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Abstract. We consider enhancing with privacy concerns a large class of auc-
tions, which include sealed-bid single-item auctions but also general multi-item
multi-winner auctions, our assumption being that bidders primarily care about
monetary payoff and secondarily worry about exposing information about their
type to other players and learning information about other players’ types, that
is, bidders aregreedy then paranoid. To treat privacy explicitly within the game
theoretic context, we put forward a novelhybrid utility model that considers both
monetary and privacy components in players’ payoffs.
We show how to use rational cryptography to approximately implement anygiven
ex interimindividually strictly rational equilibrium of such an auction without a
trusted mediator through a cryptographic protocol that uses only point-to-point
authenticated channels between the players. By “ex interim individually strictly
rational” we mean that, given its type and before making its move, each player has
a strictly positive expected utility. By “approximately implement” we mean that,
under cryptographic assumptions, running the protocol is a computational Nash
equilibrium with a payoff profile negligibly close to the original equilibrium.

1 Introduction

1.1 The problem: realizing privacy-enhanced auctions

Consider the following scenario: Aseller S wants to sell some items to a subset of
n biddersP1, P2, . . . , Pn using a sealed bid auction, e.g., a first-price or a second-
price (Vickrey) auction if there is just one item. To optimize their expected payoff in
these settings, the biddersPi are to submit their true valuation of the items (e.g., in a
Vickrey auction) or more generally a function of their true valuation (e.g., the Bayesian
equilibrium strategy in a first-price auction) as their bid.However, in the scenario we
suggest, matters are complicated by the following issues: First, bidders are not happy
revealing any information related to their true valuation to the seller. Second, bidders
would also be unhappy if other buyers gain information abouttheir valuation. On the
other hand, they would appreciate learning something aboutthe valuations of the other
players if they get the chance.

Some of these concerns can be handled by assuming the availability of a trustedme-
diator M . Such a trusted party can collect the bids, determine the winners, and ensure
that the seller and the winners get in touch with one another.Ideal mediation does not
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solve all problems though, as the outcome potentially depends on the type of all par-
ties. Hence a player which is paranoid enough about leaking information about its type
might abstain from reporting the true valuation simply for privacy reasons. In this paper
we first investigate when we can expect to find mechanisms which the parties would be
willing to participate in if executed by an ideal mediatorM . We then investigate how to
realize such a mechanism in a world without an ideal mediator. The first problem forces
us to assume that the parties are more interested in winning the good than worried about
privacy. To solve the second problem we propose to replaceM by a secure multiparty
computation (MPC), as follows:

1. The seller commits in advance to sell the items to the bidders that can present a
document digitally signed by all bidders, stating thatPi is the buyer of some given
items. The document should also specify at which pricePi is to get each item.

2. The bidders perform a secure multiparty computation thatsimulates the mediator
of the mediated auction and produces a set of such signed documents, i.e., one
document per each winner associating the winner to the correct item-value pairs.

Indeed, previous papers concerned with secure cryptographic implementations of auc-
tions have suggested schemes along these lines, e.g., [21, 18]. Also, at least in one
instance such a scheme (for a double auction) has been implemented in practice [2].

There are issues that make this not quite solve our problem. As an example, the
introduced privacy concerns of the bidders dictate the use of joint computations that
eventually produce non-symmetric outputs for the bidders,where only the winners see
their own contracts; then, nothing enforces the winners to send the contracts and com-
plete the transaction withS. This, e.g., destroys the standard equilibrium analysis ofa
Vickrey auction which crucially depends on the winner beingforced to buy, to make
it costly to bid higher than ones valuation. This suggests using a first-price auction in-
stead, but even then it is not obvious that rational parties with privacy concerns will
carry out the protocol outlined above.

In general, we wish to extend classical equilibrium analysis of auctions of game
theory to cryptographic auction protocols and make an argument that a rational party
has no incentive to deviate from following the protocol as specified. A concrete prob-
lem is protocol participation. In realizations of games with non-symmetric final pay-
offs (like auctions), an agent has no incentive to continue and complete the protocol as
soon as he realizes that he cannot be a winner. In contrast, the traditional analysis of
multiparty computation assumes that at leastsomeparties are “honest” and will carry
out all steps of the protocol, no matter what (Bradfordet al. [3] study the problem of
protocol-completion incentives that exist in an auction when participants realize that
they cannot win the auction, but in a model where privacy is not captured in players’
rationality). Many works on rational cryptography have analyzed secret sharing and
multiparty computation as a game [12, 11, 9, 1, 7, 16, 20] but,aiming at simultane-
ous information exchange and modeling rationality throughpure information loss/gain,
these works cannot precisely model auctions with non-symmetric outcomes/payoffs and
a setting where utilities are a mix of monetary utilities andprivacy concerns.

Matters are complicated by the fact that even the mediated auction doesleak some
information (e.g, the mere fact that a bidder did not win gives him information about
the winning bid(s)). Hence, it is intuitively clear that if the privacy has high weight,
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existing equilibria in the classical case are disturbed (e.g., truth telling is no longer
even a Nash equilibrium for Vickrey auctions), and for a highenough emphasis on
privacy, not taking part in the auction (say, by submitting the bid0, independently of
the valuation) becomes a strictly dominant strategy. Whatever analysis one obtains will
have to be consistent with this fact.

Perhaps the biggest challenge, finally, is to design a protocol as the above in a way
that can be realized usingtoday’s Internet computing and communication machinery.
While there are results that allow removing mediators in verygeneral classes of games
[10, 13, 14], these works use communication channels such assimultaneous broadcast
(like most works on rational cryptography) or physical envelopes that are quite restric-
tive or even unobtainable when considering a practical Internet-based implementation.

1.2 Outline of our contribution

In this paper, we suggest a rational cryptographic protocolfor replacing a trusted me-
diator in a large class of auctions. The protocol uses only point-to-point authenticated
channels between the buyers, and can therefore be implemented on the Internet.

We propose a protocol where the seller does not participate.If we allowed the seller
to be an active entity in the protocol execution some steps ofthe protocol could be
significantly simplified, but a solution without seller participation has the potential to
allow for more applications. As an example, a resource-limited device outsourcing com-
putations might prefer the potential companies to execute the auction determining the
winning company-price pair and just have them inform it of the outcome. As described
above, the outcome of the protocol is determined by the winners getting contracts dig-
itally signed by all other participants. How such a digitally signed contract is enforced
is not our concern here. We simply assume that such bit strings have monetary value.

