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Abstract. This work deals with “MPC-friendly” linear secret sharing
schemes (LSSS), a mathematical primitive upon which secure multi-party
computation (MPC) can be based and which was introduced by Cramer,
Damgaard and Maurer (EUROCRYPT 2000). Chen and Cramer pro-
posed a special class of such schemes that is constructed from algebraic
geometry and that enables efficient secure multi-party computation over
fixed finite fields (CRYPTO 2006). We extend this in four ways. First,
we propose an abstract coding-theoretic framework in which this class of
schemes and its (asymptotic) properties can be cast and analyzed. Sec-
ond, we show that for every finite field Fq, there exists an infinite family
of LSSS over Fq that is asymptotically good in the following sense: the
schemes are “ideal,” i.e., each share consists of a single Fq-element, and
the schemes have t-strong multiplication on n players, where the corrup-
tion tolerance 3t

n−1
tends to a constant ν(q) with 0 < ν(q) < 1 when n

tends to infinity. Moreover, when |Fq| tends to infinity, ν(q) tends to 1,
which is optimal. This leads to explicit lower bounds on τ̂(q), our measure
of asymptotic optimal corruption tolerance. We achieve this by combining
the results of Chen and Cramer with a dedicated field-descent method.
In particular, in the F2-case there exists a family of binary t-strongly
multiplicative ideal LSSS with 3t

n−1
≈ 2.86% when n tends to infinity, a

one-bit secret and just a one-bit share for every player. Previously, such
results were shown for Fq with q ≥ 49 a square. Third, we present an
infinite family of ideal schemes with t-strong multiplication that does
not rely on algebraic geometry and that works over every finite field Fq.
Its corruption tolerance vanishes, yet still 3t

n−1
= Ω(1/(log log n) logn).

Fourth and finally, we give an improved non-asymptotic upper bound on
corruption tolerance.



1 Introduction

This work deals with “MPC-friendly” linear secret sharing schemes (LSSS), an
abstract mathematical primitive upon which secure multi-party computation
(MPC) can be based and which was introduced by Cramer, Damgaard and
Maurer [13]. Chen and Cramer [8] proposed a special class of such schemes that
is constructed from algebraic geometry and that enables efficient secure multi-
party computation over fixed finite fields. For every finite field Fq where q is
a square with q ≥ 49, they presented an infinite family of LSSS over Fq that
is asymptotically good in the following sense. First, the schemes are “ideal”:
each share consists of a single Fq-element. Second, the schemes have t-strong
multiplication [13, 12, 9, 8] on n players, where the corruption tolerance 3t

n−1 tends
by a constant ν(q) with 0 < ν(q) < 1 when n tends to infinity. Moreover, when
|Fq| tends to infinity, ν(q) tends to 1, which is optimal (since it is well-known that
3t+ 1 ≤ n always). In short, strong multiplication is a property that enables to
“perfectly securely” verify multiplicative relations among secret-shared values,
with error probability equal to zero. This is a crucial subroutine at the heart of
MPC. Please refer to [13] for the details.

These schemes of [8] enjoy algebraic properties similar to those of Shamir’s
scheme (linearity, (strong)-multiplication), and MPC protocols in the strongest
information-theoretic model [2, 3] (i.e., perfect security against a computation-
ally unbounded threshold adversary that corrupts some fraction of the players)
are quite similar (see [13, 8]). The significance of these schemes, however, derives
from the fact that the number of players is not bounded by the size of the finite
field as is the case for Shamir’s scheme [26]. In fact, in these schemes the num-
ber of players is unbounded even if the finite field is fixed. In the corresponding
MPC-protocols, the total number of field elements communicated will typically
be the same, with the notable difference, however, that the field elements are now
taken in a field of constant rather than linearly increasing size. This makes sense,
for instance, if the function that is securely computed is defined over a small,
constant size field, say F2. The price to be paid is only a constant fractional de-
crease compared to the corruption tolerance of (non-asymptotic) Shamir-based
MPC-protocols, in which up to 1/3 of the players may be corrupted. The con-
struction of these “MPC-friendly” schemes from [8] is based on the existence of
families of algebraic curves of finite fields with a good ratio between the num-
ber of rational points and their genus and the use of their algebraic function
fields. See [13, 8, 6] for a full discussion. Chen, Cramer, Goldwasser, de Haan
and Vaikuntanatan [7] have shown similar results for schemes with multiplica-
tion rather than strong multiplication by a construction from arbitrary classical
codes rather than algebraic geometric ones.

