correct secret before receiving any message is
negligible (i.e., Pr[a0 = s] = Pr[b0 = s] = µ(k) for some negligible function µ).
By simple induction, we have that for every i:

Pr [ai = s] ≤ 2iβ + µ(k) and Pr [bi = s] ≤ 2iβ + µ(k)

and so 2r(k)∑

i=1

Pr [ai = s] ≤
2r(k)∑

i=1

2iβ + µ(k) ≈ 4β · r2(k)

where r(k) denotes the expected number of rounds; i.e., E[RΓ
(σ1,σ2)

] = r(k). By

Markov, Pr
[
RΓ

(σ1,σ2)
≥ 2r(k)

]
≤ 1

2 and so Pr
[
RΓ

(σ1,σ2)
< 2r(k)

]
> 1

2 . Now, if

RΓ
(σ1,σ2)

< 2r(k) then for some i ∈ {1, . . . , 2r(k)} it holds that ai = s (because
at the end, both parties must output s). Thus,

2r(k)∑

i=1

Pr[ai = s] >
1
2
.

We conclude that
1
2

<

2r(k)∑

i=1

Pr [ai = s] ≤ 4βr2(k)

implying that r(k) > 1√
8β

. (Note that the theorem bounds r(k) > 1

8
√

β
and not

what we have shown here. This is due to additional factors that we have omitted
from this sketch; see the full version for details.)

Using Theorem 10 we conclude that there do not exist U+-independent fair
reconstruction mechanisms with an expected number of rounds that is polyno-
mial, even in the simultaneous model. In order to see this, we show that for all
fixed polynomials Ui, U

−
i , U−−

i and r(k), there exists a polynomial U+
i such that

r(k) < 1

8
√

β
. Specifically, take U+

i ≥ 64r2(k) · (Ui − U−−
i

)
+ U−−

i . This suffices

because in such a case

βi =
Ui − U−−

i

U+
i − U−−

i

≤ Ui − U−−
i

64r2(k) · (Ui − U−−
i

)
+ U−−

i − U−−
i

=
1

64r2(k)

and thus r(k) ≤ 1

8
√

β
i

in contradiction.

4.2 Impossibility for Uf -Independence (Non-Simultaneous)

In Section 3 we showed that any mechanism that is Uf -independent achieves
correctness. In the simultaneous channels model, Uf -independence – and cor-
rectness – has been achieved by previous protocols [5, 9]. However, as we have
mentioned, the known protocols for the model with non-simultaneous channels
do not guarantee correctness. In particular, if Uf

i > Ui for some party Pi then
the strategy profiles σ of [10, 7] are not computational Nash equilibriums. In



this section we prove that this is inherent to the non-simultaneous model. That
is, there does not exist a fair reconstruction mechanism that is Uf -independent
in the non-simultaneous model.

The Kol-Naor mechanism [10] and correctness. Before proceeding with
our proof, we describe the mechanism of Kol and Naor for non-simultaneous
channels and show why it does not achieve correctness. This example illustrates
the problem of achieving Uf -independence and is thus very instructive. The Kol-
Naor mechanism assumes that the utility functions U fulfill the assumptions in
Definition 4. Furthermore, the mechanism itself is constructed given the actual
values of the utility functions (i.e., it is utility dependent). The general idea of
their protocol is that the shares assigned to the party are actually lists of possible
secrets. One party receives a list of size ` (this party is called “the short party”),
and the other party receives a list of size ` + d (this party is called “the long
party”). The short list is a strict prefix of the other. The lengths ` and d are
chosen according to a geometric distribution with parameter β, where β depends
on the utility functions of the parties. The real secret is located at position `+1
in the long list, while all the other elements in the lists are fake; the (` + 1)th
round is called the definitive round because in this round the secret is learned. In
addition to the lists described above, the dealer selects an independent random
permutation for every round; this permutation determines the order in which the
parties send their list elements in the round. The party that sends its message
first in the definitive round is given the long list, and the other party is given
the short list. In addition, the parties receive the permutations for the rounds
appearing in their respective lists (i.e., the short party receives the permutation
only for the first ` rounds). We stress that neither party knows if it the short or
long party. In any given round, we call the party who sends its element first the
“first party” and we call the other the “second party”.

In order to reconstruct the secret, the parties proceed round by round; in the
ith round each party sends its ith list element in the order determined by the
permutation. At iteration ` + 1 (the “definitive iteration”), the long party is the
first to broadcast its share (that is, it is the “first party”). However, the short
party’s list is finished and thus it has no element to send. It therefore remains
silent in this round. The first round in which only one party sends a list element
is the definitive round, and so the secret sent in this round is taken to be the real
secret. Intuitively, fairness is achieved because the owner of the long list does not
know the length of the short list, and in particular does not know which round is
the definitive round. It therefore does not know which of the elements in its list
is the real secret and so has to send its share every round. See [10] for details.