Besides such monetary concerns, we have to assign utilitiesto players so that the
privacy concerns outlined in the previous subsection are adequately modeled. Because
of the monetary value of the signed document, we deviate fromprevious works on
secure auction implementation where privacy was treated ata second-phase technical
leveloutsideof the scope of game and parties’ strategies, but also from previous works
in rational cryptography where utilities weresolelyconcerned with gain or exposure
of information. Instead, we propose ahybrid utility modelwhere agents are interested
in both monetary gain from participating in the auction as well as in maintaining the
privacy of their type (e.g., valuation). Their actual utility is a linear combination of a
monetary utilityand aninformation utility. For the information utility, rather than pos-
tulating one particular utility measure, we allow players to haveanyprivacy concerns,
under a few technical restrictions, like not positively valuing loss of information. We
note that a different hybrid utility model is studied by Halpern and Pass [8].

We consider a general class of auctions in the standard Bayesian setup of auction
theory andwithout privacy concerns. We formally define the corresponding mediated
gamewith privacy concerns, as modeled using our hybrid utilities. Ingeneral, as we
indicated in an intuitive way in the previous subsection, ifhigh weight is put on the
information part of the hybrid utilities, then the equilibria of the privacy-aware game
may be very different from the equilibria of the original game. However, for many
interesting cases of auctions, for instance in a variant of the first-price auction with
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discrete valuations and bids, we observe that when the weight put on the information
concern is “smaller” than the weight on the monetary concern, then the original auction
mechanism (with a small twist) is an equilibrium of the mediated game.

To study auctions with privacy concerns for the Internet, where the seller does
not participate, we introducemediation with reject, a slightly relaxed mediated set-
ting where the winners are given the choice to reject their contracts. This captures the
following issue: at some specific point in the computation, the winners (and only those)
will locally compute their contracts (similar to therevelation pointof [12]); nothing
prevents them from not sending the contract to the seller. Aswe will see, the reject
option can drastically affect the equilibria.

Our main result is the following. We can relate a given equilibrium (suggested be-
havior) π of the mediated game to a corresponding suggested behaviorπ′ of our un-
mediated cryptographic protocol so thatπ′ has the same payoff profile asπ, up to a
negligible amount, and for computationally bounded agentsfollowing the protocolπ′

is anǫ-Nash equilibrium whereǫ is negligible. Here, “negligible” is defined relative to
the strength of the cryptography used. The assumption we need is the following: The
equilibriumπ should have anex interimexpected monetary utility for all players which
is large compared to the players’ privacy concerns. That is,after a player learns his
type, but before he makes his move, his expected conditionalmonetary utility is large
compared to how concerned he is about privacy—parties are “greedy-then-paranoid”.

As an example, our protocol enables a variant of the first-price auction and the cor-
responding Bayesian bidding equilibrium to be conducted bycomputationally bounded,
rational butnot necessarily honest buyers over the Internet in a realistic way, without a
trusted mediator and without participation of the seller. In this regard, our results can
be viewed as a more realistic step towards privacy-aware extensions of computational
and distributed mechanism design (e.g., Ch. 14 of [19]).

We remark that while Kol and Naor [11] identifyǫ-Nash equilibrium as a minimum
rationality requirement for rational cryptography, a bodyof works [9, 1, 7, 16, 11, 12,
17], suggest using stronger solution concepts, most notably iterated admissibility, and
equilibria that arenot susceptible to backward inductions[11]. However, at the time of
writing, there is no clear consensus about which equilibrium refinement is the “right
one” for rational cryptography. This is especially true forthe computational setting
where one must refine computational Nash (i.e.,ǫ-Nash) equilibrium rather than Nash
equilibrium: while there is a significant body of game theoretic literature about refining
exact Nash equilibrium that one can draw upon, there is little or no help from the game
theory community about refining approximate Nash equilibrium.1 We note that Kol and
Naor [12] strongly argue that iterated admissibility is notan appropriate concept to
use. We want to add the following observation. Computational Nash equilibrium is a
solution concept for games played bysoftware, not conscious agents. Thus, when we
ponder whether a given equilibrium is sufficiently stable orwhether deviations will be
made, it seems that we should focus on whether the software will be modifiedbefore
it is executed, e.g., at the moment when a player learns his type (i.e.,ex interim) rather

1 There is a good reason for this: many or most standard equilibrium refinements are defined
or motivated by players caring aboutinfinitelysmall differences in payoff. This is inconsistent
with the philosophy ofǫ-Nash in a fundamental way.
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than whether deviations will take placeduring playat particular information sets. In
other words, we propose the following thesis: Meaningful refinements of computational
Nash equilibrium should be definable in thenormal formof the game, rather than the
extensive form. We note that the concerns about susceptibility to backwardinduction
raised by Kol and Naor are in fact not consistent with the conjunction of this thesis and
the basic assumption underlyingǫ-Nash: That players do not care pursuing advantages
that are negligible. We expect much interesting work in the future about how to refine
computational Nash appropriately, but in the meantime we take the standpoint that even
ǫ-Nash is a meaningful property as a minimal requirement for stability, and in some
cases, such as ours, it is not trivial to achieve even this.

Sketch of the protocol.The idea behind our protocol is intuitive and quite simple.
Given individual signing keys and corresponding (publiclyknown) verification keys
for some signature scheme, and also their private bids, the agents engage a randomized
joint computation during which the winners obtain digital contracts signed by all agents.
Conceptually, the protocol is divided in a fixed (and large) numberE of stages, called
epochs. Sequentially during each epoche, each agentPi receives a valueVe,i and thus
has the opportunity to obtain a contract. The contracts are released to the winners during
one, randomly chosen epoche0 ∈ [E] (with probability2−e in epoche = 1, . . . , E−1),
whereas all other received values (by non-winnersPi in epoche0, or by any agent
at all other epochs) are set to a special nil value⊥. This randomized functionality is
implemented by first using secure multiparty computation, at the end of which each
agentPk obtains anadditiveshare of each valueVe,i (or ⊥ if agents provide invalid
inputs). From this point on, theE epochs of the protocol are realized sequentially, by
simply asking in a round-robin fashion each agent to send itsshare ofVe,i to Pi, and
repeat for alli = 1, . . . , n. AgentPi is asked to refuse to send his shares in subsequent
reconstructions, as soon as he experiences denial to reconstruct his own valueVe,i.