The results from [8, 7] have found remarkable applications in the break-
through work of Ishai, Kushilevitz, Ostrovsky and Sahai [20] on two-party zero-
knowledge for circuit-satisfiability with low communication, in that of Ishai,
Prabhakaran and Sahai [19] on oblivious transfer, as well as in the work of
Damgaard, Nielsen and Wichs [14] on isolated zero-knowledge. In all these cases
this helped improving the communication efficiency. It is important to note that



all these applications use secret sharing and MPC as abstract primitives, where
players are not actual, real-world players but are part of virtual processes. More-
over, the number of these virtual players is typically large in order to make
certain error-probabilities small enough or in order to approximate a certain
asymptotical advantage. This has amplified the relevance of secure computation
and secret sharing even further, and in particular it adds further relevance to
asymptotical study of these primitives.

In this paper we extend these results in four ways. First, we propose an ab-
stract coding-theoretic framework in which this class of schemes and its (asymp-
totic) properties can be cast and analyzed. Concretely, we introduce a special
class of codes C†(Fq) and a measure t̂(C) on a code C ∈ C†(Fq), the corruption
tolerance of C, so that when C is viewed to represent an “ideal” LSSS, t̂(C)
measures the maximum t for which it has t-strong multiplication. We also define
the asymptotic optimal corruption tolerance τ̂(q) of such a class over Fq, the
main parameter for our asymptotic analysis.

Second, we show that for every finite field Fq, there exists an infinite family
of LSSS over Fq that is asymptotically good in the following sense: the schemes
are “ideal,” i.e., each share consists of a single Fq-element, and the schemes have
t-strong multiplication on n players, where the corruption tolerance 3t

n−1 tends to
a constant ν(q) with 0 < ν(q) < 1 when n tends to infinity. Moreover, when |Fq|
tends to infinity, ν(q) tends to 1, which is optimal. This leads to explicit lower
bounds on τ̂(q). Our method combines the algebraic geometric schemes of Chen
and Cramer with our dedicated but elementary field-descent method based on
“multiplication-friendly functions,” which maps C ∈ C†(Fqm) to C ′ ∈ C†(Fq) in
such a way that corruption tolerance does not degrade too much. In particular,
in the F2-case there exists a family of binary t-strongly multiplicative ideal LSSS
with 3t

n−1 ≈ 2.86% when n tends to infinity, a one-bit secret and just a one-bit
share for every player. Previously, such results were only shown to hold over Fq
with q ≥ 49 a square.

Third, we present an infinite family of ideal schemes with t-strong multipli-
cation that does not rely on algebraic geometry and that works over every finite
field Fq. Its corruption tolerance vanishes, yet still 3t

n−1 = Ω(1/(log log n) log n).
Fourth and finally, we give an improved non-asymptotic upper bound on cor-
ruption tolerance.

The outline of this paper is as follows. After the preliminaries in Section 2, we
revisit in Section 3 the results in [7] about the construction of LSSS from linear
codes, where we focus mainly on privacy and reconstruction. In some cases we
define new notions and prove stronger results needed in the sequel. In Section 4
we define C†(Fq), t̂(C) and τ̂(q), and prove some properties. In Section 5 we show
that for every finite fields Fq, the asymptotic optimal corruption tolerance can be
bounded away from zero, i.e., τ̂(q) > 0 for all finite field Fq, and we give explicit
lower bounds. In Section 6 we state the consequences for LSSS with strong
multiplication explicitly and in Section 7 we present the elementary example
with (“not-so-fast”) vanishing asymptotic corruption tolerance. In Section 8, we



give our non-asymptotic upper bound on corruption tolerance. In Section 9 we
conclude by stating some open problems.

Finally, we note that, in upcoming work [5], we further improve our asymp-
totic lower bounds on optimal corruption tolerance using more advanced meth-
ods from algebraic geometry, especially for small values of q.