As pointed out in [10, Note 6.2], if one of the parties aborts prematurely (i.e.,
remains silent in round i for some i < `) then the other party will output an
incorrect value (with high probability the element si of the ith round will not
equal the secret). It is important to note that the aborting party knows that
si is not the real secret because its list is not yet finished. Furthermore, it can
even have some influence over the incorrect value output by the first party (this
is because it can choose at which point to stop and thus it can choose which of



the values in the prefix of the list is output by the first party). The protocol is
therefore clearly not correct. We remark that the same problem also exists for
the protocol of [7]. As we have mentioned, [10] assume that rational parties will
not behave in this way because they always prefer to learn the secret than to
not learn it (observe that if a party aborts prematurely then it will not learn the
real secret). That is, they assume that Uf

i < Ui. We show that this assumption
is essential as long as Uf -independence is desired.

The impossibility result. Our proof of impossibility assumes that for all i,
U+

i is strictly greater than Ui by a non-negligible amount; this is called strict
competitiveness; see [10]. We are now ready to formally state the theorem.

Theorem 12 There do not exist Uf -independent fair reconstruction mecha-
nisms for strictly competitive utility functions in the non-simultaneous model.

By Proposition 9, Uf -independence implies correctness. We therefore prove
that in the non-simultaneous model there does not exist a fair reconstruction
mechanism that is correct, as defined in Definition 7.

Intuition: We begin by describing 2 strategies σstop
1 and σstop

2 . The strategy
σstop

1 for party P1 is the strategy that follows the prescribed σ in all the rounds
with the following difference. In every round, P1 checks what its output would
be if P2 quits at that round. In the first round for which the output is not ⊥, the
strategy σstop

1 instructs P1 to quit at that round. σstop
2 is defined analogously.

Since we assume correctness, the probability that one of the parties will output
a value which is not s or ⊥ when the other prematurely aborts is negligible.
Thus, when playing σstop both of the parties will output the correct s in the
round that they quit. Next, we prove that when both parties follow σstop, with
high probability one of them learns the secret while the other does not. We
conclude by showing that the prescribed strategy σ is not a computational Nash
equilibrium by showing that one of the σstop strategies has a better expected
utility than σ. That is, we show that either u2(σ1, σ

stop
2 ) > u2(σ1, σ2) + ε′ or

u1(σ
stop
1 , σ2) > u1(σ1, σ2) + ε′, for some non-negligible function ε′. The proof of

this appears in the full version.

5 Positive Results

5.1 Uf -Dependent Reconstruction in the Non- Simultaneous Model

In this section, we address the basic question of whether or not it is possible to
construct a fair and correct reconstruction mechanism using non-simultaneous
channels even if Uf

i ≥ Ui. We answer this in the positive by constructing a
mechanism that works as long as it knows the value of Uf

i for each party Pi (in
the same way that the mechanism knows the values of U+

i , Ui, U−
i and U−−

i ).

The idea behind the mechanism. We will consider the two party case only,
but the idea works for the multiparty case as well. We assume familiarity with
the protocol of Kol and Naor [10]; see the beginning of Section 4.2 for a short
description of the protocol and why it does not guarantee correctness. This will



be used below. Looking closely at the strategy for breaking correctness in the
Kol-Naor mechanism, it arises because the first party to send its list element in
an iteration has no way of verifying if the current round is the definitive round
or not. This is necessary because if the long party could check if the current
round is the definitive one before sending its element, it could learn the secret
without the other party learning it. Despite this, our key observation is that it
is not necessary that all of the fake iterations be the same, as in the Kol-Naor
mechanism. Rather, we introduce additional rounds with the property that the
second party in each such round knows that the round is fake while the first party
does not. Now, if a first party prematurely aborts on such a round, then it will
gain only U−, and not Uf (because the second party knows that the first party
has cheated and just aborts outputting ⊥). By adding enough of these additional
rounds, we have that the probability that a party successfully achieves Uf is low
enough so that a higher expected utility is obtained by playing σ and obtaining
U . See the full version for a detailed description and proof.

5.2 Full Independence for n ≥ 3 with Relaxed Assumptions

In this section we show that utility dependence is not always essential. In par-
ticular, we show that for a certain reasonable relaxation of the utility functions,
it is possible to construct a utility independent fair reconstruction mechanism
for the case of t-out-of-n secret sharing, where n ≥ 3. We do not claim that our
assumptions always hold or should be used; rather our aim here is to show that
utility independence can sometimes be achieved.