To see why several epochs are needed, consider a solution where the contracts are
always handed out in epoche0 = 1. If P1 does not get a contract in round1, it knows
that some otherPi is the winner, hencePi will receive a contract in roundi. This con-
tract might contain information onP1’s type, which means thatP1 might have incentive
to make the protocol abort, by not sending its share. We deal with this using the, by now,
standard trick of not having a known epoch in which the outcomes are revealed, to en-
sure that with positive probability any agent deviating at epoch e < E destroys his
winning possibility in a later epoch. This does not hold in epochE, bute0 = E occurs
only with negligible probability, so the protocol is anǫ-Nash for a negligibleǫ.

When there are several winners, the above protocol does not work: A winner Pi

already having received his contract could have incentive to make the protocol abort
before the other winners received their contracts, as thesecontracts could contain in-
formation related toPi’s type. To solve this issue we let the winners learn all the infor-
mation in their contracts in epoche0, but in an unsigned form. Then in epoche0 + 1
we let them learn their signed contracts. Now, whenPi gets his contract, it is too late
to prevent the other winners from learning the information in their contracts, and the
contracts themselves contain no new information. Depriving other winners of their con-
tracts would only changetheir monetary utility, and we do not model envy.
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Inspired by early work on rational cryptography (e.g., [9, 1, 7, 16]) this epoch-
based protocol design has been recently used along with sequential revealing of secrets
to achieve complete fairness in joint computations and information exchanging (e.g.,
[6, 12]). The non-symmetric outcomes in auction games and the use of only point-to-
point communication create a different setting where our protocol operates in. But what
further distinguishes our work is how fairness is reached between the many “greedy-
then-paranoid” winners: thedecouplingof the revelation of their winning state from the
(subsequent) release of their winning award in combinationwith bidders rationality can
guarantee protocol termination.

Paper structure. In Section 2 we provide a brief description of the classical auctions
model in the (pure) mediated setting. In Section 3 we introduce a definitional framework
for protocol games. In Section 4 we present the mediated setting with reject and discuss
the existence in this model of privacy-enhanced Nash equilibria for first-price auctions.
In Section 5 we present our protocol for realizing auctions over the Internet. In Section 6
we introduce privacy-enhanced Nash realization, our core proof technique for designing
and proving privacy-enhanced Nash equilibria in a modular manner.

2 Classical Auctions

First, we recap the classical (i.e., privacy-oblivious) model of a sealed-bid auction as a
Bayesian game with incomplete information. Such a game is played by parties (bidders)
P1, P2, . . . , Pn competing for one or more items to be sold. The game starts with each
bidderPi receiving a privatetypeti ∈ Ti whereTi is thetype spaceof the bidder. The
vectort = (t1, t2, . . . , tn) is drawn at random from a commonly known distribution on
T = T1 × T2 . . . × Tn. This distribution is known as thecommon priorand will also
be denoted byT . Based on his type, bidderPi strategically chooses and submits abid
bi. That is, astrategyof partyPi is given by a mapBi mapping types to bids. Based on
the bidsb = (b1, b2, . . . , bn) and possibly a random source, anallocation mechanism
Mec now allocates the items to bidders and for each item computesa price. We write
(o1, . . . , on) = Mec(b), whereoi is theoutcomefor Pi—i.e.,oi specifies which items
Pi won and at which prices. Themonetary utilityof a winnerPj is rj = g(t, o) for
some functiong, while the payoff of a non-winnerPi is ri = 0. As an example, in a
single-item auctiontj could be the valuation of the item,oj could specify the winning
pricep andrj could betj − p (this is the case for a risk neutral agentPj as he gets the
item at pricep and values ittj). For the case of the Vickrey auction, the winnerPj is
the bidder with the highest bid, while the corresponding winning pricep is the highest
bid if the bid of the winner is removed. A Bayes-Nash (or simply Nash for brevity)
equilibrium for the auction is a (possibly randomized) bidding strategy maximizing the
expected payoff of each bidder, if other bidders follow their prescribed strategy.

3 Protocol Games

To enhance the classical auction with privacy concerns, we have to explicitly model
privacy as part of the utility function and consider appropriate notions of equilibria. For
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this we in turn have to explicitly model the communication ofthe protocol, and the
information collected by a party during the protocol execution.

3.1 Communication and protocol execution

We start with a formal communication and protocol executionmodel. It is convenient to
use a unified model, which allows to capture both the mediatedsetting and the Internet-
like setting using the same formalism, which we will call acommunication device. To be
able to use cryptography, we also want to model the fact that parties are computationally
bounded to get the desired definitions; this we do by simply restricting the strategy space
to poly-time strategies. The model we present in this section is not specific to auctions.

Communication devices. A protocol is of the formπ = (π1, . . . , πn), whereπi is a
program describing the strategy of partyPi. These programs communicate in rounds
using a communication deviceC. In each round,C takes an inputmi ∈ {0, 1}d from
eachπi and outputs a valueoi ∈ {0, 1}d to eachπi. I.e., in each round,C is a function
({0, 1}d)n → ({0, 1}d)n, (m1, . . . ,mn) 7→ (o1, . . . , on). Which function is computed
might depend on the inputs and outputs of previous rounds andthe randomness ofC.

Parties and strategies.We let the strategyπi for each partyPi be an interactive circuit
for R rounds. The circuit consists of1+R circuitsπ

(0)
i , π

(1)
i , . . . , π

(R)
i . The circuitπ(0)

i

takesa + b bits as input and outputsa + b bits, wherea, b are integers specified by the
circuit. In each roundπi takes as input astates ∈ {0, 1}a, and amessagem ∈ {0, 1}b

(from the communication deviceC). The output of the circuit is parsed as an updated
states′ ∈ {0, 1}a and a messagem′ ∈ {0, 1}b (for deviceC). Initially, the state consists
of a uniformly random bits and the message isPi’s type. In subsequent rounds,s is the
updated states′ from the previous round andm is the value sent byC for that round.