2 Preliminaries

2.1 Basic Coding Theory

We review some notions from basic coding theory (see e.g. [22] or [17]) that
are relevant to this work and we also introduce some conventions specific to this
paper. Let n be a non-negative integer and let k be an integer with 0 ≤ k ≤ n+1.
An [n + 1, k]q-code C over the finite field Fq is a k-dimensional subspace C of
the n+ 1-dimensional Fq-vector space Fn+1

q . The length n+ 1 of such a code C
is denoted `(C). We define n(C) = `(C) − 1. If c ∈ C, (c0, c1, . . . , cn) ∈ Fn+1

q

denotes its coordinate vector. In particular, we use the set I(C) = {0, 1, . . . , n}
to index the coordinates, unless otherwise stated. A linear code over Fq is an
[n + 1, k]q-code for some k, n. If B ⊂ I(C) is a non-empty set and if x =
(x0, x1, . . . , xn) ∈ Fn+1

q , xB denotes the vector (xi)i∈B ∈ F|B|q , i.e., the vector
obtained by restricting x to those coordinates i with i ∈ B. The support supp(x)
of x ∈ Fn+1

q is the set of indices i ∈ I(C) with xi 6= 0. An element c ∈ C is
minimal if there is no c′ ∈ C \ {0} with supp(c′) a proper subset of supp(c).

A generator matrixG for an [n+1, k]-code C is a matrix with entries in Fq and
that has k columns and n+ 1 rows such that the columns of G jointly constitute
an Fq-basis of C. The Hamming-weight wH(x) of x = (x0, x1, . . . , xn) ∈ Fn+1

q

is the number of indices with xi 6= 0. Let d be a positive integer with 0 ≤ d ≤
n + 1. An [n + 1, k, d]q-code C is an [n + 1, k]q-code whose minimum distance
dmin(C) in the Hamming-metric is at least d.5 If C is an [n + 1, k]q-code, then
dmin(C) ≤ (n+ 1)− k + 1 = n− k + 2 by the Singleton-bound.

The dual C⊥ of C is the “orthogonal complement” of C in Fn+1
q according

to the standard scalar product 〈x,y〉 = x0y0 + x1y1 + · · · + xnyn, where x =
(x0, x1, . . . , xn) ∈ Fn+1

q and y = (y0, y1, . . . , yn) ∈ Fn+1
q . Thus, C⊥ consists of

all c∗ ∈ Fn+1
q such that 〈c, c∗〉 = 0 for all c ∈ C. If C is an [n+ 1, k]q-code, then

C⊥ is an [n+ 1, n+ 1− k]q-code. Note that dmin(C) + dmin(C⊥) ≤ n+ 3.

2.2 Secret Sharing

In this section we give precise definitions of (linear) secret sharing (with strong
multiplication). A secret sharing scheme (SSS) Σ = (S0, S1, . . . , Sn) is a vector
of n + 1 random variables, where n is a positive integer and where the random
variables are all defined on the same finite probability distribution. It is required

5 The minimum distance of the [n + 1, 0]q-code C = {0} is, by definition, equal to
n+ 1.



that H(S0|S1 . . . Sn) = 0 and that H(S0) > 0. Here H(·) denotes the Shannon-
entropy function and H(·|·) denotes conditional entropy. A value taken by S0 is
a “secret”, and a value taken by Si, is a “share” or “the i-th share”, i = 1 . . . n.
Write P = P(Σ) = {1, . . . , n} and n(Σ) = n. An element i ∈ P may sometimes
be called “player.” If A ⊂ P is non-empty, SA denotes the vector of random
variables (Si)i∈A. Note that this bare definition only says that there is some
non-constant “secret” that is uniquely determined by the n shares.

The adversary structure A(Σ) consists of the empty set as well as any non-
empty sets A ⊂ P such that H(S0|SA) = H(S0) (“no information about the se-
cret”). The access structure Γ (Σ) consists of all B ⊂ P such that H(S0|SB) = 0
(“full information about the secret”). By definition, P ∈ Γ (Σ). From a ba-
sic information theoretic inequality, H(S0) ≥ H(S0|SB) for all non-empty sets
B ⊂ P. Therefore, Γ (Σ)∩A(Σ) = ∅. Let t, r be positive integers. We say that Σ
achieves t-privacy if A(Σ) includes all sets A ⊂ P with |A| = t and we say that
Σ achieves r-reconstruction if Γ (Σ) includes all sets B ⊂ P with |B| = r. Fur-
thermore, r(Σ) denotes the minimum integer r for which Σ has r-reconstruction
and t(Σ) is the largest integer t such that A(Σ) includes all sets A ⊂ P with
|A| = t. A threshold SSS is one that achieves t-privacy and t+ 1-reconstruction
for some positive integer t. An (n, t + 1, t)-threshold SSS is one that achieves
t-privacy and t + 1-reconstruction for some integer t, with n being the number
of players.