The “standard” assumptions [6, 10] typically used for the utility functions
are that a party always prefers to learn than not. Furthermore, assuming that a
party learns, the fewer others that learn the better. We relax these assumptions,
and assume that each party prefers to learn the secret alone, but once one of the
other parties learns the secret it doesn’t matter how many other parties learn
it (thus U+

i denotes the utility when it alone learns, and Ui denotes the utility
that it learns along with any positive number of other parties).

In addition to the above, we assume that the utility functions are polynomial
in the security parameter, and that there is a non negligible difference between
them. That is, there exists a polynomial p(·), such that for infinitely many k’s
it holds that: Ui ≥ U−

i + 1
p(k) . (Our impossibility result for U+-independence

when n = 2 holds for such utility functions.) This is a natural extension of the
strict differences between the utility functions, as defined in [10], when they are
modeled as functions of the security parameter. (We remark that U+

i may equal
Ui; we only need a non-negligible difference between Ui and U−

i .) Note that
when the above does not hold, it means that Pi’s utility when not learning is
essentially the same as when learning. Thus, Pi may as well not participate at all
and this case is not interesting. Our protocol assumes simultaneous channels in
order to achieve Uf -independence. As we showed in Theorem 12, it is impossible
to achieve Uf independence with non-simultaneous channels.2

2 A version of our protocol for the non-simultaneous model can be constructed using
the techniques of [10] and our protocol in Section 5.1. However, note that the protocol



The protocol idea. The idea behind our protocol is to enable one of the parties
to learn the secret even when the others do not. Now, once this party has learned
the secret, it is not possible for any other party to obtain U+. Thus, the other
parties can either continue with the execution of the protocol and obtain U , or
they can quit and obtain only U− (which is strictly less than U by the assumption
that Ui ≥ U−

i + 1
p(k) ). The main question is how to construct a protocol so

that one of the parties can learn the secret, but only after there are t∗ ≥ t
parties participating in the reconstruction phase, but then enable the residual
t− 1 parties to reconstruct the secret without the cooperation of the party who
already learned the secret.

We achieve this in the following way. Let s be the secret to be shared; for
simplicity assume that s ∈ {0, 1}k (where k is the security parameter). The
dealer chooses a random r ∈R {0, 1}k and generates shares of r and s with
threshold t and shares of r⊕ s with threshold t− 1 (overall three sets of shares).
The dealer then sends each party its shares. Before proceeding we note that no
set of t−1 parties can reconstruct the secret s, because even though a set of this
size can learn r ⊕ s, without knowing r this is of no help. In addition, ignoring
issues of rationality and utility, it is possible for every set of t parties to obtain
s by just reconstructing the shares of s, or by reconstructing r and r⊕ s (where
the latter requires only t− 1 to participate).

We now informally describe our reconstruction protocol. In the first phase
of the protocol t∗ ≥ t parties reconstruct r by simply sending their shares to all
others. In the second phase, the t∗ parties reconstruct s by sending their shares
one at a time consecutively (here it is crucial that a simultaneous channel not
be used and so we use the simultaneous channel as a non-simultaneous one, by
having every party wait until it receives all previous messages before sending
its own). Note that at the end of the second phase, the last t∗ − t + 1 parties
can reconstruct the secret alone, and thus, they may not send their shares. If
any of the parties does not send their share in the first phase, or if any of the
first t− 1 parties does not send their share in the second phase, then all parties
abort and output ⊥. At the end of this phase, unless all have aborted, there
remain t− 1 parties who have not learned the secret. These parties continue to
the third phase. The crucial observation is that none of these parties can obtain
U+ since there are already t∗ − t + 1 ≥ 1 parties who have learned the secret s.
We utilize this fact to use any one of the known rational reconstruction protocols
while setting β = 1

2 (where β is a parameter that usually depends on the utility
values, like our β in the lower bound); observe that we fix β irrespective of
the actual utility values. This works because at this point, once one party has
learned the secret, the maximum possible utility the parties can obtain is U . In
particular, even if only one party of the remaining t−1 parties learns the secret,
its utility is still U because one party already knows the secret. Now, the known
rational secret sharing protocols with β = 1

2 all have the property that if the
parties follow σ then they will obtain U (with probability 1). However, if they

for the non-simultaneous model needs to know the values of Uf
i , Ui and U−−i , and

therefore the result is only U+-independent.



do not, then with probability 1 − β they will obtain U−. Thus, the expected
utility by not following σ is 1

2 ·U− + 1
2 ·U < U , and so the parties follow σ and

all learn the secret.

Remark. Our construction can be extended to deal with the case that parties
do prefer that as few as possible other parties learn, but do not care whether
t − 2 or t − 1 parties learn (i.e., it does not make any difference if all learn, or
all but one learn). This is a much milder relaxation on the utility functions; see
the full version for details.
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