Because we consider protocols using cryptography, we do notconsider a single cir-
cuit πi. Ratherπi specifies a family of circuits, namely a circuitπi(κ) for each value
κ of the security parameter.2 Eachπi(κ) is allowed to have different state and mes-
sage lengthsa(κ), b(κ). Similarly we letC specify a communication deviceC(κ) for
eachκ ∈ N. Also, for technical reasons we adopt a non-uniform model, where the se-
quence of strategiesπi(1), πi(2), . . . need not have a uniform description.3 For a func-
tion τ : N→ N we useΠτ to denote thestrategy spaceconsisting of all circuit families
πi where for allκ the size ofπi(κ) is at mostτ(κ). A strategy spaceΠτ is always
defined in context of some communication deviceC which for eachκ expects (and pro-
duces) messages of some fixed sized(κ) ∈ N. We require thatΠτ only contains circuit
families whereb(κ) = d(κ) for all κ.

2 The value ofκ determines the key lengths of the underlying cryptographic primitives.
3 Insisting onπi having a uniform description might make it impossible to analyze the games

for different values ofκ independently, or would at least require an explicit argument that this
can be done: Changing the strategiesπi(κ) for some values of the security parameterκ might
necessitate a change for other values to ensure that the sequenceπ1(1), π1(2), . . . still has a
uniform description. The utility of changing strategy for one specific game(i.e., for a fixedκ)
might therefore not be possible to define without considering the utility of changing strategy
at other security levels, which seems unintuitive and might unnecessarilycomplicate analysis.
Adopting a non-uniform model deals with such concerns in a straight-forward manner.
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Executions. Let C be some communication device, letπ = (π1, . . . , πn) be a pro-
tocol, whereπi ∈ Πτ , and let T be a distribution on types. Anexecutionpro-
ceeds as in Fig. 1. We callo = (o1, . . . , on) = (o

(R)
1 , . . . , o

(R)
n ) the outcomeof the

protocol. I.e., the outcome is the last round of outputs fromC. We call the output
wi = (s

(R+1)
i ,m

(R+1)
i ) of the last circuitπ(R)

i of strategyπi the local outputof party
Pi, and callw = (w1, . . . , wn) the local outputs. We use(t, o, w) ← (π, C)(T ) to
denote the distribution of(t, o, w) on arandom execution, i.e., for uniformly random
initial statesρ, randomt← T and uniform randomness ofC.

1. Sample(t1, . . . , tn)← T and uniformly randomρi ∈ {0, 1}a for i = 1, . . . , n.
2. For i = 1, . . . , n, run π

(0)
i on (ρi, ti) to produce(s(1)

i , m
(1)
i ). Then for each round

r = 1, 2, . . . , R: First runC on (m
(r)
1 , . . . , m

(r)
n ) to produce(o(r)

1 , . . . , o
(r)
n ), and then,

for i = 1, . . . , n, runπ
(r)
i on (s

(r)
i , o

(r)
i ) to produce(s(r+1)

i , m
(r+1)
i ).

Fig. 1. An execution

Utilities. Theutility of Pi is a real valued functionui. We assume thatui is a function
of the types, the outcomes and the local outputs. We useu to denote(u1, . . . , un). We
useui(T, π, C) to denote theexpected utilityof Pi, i.e., the expected value ofui(t, o, w)
for a random execution(t, o, w)← (π, C)(T ).

3.2 The mediator and the Internet as communication devices

For analyzing protocols for Internet-like networks we needa communication device
Cint modeling communication on the Internet. Ideally we wantCint to closely reflect
how messages are delivered on the Internet. Since our results are very robust with re-
spect to the exact specification ofCint we will, however, use a rather idealized device.

A communication deviceCintgen,Out parametrized bygen andOut works as follows:

set up PKI: In round1, sample a key pair(pki, ski) ← gen(1κ) for eachPi and output
((pk1, . . . , pkn), skj) to Pj for j = 1, . . . , n.

protocol execution: In roundsr = 2, . . . , R−1, the input from each partyPi is parsed as a
messagemi ∈ {0, 1}k for some fixedk. The output toPr mod n is (m1, . . . , mn). The
output to all other parties issilence.

define outcome: In roundr = R, compute(o1, . . . , on) = Out(msg), wheremsg are all
messages sent in the previous rounds, and output the outcomeoi to Pi.

Fig. 2.An Internet-Like DeviceCintgen,Out

We assume that the device can deliver secure messages directly between each pair
of parties. This can be achieved using standard Internet technology, e.g., by establish-
ing SSL connections between each pair of parties. Using sucha model we avoid the
introduction of unnecessary complications, like the exactstructure of the network used
to carry the messages. On the other hand, we do not want the simplification ofCint to
make the model unrealistic. One issue which we explicitly donot wantCint to allow
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is simultaneous message exchange. We do this by saying that on Cint, in each round
one predefined party receives messages from all other parties. Finally we assume the
existence of a public-key infrastructure PKI. We model thisin a simplistic manner by
letting the device distribute the keys. In the last round thedevice will define an outcome,
by the last set of messages output to the parties. We assume that this is a functionOut
of all the messages sent in previous rounds. Details are given in Fig. 2.

The communication deviceCmedMec for standard mediation isCrejMec in Fig. 3 on
page 12, but withoutallow reject. The recommend strategyπmedj for eachPj is to
input bj ← Bj(tj) and to locally outputwj = (tj , oj).

3.3 Information and monetary utilities

Information utilities. We now turn our attention to the valuation of the information
collected and leaked during the protocol execution. For this we use the local outputs.

We let the local outputwi capture the type information collected byPi. I.e., if Pi

wants to take some type information with it from the execution, it outputs it as part
of wi. We assume thatPi valuates the type information collected using aninformation
utility qi(t, w). Note thatqi can measure information collected byPi as well as by other
parties: maybeqi(t, w) = 1 if wi = t1 but qi(t, w) = −1 if w1 = ti, wherei 6= 1.

We allowqi to expressarbitrary privacy concerns, except for two restrictions: To en-
sure thatqi is consistent with the view of knowledge from cryptography,where knowl-
edge is the information which can be computed in poly-time, we require thatqi is
poly-time computable. We also need thatqi does not positively valuate loss of infor-
mation. Let(w1, . . . , wn) be any distribution and let(w′

1, . . . , w
′

n) be the distribution
wherew′

i = f(wi) for a poly-time functionf andw′

−i = w−i. Then we require that
qi(t, (w

′

1, . . . , w
′

n)) ≤ qi(t, (w1, . . . , wn)) + ǫ, whereǫ is negligible. In words: losing
information aboutwi (we think off(wi) as throwing away information aboutwi), and
all other things being equal, cannot be valuated as significantly positive byPi. We call
qi admissibleif it has these two properties. Below we assume that allqi are admissible.