An SSS is perfect if Γ (Σ)∪A(Σ) = 2P . An element i ∈ P is “not a dummy”
if there exists a set B ∈ Γ (Σ) with i ∈ B that is minimal with respect to the
partial ordering Γ (Σ) defined by the inclusion-relation. In a perfect SSS it holds
that H(Si) ≥ H(S0) for each i ∈ P which is not a dummy (“length of a share
is at least length of the secret”). A perfect SSS is ideal if for each such i ∈ P
equality holds. If Γ (Σ) does not contain any dummies, it is called connected.

A linear secret sharing scheme (LSSS) is a tuple Σ = (Fq, n, e,v0, V1, . . . , Vn)
where Fq is a finite field, e, n are positive integers, v0 ∈ Feq \ {0}, and V1, . . . , Vn
are subspaces of the Fq-vector space Feq such that v0 ∈

∑
i∈P Vi, the subspace

of Feq spanned by the Vi’s. An LSSS is an SSS in the sense of the definition
above if the following conventions are made. Write di for the Fq-dimension of Vi,
i = 1 . . . n. First, for each Vi an Fq-basis Bi = {bi1, . . . ,bidi} is fixed. Second,
the random variables S0, S1, . . . , Sn are defined as follows. The secret s ∈ Fq
is chosen uniformly at random (thereby defining S0) and φ ∈ HomFq

(Feq,Fq),
the Fq-linear map from Feq to Fq, is chosen uniformly random conditioned on
φ(v0) = s. If di > 0, the i-th share is (φ(bi1), . . . , φ(bidi)) ∈ Fdi

q , thereby defining
Si, i = 1 . . . n. For a non-empty set A ⊂ P, we define VA =

∑
i∈A Vi and we

call its Fq-dimension dA. It can be shown that a non-empty set B ⊂ P satisfies
B ∈ Γ (Σ) if and only if v0 ∈ VB . Equivalently, it can be shown A ∈ A(Σ) if and
only if there exists φ ∈ HomFq

(Feq,Fq) such that φ(v0) = 1 and φ vanishes on
VA, i.e., φ(v) = 0 for all v ∈ VA. In particular, this means that LSSS are perfect.
We define dimΣ =

∑n
i=1 di, the dimension of the LSSS. Shamir’s scheme is a

threshold LSSS.



Given an LSSS Σ we define the dual access structure to Γ (Σ) as Γ (Σ)∗ =
{A ⊂ P, s.t. P \ A /∈ Γ (Σ)}. For every LSSS Σ over Fq there exists an LSSS
Σ∗ over Fq such that dimΣ = dimΣ∗ and Γ (Σ∗) = Γ (Σ)∗ (see [21, 13]). Note
that r(Σ∗) = n− t(Σ), t(Σ∗) = n− r(Σ).

Let v = (v1, . . . , ve) ∈ Feq and w = (w1, . . . , we) ∈ Feq. Then v ⊗ w =
(v1 · w, . . . , ve · w) ∈ Fe2q denotes the Kronecker-product (or tensor-product) of
v and w. For x = (x1, . . . , xn) ∈ Fnq ,y = (y1, . . . , yn) ∈ Fnq , their Schur-product
x ∗ y ∈ Fnq is defined as (x1y1, . . . , xnyn).

If V and W are subspaces of the Fq-vector space Feq, then V ⊗W denotes
the subspace of the Fq-vector space Fe2q generated by the elements v ⊗w with
v ∈ V and w ∈ W . If A ⊂ {1, . . . , n} is non-empty, V̂A denotes

∑
i∈A Vi ⊗ Vi,

the subspace of the Fq-vector space Fe2q spanned by the subspaces Vi⊗Vi. Σ has
t-strong multiplication ([13, 12, 8]) if the following holds: 0 ≤ t ≤ n, Σ achieves
t-privacy, v0⊗v0 ∈ V̂P , and for each set B ⊂ P with |B| = n− t, v0⊗v0 ∈ V̂B .
Σ has multiplication if it achieves t-privacy for some t ≥ 1 and if v0 ⊗ v0 ∈ V̂P .