Our protocols will work only for privacy concerns which are sufficiently small
compared to the expected utility of playing the game. So it isconvenient to have a
measure of the privacy concerns: For an information utilityqi(t, w) we call ‖qi‖ =
maxt,w qi(t, w)−mint,w qi(t, w) theweight of the information utilityor privacy weight.

We will not be concerned about how the utilityqi measures privacy concerns, as
we are going to develop protocols that areǫ-Nash for all admissible measuresq =
(q1, . . . , qn) with sufficiently small weight compared to the expected monetary utility.

Monetary utilities. Complementing the information utility we have the notion ofa
monetary utility, which is just a utility functionri(t, o) that depends only on the types
and the outcomes. For generality we allowri to change withκ. We do, however, assume
that the absolute value ofri is bounded by a polynomial inκ. The intuitive reason for
this assumption is that we need to use cryptography, which withstands only poly-time
attacks. In concrete terms, if you use a protocol where it would cost$1000000 to buy
enough computing power to break the cryptography, do not useit to play a game where
anyone can win$1000001. Bounding the monetary utility by a polynomial can be seen
as an extremely crude way to deal with the price of computation in the utility function.
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We design mechanisms which work only if the expected monetary utility of the par-
ties is large compared to how they valuate information. We define a measure of this. For
any ti occurring with non-negligible probability as componenti in (t1, . . . , tn) ← T ,
let (t, o, w)← (π, C)(T )ti

denote the conditional distribution of(t, o, w)← (π, C)(T )
given that thei’th component oft is ti, and letIi denote the expected value ofui(t, o, w)
for (t, o, w) ← (π, C)(T )ti

. We callIi theex interimexpected utility ofPi for ti, i.e.
its expected utility after seeing typeti. For a given security levelκ we letγ(κ) be the
minimum over all partiesPi and allti of theex interimexpected utility ofPi giventi.
We callγ : N→ R the ex interimrationality of (T, π, C).

3.4 Privacy-enhanced Nash equilibrium

When we design a mechanism, we can control the monetary utility ri(t, o, w) =
ri(t, o). In principle parties can have arbitrary utilitiesui(t, o, w), even if running a
protocol with the purpose of implementing some mechanism. However, we only con-
sider settings where the part of the utility which cannot be explained as monetary utility
from the designed mechanisms can be explained by an admissible measure of privacy.
I.e., we assume thatqi(t, o, w) = ui(t, o, w) − ri(t, o) is an admissible measure of
privacy, s.t.qi(t, o, w) = qi(t, w). Henceui(t, o, w) = ri(t, o) + qi(t, w).

For the later schemes involving cryptography, we follow Koland Naor [11] who
argued thatǫ-Nash equilibrium for negligibleǫ is the appropriate minimum rationality
requirement for “information games”.

Definition 1. For a single protocolπ (i.e., for fixedκ), a strategy spaceΠτ , a distribu-
tion T on types, andǫ ∈ R, ǫ > 0, we callπ an ǫ-Nash equilibrium (forT,Πτ , C) if it
holds for all partiesPi and allπ∗

i ∈ Πτ thatui(T, (π∗

i , π−i), C)−ui(T, π, C) ≤ ǫ. For
a protocolπ (specified for allκ), strategy spaceΠτ , a distributionT on types, we call
π a computational Nash equilibrium(for T,Πτ , C) if for all polynomialsτ there exists
a negligibleǫ such thatπ(κ) is anǫ(κ)-Nash equilibrium (forT,Πτ(κ), C) for all κ.

Our notion of computational Nash is technically slightly different from the original
notion introduced by Dodiset al. [4], in that we use a non-uniform model, as motivated
before. The notion is, however, similar enough that we feel that we can soundly reuse
the terminology of a computational Nash equilibrium.

As already mentioned, implementations of monetary mechanisms can only be ex-
pected to work if the weight of the privacy concerns is relatively small. We thus capture
the size of the information utility in the definition of privacy-enhanced Nash equilibria.

Definition 2. Fix a monetary utilityr and a privacy weightα. We call a protocol a
privacy-enhanced Nash equilibrium(for r andα) if it is a computational Nash equilib-
rium for u = r + q for all admissible privacy measuresq with ‖q‖ , maxi ‖qi‖ ≤ α.

In words, a privacy-enhanced Nash equilibrium has the property that no matter how
the parties valuate information (as long as it has weight at mostα), there is no deviation
which will allow any party to learn more valuable information, unless such a deviation
would have it lose an equivalent amount of monetary utility.This implies that there is no
way a partyPj can efficiently extract knowledge from its view of the protocol extra to
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that of its local outputwj . If there was, it could do so and output this extra knowledge,
which would make someqi prefer this. Therefore the recommended local outputs of a
privacy-enhanced mechanism precisely specify what information each party can collect;
not as an explicit requirement, but because we use computational Nash equilibrium as
solution concept.

We extend the previously defined notions to cover also collusions of sizet. In Defi-
nition 1 we considerC ⊂ {1, . . . , n} with |C| ≤ t and we consider deviationsπ∗

C con-
sisting ofπ∗

i for i ∈ C. We callπ t-resilient if ui(T, (π∗

C , π−C), C) − ui(T, π, C) ≤ ǫ
for all i ∈ C. I.e., for all collusions of sizet and all possible deviations, not even a sin-
gle party in the collusion gets extra utility. This directlydefines the notions oft-resilient
computational Nash equilibriumandt-resilient privacy-enhanced Nash equilibrium.

As a concrete example of a privacy-enhanced Nash equilibrium for an auction mech-
anism with standard mediation, we consider a single-item sealed-bid first-price auction
with three bidders and independent private valuations, each distributed uniformly in
{1, 3}. The bidding space is the natural numbers, including 0. A general theory of equi-
libria of first-price auctions with integral valuations andbids is the topic of a recent
paper by Escamocheret al. [5]. For the special case at hand, it is straightforward to
check that the symmetric profileπ = (B1, B2, B3), with B1 = B2 = B3, B1(1) = 0
andB1(3) = 1, is a Nash equilibrium of the classical (privacy-oblivious) auction. The
ex interimexpected payoff of a bidder with valuation1 is 1/12 and the ex interim ex-
pected payoff of a bidder with valuation3 is 7/6; since payoffs are strictly bigger than
0, it is easy to check that for any privacy measure with sufficiently small weight, the
equilibrium persists.

4 Mediation with Reject and Predictable Mechanisms

In what follows we consider a very general class of allocation mechanisms, but with
some non-trivial restrictions. A first restriction we need is that if (o1, . . . , on) =
Mec(b), then the utility ofPi is 0 if oi = sorry, this outcome indicating thatPi

got to buy no items. Instead, we call a partyPi with oi 6= sorry a winner. Our only
use ofsorry is to define mediation with reject below.

Towards designing a protocol that implements an auction on an Internet-like net-
work without the participation of the seller and that is a privacy-enhanced Nash equi-
librium, we first study privacy-enhanced Nash equilibria for a highly idealized setting
that better fits the real-world setting. The idealized setting that we consider is called
mediation with reject: here, the parties are allowed to reject the outcome of the auction
and receive monetary utility0 instead of the contract. Details are given in Fig. 3 on the
next page.

It is easy to check that the standard truth telling equilibrium of a second-price auc-
tion is in generalnot a privacy-enhanced Nash equilibrium in the setting of mediation
with reject: The fact that the winner is not forced to make thetransaction makes bid-
ding infinity (or the highest possible bid) a dominant strategy. For non-trivial privacy
concerns, this dominant strategy is also a strictly better response than truth telling to
a strategy profile where the other bidders bid truthfully. Thus, mediation with reject is
a setting where we observe aseparationbetween first-price and second-price auctions
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Parameterized by a number of roundsR, the communication deviceCrejMec works as follows:

compute result: In round 1, take inputbi from eachPi, let b = (b1, . . . , bn), sample
(o1, . . . , on)← Mec(b), whereoi 6= sorry iff Pi is a winner.

allow reject: For i = 1, . . . , n: Outputoi to Pi. If Pi with oi 6= sorry does not input
accept before roundR, setoi ← sorry.

define outcome: In the last roundr = R, output the current value ofoi to eachPi.
side-channel: In roundsr = 2, . . . , R− 1, allow point-to-point communication as inCint.

The recommend strategyπrej
j for eachPj is to inputbj ← Bj(tj) andaccept and locally

outputwj = (tj , oj).

Fig. 3.The Mediated Setting with Reject(πrej
B , CrejMec) for mechanism(B1, . . . , Bn, Mec)

with respect to the existence of reasonable privacy-enhanced Nash equilibria, fully jus-
tifying the importance of this abstraction.

It will, however, follow from our main result that a large class of privacy-enhanced
Nash equilibria for the standard mediated setting are also privacy-enhanced Nash equi-
libria in the mediated setting with reject. We need a definition to phrase this result.

Definition 3. A mechanism is calledpredictableif for eachPi, each typeti for Pi and
each bidbi for Pi the expected monetary utility ofPi, given thatPi bids bi and gets
oi 6= sorry, depends only onti and bi. Furthermore, this numbermi(ti, bi) can be
computed fromti andbi in poly-time.

Clearly a Vickrey auction is not predictable, as the expected utility depends on the
second largest bid, but a first-price auctionis predictable: given that a party wins, its
utility only depends on its own type and bid.

We can show that ifMec is predictable andγ ≥ 2α (whereα is the weight of the
information utility andγ is theex interimrationality) andπmedMec is a privacy-enhanced
Nash equilibrium for(T, u, CmedMec), thenπrejMec is a privacy-enhanced Nash equilibrium
for (T, u, CrejMec). This shows that one can construct interesting equilibria for a mediated
setting with reject. The intuition why “predictable equilibria” do not have a problem
with reject, follows from the proof sketch we give in Section5.

Privacy-enhanced Nash equilibria for first-price auctionswith standard mediation
exist for certain settings of the parameters, as exemplifiedin Section 3, and these are
predictable. We therefore have interesting Nash mechanisms for the mediated setting
with reject. Other examples of mechanisms for which one can design mechanisms for
the setting with reject include auctions where a numberℓ of uniform items are sold to
bidders with unit demand, selling to the highestℓ bidders at their bidding price—such
an auction is predictable.

5 Rational Auctions for Internet-Like Networks

We now present our Internet-based and privacy-enhanced Nash-equilibrium protocol
for realizing auctions.

Assigning value to signed contracts.We want an unmediated protocol for the device
Cumed = Cintgen,Out for gen and Out described below. For this to be meaningful we
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need to make explicit how the Internet protocol allocates monetary utility. This is a
fundamentally problematic issue as we are, after all, considering a pure communication
protocol which anyone can set up and run without money being exchanged. As indicated
in the introduction, we assign monetary value to a document if it is a possible winners’
outcome forMec and is signed by all parties.

Taking uniform items, unit-demand, first-prices auctions as an example, we can
make the assumption that the seller is willing to sell to the first ℓ parties presenting a
document including the party’s name and a price (over the reservation price), if it is
signed by all parties. This immediately assigns monetary value to commonly signed
contracts. One could also use society to enforce signed contracts (cf. [15]).

In more detail, we assume that the key pair generated bygen for each partyPi con-
sists of a verification keyvki for an existentially unforgeable digital signature scheme
and the signing keyski. We callσi a contracton (i, oi) if σi = (σ1, . . . , σn) and each
σj is a valid signature of(i, oi) undervkj . We useContract((i, oi), sk) to denote the
computing of suchσi. We define(o1, . . . , on) = Out(msg) by lettingoi = Oi if Pi

at some point sent a valid contract on(i, Oi) to itself. We letoj = sorry for all
other parties. For a specific mechanism, we need a way to resolve what happens if a
party inputs several, different signed contracts or the parties input signed contracts not
consistent with an outcome ofMec. All we need for our proof to go through is that
the defined outcome only depends on the contents(i, oi) of the signed contracts and the
global order in which the device received them, like for the uniform items, unit-demand,
first-prices auction above.