2.3 Algebraic Function Fields and Codes

In this paper we make at some point use of some basic as well as some more
advanced results for algebraic function fields. We use the terminology of [27].
For a quick introduction to some of the notions that are needed (function fields,
poles, zeroes, divisors, degrees, etc.), please refer to [8]. Let Fq be a finite field.
When we say that F is an algebraic function field over Fq we mean that F is an
algebraic function field over Fq in one variable and that Fq is the full constant
field of F. Pq(F) denotes the set of places of degree 1 and g(F) denotes the genus
of F. If G is a divisor on F, then deg(G) denotes its degree and L(G) ⊂ F denotes
the Riemann-Roch space of functions f ∈ F such that div(f) +G is an effective
divisor or f = 0. This is an Fq-vector space.

By the Riemann-Roch Theorem, dimFqL(G) = deg(G)+1−g(F)+dimFqL(W−
G), where deg(G) denotes the degree of the divisor G and where W is any canoni-
cal divisor. This implies Riemann’s Theorem that dimFq

L(G) = deg(G)+1−g(F)
if deg(G) > 2g(F) − 2. Suppose Pq(F) ≥ n + 1 for some positive integer n.
Let P0, P1, . . . , Pn be distinct elements of Pq(F) and define the divisor D =
P0 + P1 + . . .+ Pn. Suppose G is a divisor on F such that deg(G) > 2 · g(F)− 2
and such that the supp(G), the support of G is disjoint of that of D. Then
the [n + 1, k, d]q-code C(G,D) (algebraic-geometric Goppa-code or AG-code)
is defined [16] as C(G,D) = {(f(P0), f(P1), . . . , f(Pn)) | f ∈ L(G)}. By Rie-
mann’s Theorem, k = deg(G) + 1 − g(F), since for any divisor G′ it holds that
L(G′) = {0} if deg(G′) < 0, it follows that d ≥ n+ 1− deg(G). The distance of
its dual code can be estimated using the Residue Theorem.

Define Nq(g) as the maximum of |Pq(F)| where F ranges over all the function
fields whose full field of constants is Fq and whose genus is g. The Drinfeld-
Vladuts upper bound (see e.g. [27] or [29]) states that for all finite fields Fq,
Ihara’s constant A(q) ≡ lim supg→∞

Nq(g)
g(F) , satisfies A(q) ≤ √q − 1. Note that

the Hasse-Weil bound (see e.g. [27]) states that ||Pq(F)| − (q + 1)| ≤ 2 · g(F)
√
q.



3 Connecting Secret Sharing and Codes

We describe one connection between secret sharing and codes that is particularly
relevant to this work. Let C be a linear code over Fq with n(C) ≥ 1. Let i ∈ I(C).
Under further conditions on C to be formulated precisely later on, consider
the following perfect secret sharing scheme, denoted Σ(C, i), on the player set
P = I(C) \ {i}. Let s ∈ Fq be the secret, and choose c = (c0, c1, . . . , cn) ∈ C
uniformly at random such that ci = s. For all j ∈ I(C) \ {i} the share for the
j-th player is cj . In [7] this approach to secret sharing [23, 24] is exploited to
achieve LSSS with multiplication (no strong multiplication), t-privacy and r-
reconstruction and with very good asymptotic properties over fixed finite fields.
While in [7] privacy and reconstruction parameters of these LSSS are bounded
exclusively in terms of the minimum distance of the codes involved, in the present
paper we need a more accurate understanding of these parameters. This is what
we will develop first.

Definition 1 Let n be an integer with n ≥ 1 and let Fq be a finite field. For
a non-empty set B ⊂ {0, 1, . . . , n}, the Fq-linear projection map πB is defined
as πq,n+1

B : C −→ F|B|q , (c0, c1, . . . , cn) 7→ (ci)i∈B . When q and n are clear from
the context, we write πB instead. Also, if B = {i} for some index i, we write πi
instead of π{i}.

Lemma 1 Let C be a linear code over Fq with n(C) ≥ 1. Let i ∈ I(C) and let
B ⊂ I(C)\{i} be a non-empty set. Then there exists a function ρB,i : πB(C) −→
Fq such that ρB,i(πB(c)) = πi(c) for all c ∈ C if and only if πB(c) 6= 0 for all
c ∈ C with πi(c) 6= 0. If such function ρB,i exists, it is an Fq-linear map.

Proof. In the forward direction, suppose ρB,i exists. Then it is an Fq-linear
map, since ρB,i(λc+µc′) = λ ·ρB,i(c)+µ ·ρB,i(c′) for all λ, µ ∈ Fq, c, c′ ∈ C, by
linearity of C. Suppose there is c ∈ C with πi(c) 6= 0 and πB(c) = 0. Then, by
Fq-linearity of the map, ρB,i(πB(c)) = ρB,i(0) = 0 6= πi(c), a contradiction. In
the other direction, suppose ρB,i does not exist. Then there exist c, c′ ∈ C such
that πi(c) 6= πi(c′) yet πB(c) = πB(c′). Then πi(c− c′) 6= 0 and πB(c− c′) = 0
by linearity of C. 4

Note that by linearity of C, the lemma above also holds when πi(c) 6= 0 is
replaced by πi(c) = 1.

Definition 2 Notation being as in Lemma 1, we say that (i, B) is a reconstruction-
pair if ρB,i exists.

Corollary 1 Let C be a linear code over Fq with n(C) ≥ 1 and let i ∈ I(C).
Let ui ∈ Fn(C)+1

q denote the i-th unit vector, i.e., (ui)j = 1 if i = j and (ui)j = 0
if i 6= j. Then:

– (i, I(C) \ {i}) is a reconstruction-pair if and only if ui 6∈ C.
– πi(C) 6= {0} if and only if ui 6∈ C⊥.



– For all j ∈ I(C), (j, I(C) \ {j}) is a reconstruction-pair and πj(C) 6= {0} if
and only if dmin(C) > 1 and dmin(C⊥) > 1.

Definition 3 Let C be a code over Fq with n(C) ≥ 1. Let i ∈ I(C) and suppose
ui 6∈ C. If ui ∈ C⊥, then define ri(C) = 0. Else, define ri(C) as the smallest
positive integer ρi such that for all B ⊂ I(C) \ {i} with |B| = ρi it holds that
(i, B) is a reconstruction-pair.

Note that by Corollary 1, the value ri(C) is well-defined, and satisfies 0 ≤
ri(C) ≤ n(C).

Definition 4 Let C be a code over Fq with n(C) ≥ 1. Let i ∈ I(C) and suppose
ui 6∈ C⊥. Define ti(C) as the largest positive integer τi such that for each set
A ⊂ I(C) \ {i} with |A| = τi it holds that (i, A) is not a reconstruction-pair.
Equivalently, this is satisfied if and only if there exists c ∈ C with πi(c) = 1 and
πA(c) = 0. If no such integer exists, ti(C) = 0 by definition.

Note that by Corollary 1, the value ti(C) is well-defined, and satisfies 0 ≤
ti(C) < n(C).

Lemma 2 Let C be a linear code over Fq such that {0}  C,C⊥  Fn(C)+1
q .

Then dmin(C⊥) = m + 1, where m is the largest positive integer such that for
all non-empty sets B ⊂ {0, 1, . . . , n} with |B| = m, it holds that πB(C) = F|B|q .

Proof. The conditions imply that n(C) ≥ 1. Write d⊥ = dmin(C⊥). For
a non-empty set B ⊂ I(C), write WB = πB(C) ⊂ F|B|q . Clearly, WB 6= F|B|q if
and only if W⊥B 6= {0}. This latter condition equivalent to the existence of some
c∗ ∈ C⊥ \ {0} with supp(c∗) ⊂ B, for which we have that wH(c∗) ≤ |B|. Thus,
for all B ⊂ I(C) with |B| ≤ d⊥−1, it must hold that WB = Fn+1

q . On the other
hand, since C⊥ 6= {0}, an element c∗ ∈ C⊥ \ {0} can be selected with minimal
weight d⊥. Define B = supp(c∗). Then |B| = d⊥, and by the characterization
above, WB 6= Fn+1

q . 4

Lemma 3 Let C be a code over Fq with n(C) ≥ 1 and let i ∈ I(C). Then:

1. If ui 6∈ C, then ri(C) ≤ n(C)− dmin(C) + 2.
2. If dmin(C) > 1, then maxj∈I(C) rj(C) = n(C)− dmin(C) + 2.
3. If ui 6∈ C⊥, then dmin(C⊥)− 2 ≤ ti(C).
4. If dmin(C⊥) > 1 then dmin(C⊥)− 2 = mini∈I(C) ti(C).