Mediation via a secure protocol. We show how to implement a privacy-enhanced
NashπrejMec in the Internet setting described in the above section. The idea is to compute
the outcomes(o1, . . . , on) = Mec(b) as in the mediated setting with reject, using a
secure MPC protocol, but then release the signed outcomes ina particular manner. The
release phase will consist ofE so-called epochs indexede = 1, . . . , E, each consisting
of n tries indexedi = 1, . . . , n. We index a tryi within an epoche by (e, i). In try
(e, i) party Pi is given a valueVi,e, if the other parties allow it. The recommended
strategy is to allow all deliveries, but as soon as a party hasbeen denied a delivery, it
will deny all parties their deliveries in all following tries. There is a special epoche0 ∈
{1, . . . , E−1}. The epoche0 is chosen using a probabilistic functione0 ← Epoch(E),
wheree0 ∈ {1, . . . , E − 1} andPr[e0 = e] = 2−e for e = 1, . . . , E − 2. If Pi is not
a winner, thenVe,i = sorry for all epochse. If Pi is a winner, thenVe,i = sorry
for e 6∈ {e0, e0 + 1}, andVe0,i = oi andVe0+1,i = Contract((i, oi), sk). WhenPi

receivesContract((i, oi), sk), it sends it to the seller (formally it sends it to itself and
the device definesPi to be a winner, by lettingoi bePi’s final output).

We use some notation for theVe,i values: For any((o1, σ1), . . . , (on, σn)) and
epoch e0 ∈ {1, . . . , E − 1} we defineV = (V1,1, . . . , V1,n, V2,1, . . . , VE,n) =
Values(((o1, σ1), . . . , (on, σn)), eo, E), where for allPi, Ve0,i = oi, Ve0+1,i = σi

andVe,i = sorry for e 6∈ {e0, e0 + 1}.
We use a secure MPC to compute sharings of the valuesVe,i. Given inputs

(b1, . . . , bn), the protocol securely samplesV = (V1,1, . . . , V1,n, V2,1, . . . , VE,n) and

generates sharings(S1,1, . . . , SE,n) ← Sharings(V ), whereSe,i = (S
(1)
e,i , . . . , S

(n)
e,i )

is ann-out-of-n sharing ofVe,i, where the shares are authenticated such thatPi can
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validate their correctness. Then the protocol gives allS
(j)
e,i to Pj . The MPC protocol is

chosen to tolerate the active corruption of up tot = n − 1 parties. With this threshold
termination cannot be guaranteed. The protocol should, however, guarantee that all par-
tiesPj which received an outputyj 6= ⊥, where⊥ is some designated error symbol,
received a correct output. Furthermore, the protocol should guarantee thatyj 6= ⊥ for
all parties if all parties followed the protocol. After the secure MPC protocol termi-
nates, the parties reconstruct the sharings. The details ofthe complete protocolπumedMec

are given in Fig. 4.

The unmediated protocol for communication deviceCumed. The recommend strategyπumed
j

for Pj is as follows:

1. Receive(pk, skj) from the communication device.
2. In the rounds with point-to-point communication, run the code ofPj in a secure MPC

for the following probabilistic functionf :
– EachPi inputs somebi and some(pk′, sk′

i), and receives outputyi, computed as:
• If all Pi input the samepk′, andsk′

i is a signature key forpk′

i, then sample
(o1, . . . , on) ← Mec(b) and e0 ← Epoch(E). If oi 6= sorry, then let
σi = Contract((i, oi), sk

′). If oi = sorry, then letσi = sorry. Let
V = (V1,1, . . . , VE,n) ← Values(((o1, σ1), . . . , (on, σn)), e0, E), sample
(S1,1, . . . , SE,n)← Sharings(V ), and letyi = (S

(i)
1,1, . . . , S

(i)
E,n).

• Otherwise, let allyi = ⊥.
Use inputsbj ← Bj(tj) and(pk′, sk′

j) = (pk, skj) to the MPC.
3. Afterward, initialize a variabledj ∈ {allegiance,defection}, wheredj =

defection iff the secure MPC protocol outputsyj = ⊥. If dj 6= defection,
then parseyj as shares(S(j)

1,1, . . . , S
(j)
E,n).

4. UseEn rounds of point-to-point communication to sequentially runE epochs, each
consisting oftries i = 1, . . . , n. In epoche, try i sendsj = S

(j)
e,i to Pi if dj =

allegiance and sendsj = ⊥ to Pi otherwise. In epoche, try j, let (s1, . . . , sn)
be the shares just sent byP1, . . . , Pn. If any share is invalid, then letVe,j = ⊥ and
dj = defection. Otherwise, letVe,j be the value reconstructed from(s1, . . . , sn). If
Ve,j is a valid contract, then input it toCumed.

5. If in some roundVe,j = oj was reconstructed, then give the local outputwj = (tj , oj).
Otherwise, give the local outputwj = (tj ,sorry).

Fig. 4.The Unmediated Protocolπumed
Mec

Theorem 1. Let Mec be any predictable mechanism. Assume that(πmedMec, C
med
Mec) is a

privacy-enhanced Nash equilibrium, letγ be theex interimrationality and letα be the
weight of the information utility. Ifγ ≥ 2α, then(πumedMec , Cumed) is a privacy-enhanced
Nash equilibrium with a utility profile negligibly close to that of(πmedMec, C

med
Mec).

Proof. (Sketch.) We want to argue that noPi has an incentive to deviate. We look
at two cases: Case I is the situation wherePi saw a reconstructed value of the form
Ve,i 6= sorry. Case II is the situation where a partyPi only saw reconstructed values
of the formVe,i = sorry.

We first argue that a partyPi in Case I has no incentive to deviate. We look at
two sub-cases. First, assume thatPi receivedVe,i = Contract((i, oi), sk). Then it



Privacy-Enhancing Auctions Using Rational Cryptography 15

can no longer gain monetary utility: it has its contract and cannot receive another one,
except by breaking the signature scheme (infeasible by assumption). It cannot gain
information utility either, as all information has alreadybeen handed out: WhenPi

has receivedVe,i = Contract((i, oi), sk) the game is already in epoche0 + 1, and all
winnersPj receivedoj in epoche0 andContract((j, oj), sk) leaks no information on
the types extra tooj .4 Second, assume thatPi receivedVe,i = oi but didnot yet receive
Contract((i, oi), sk). If Pi sends an incorrect share to anyPj , thenPj will punish
back andPi will not receiveContract((i, oi), sk). It can essentially be argued that for
any deviation there is a better deviation which never inputsa bid which will lead to a
monetary utility less thanγ/2 if the bid wins.5 So, we can assume that the loss of the
contract gives a loss ofγ/2 ≥ α in monetary utility. Aborting the protocol might gain
information utility by withholding some(j, oj), but at most utilityα. So by sending an
incorrect share,Pi gains utility at mostα− γ/2 ≤ 0.

We then look at a partyPi in case II and, say, in epoche, try j. Let S be the event
that all values reconstructed byPi until now weresorry, R the event that all values
oj with oj 6= sorry have been reconstructed at the corresponding winnersPj , W the
event thatPi is a winner,s = Pr[S], andw = Pr[W ].

We consider a partyPi which only sawsorry, which means that in the view of
Pi, it is a winner with probabilityPr[W |S] = Pr[W ∧ S]/s, and in the view ofPi

the probability that alloj with oj 6= sorry have not been reconstructed isPr[R̄|S] =
Pr[R̄ ∧ S]/s. If Pi makes the protocol abort andPi is a winner he losesγ′ in utility,
whereγ′ is the expected utility ofPi given that he is a winner. IfPi makes the protocol
abort andR̄, then he withholds the informationoj from at least one winnerPj and
therefore gains up toα in privacy utility—if R, then no information is withheld and
no privacy utility is gained. Therefore the maximal gain in utility is upper bounded by
−(Pr[W ∧ S]/s)γ′ + (Pr[R̄ ∧ S]/s)α. To show that this is non-positive it is sufficient
to show thatPr[R̄∧S]α−Pr[W ∧S]γ′ ≤ 0. We have thatPr[W ∧S] = Pr[W ∧(e0 >
e ∨ (e = e0 ∧ i > j))] ≥ Pr[W ∧ e0 > e] = w2−e andPr[R̄ ∧ S] ≤ Pr[R̄] ≤
Pr[e0 ≥ e] = 2−e+1. Sinceγ′ is the expected monetary utility whenPi is a winner, it
follows thatγ = wγ′ + (1 − w)0 andγ′ = γ/w. So,Pr[R̄ ∧ S]α − Pr[W ∧ S]γ′ ≤
2−e+1α− (w2−e)γ/w = 2−e(2α− γ) ≤ 0, asγ ≥ 2α.

6 Nash Implementation and Hybrid Proofs

The full proof of Theorem 1 is extensive, as handling the use of cryptography posses
some challenges when fleshing out the above proof sketch. We do, however, have space
to describe the general proof strategy.

The idea is to start with an idealized version of the protocol, for a device much like
the mediated setting with reject, and then introduce more and more of the details and
cryptographic tools, and for each step prove that the new protocol is equivalent to the

4 For this argument to work it is essential that alloi are handled outbeforethe contractsσi: if
Pi receivedσi before a winnerPj with j > i received the informationoj , Pi could find utility
in aborting the protocol, thus withholding the informationoj from Pj .

5 The full argument is slightly different: The argument uses the predictability to avoid playing
such bad bids, replacing them by the recommended bid—which gains utility.
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previous one. The value of such an approach when using cryptographic primitives is
testified by the widespread use of hybrid proofs in the cryptographic literature.

We introduce a notion ofNash realizationwhich allows to structure such proofs.
Consider an idealized communication deviceCide (as e.g.CrejMec) and a recommended
protocolπide for Cide, as well as a closer to real-life communication deviceCimp (like
Cumed) and a protocolπimp for Cimp. We call(Cimp, πimp) a realization of(Cide, πide)
if the parties do not have more incentives to deviate when they interact in(Cimp, πimp)
than when they interact in(Cide, πide).

Definition 4. Fix a distributionT on types and a monetary utilityr = (r1, . . . , rn).
Let (Cimp, πimp) and (Cide, πide) be two settings. We say that(Cimp, πimp) is a t-
resilient privacy-enhanced Nash realizationof (Cide, πide) if for all u = r + q, where
q = (q1, . . . , qn) are admissible measures of privacy with weight at mostα, there exists
a negligibleǫ such that:

No less utility: For all Pl, ul(T, πimp, Cimp) ≥ ul(T, πide, Cide)− ǫ.

No more incentive to deviate: For all C ⊂ {1, . . . , n}, |C| ≤ t, all strategiesπimpC

∗

for Cimp, there exists a strategyπideC

∗

for Cide so thatul(T, (πideC

∗

, πide
−C ), Cide) ≥

ul(T, (πimpC

∗

, πimp
−C ), Cimp)− ǫ for all l ∈ C.

Theorem 2. For fixedT andr, it holds for all settings(C, π), (D, γ) and(E , δ) that:

Preservation: If (C, π) is a t-resilient privacy-enhanced Nash realization of(D, γ)
andγ is a t-resilient privacy-enhanced Nash equilibrium forD, thenπ is a t-resilient
privacy-enhanced Nash equilibrium forC with a utility profile negligibly close to that
of (C, γ), i.e., |ul(T, π, C) − ul(T, γ,D)| is negligible for allPl and for all considered
u = r + q.

Transitivity: If (C, π) and (D, γ) are t-resilient privacy-enhanced Nash realizations
of (D, γ) and (E , δ) respectively, then(C, π) is a t-resilient privacy-enhanced Nash
realization of(E , δ).

Though this theorem is fairly easy to verify, we find the notion of Nash realization
an interesting conceptual contribution, as it allows to structure hybrid proofs in a game
theoretic setting. The notion can also be used for other purposes. We can, e.g., show
that our protocol in Fig. 4 is an(n − 1)-resilient privacy-enhanced Nash realization of
an information theoretic secure version of the protocol, where theVe,i values are com-
puted by the device and leaked in the same epoch/try structure as in Fig. 4, depending
on whether or not parties inputsend orhold in each try. Here the notion is used to an-
alyze a property we could not have seen by only looking at equilibria in the unmediated
protocol: The result shows that our use of cryptography doesnot give any further incen-
tives for deviations, toanysize of collusion, over what is present in this highly idealized
setting, which gives an extra reassurance that the cryptography was used soundly.

We complete the proof by showing that the information theoretic idealization is a
privacy-enhanced Nash equilibrium. Bypreservationthis result carries over to the un-
mediated setting. In fact, designing anyt-resistant privacy-enhanced Nash equilibrium
for the information theoretic setting would directly give one for the Internet too.
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