Proof. As to Claim 1,if dmin(C) ≤ 2, there is nothing to prove. Else, if we
“prune” the code C at dmin(C) − 2 coordinates (not including i), then we get
a code C ′ with dmin(C ′) > 1. The claim now follows from Corollary 1. As to
Claim 2, dmin(C) > 1, then ri is well-defined for all i ∈ I(C). Select an element
c in C of minimal weight dmin(C). Take any i ∈ supp(c) and define B = I(C) \
supp(c). Clearly |B| = n(C) − dmin(C) + 1 and (i, B) is not a reconstruction-
pair because πi(c) 6= 0 and πB(c) = 0. Therefore ri(C) ≥ n(C)− dmin(C) + 2,



which was what remained to be proved. As to Claim 3, this follows directly from
Lemma 2. As to Claim 4, if dmin(C⊥) > 1, then ti is well-defined for all i ∈ I(C).
So if B ⊂ I(C) is any set with |B| = 1 + mini∈I(C) ti(C), then for each j ∈ B
there exists c ∈ C such that πj(c) = 1 and πB′(c) = 0, where B′ = B\{j}. Thus,
πB(C) = F|B|q , and by Lemma 2, |B| = 1 + mini∈I(C) ti(C) ≤ dmin(C⊥) − 1.
Hence, dmin(C⊥)−2 ≥ mini∈I(C) ti(C), which was what remained to be proved.

4

Definition 5 Let C be a linear code over Fq with n(C) ≥ 1. We define I(C) as
the set consisting of all indices i ∈ I(C) such that ui 6∈ C and ui 6∈ C⊥. C(Fq)
is the collection of all linear codes C over Fq such that I(C) 6= ∅.

Note that I(C) 6= ∅ implies n(C) ≥ 1 and that I(C) = I(C) if and only
if dmin(C) > 1 and dmin(C⊥) > 1. For completeness we state the following
straightforward characterization of C(Fq). If C is a linear code over Fq with
n(C) ≥ 1 and if I(C) = ∅, then it holds for all i ∈ I(C) that the i-th coordinate
of elements of C is always equal to zero or that the i-th unit vector ui ∈ C.
After permutating indices, if necessary, the set C is then equal to a Cartesian
product Fq × · · · × Fq ×{0}× · · · × {0}. On the other hand, if C decomposes as
above, then clearly I(C) = ∅.

Theorem 1 Let C ∈ C(Fq) and let i ∈ I(C). Suppose c ∈ C is chosen uniformly
at random. Then the following holds.

1. πi(C) ∈ Fq has the uniform distribution.
2. (“r-reconstruction”) If B ⊂ I(C) \ {i} with |B| ≥ ri(C), then πB(c) deter-

mines πi(c) uniquely with probability 1. Thus, Σ(C, i) has ri(C)-reconstruction.
3. If dmin(C) > t + 1 for some positive integer t, then Σ(C, i) has (n − t)-

reconstruction.
4. (“t-privacy”) Suppose ti(C) ≥ 1. If A ⊂ I(C) \ {i} is non-empty and |A| ≤

ti(C), then πi(c) has the uniform distribution on Fq and πA(c) is distributed
independently from πi(c). Thus, Σ(C, i) has ti(C)-privacy.

5. If dmin(C⊥) > t+ 1 for some positive integer t, then Σ(C, i) has t-privacy.
6. Suppose dmin(C⊥) > 1. The largest positive integer m such that for all A ⊂
I(C) with |A| = m it holds that πA(c) ∈ F|A|q has the uniform distribution,
satisfies m = dmin(C⊥)− 1.

Proof. As to Claim 1, i ∈ I(C) implies in particular that for each x ∈ Fq
there exists c ∈ C such that πi(c) = x. Moreover, their number is equal to the
cardinality of the kernel of the map πi. Hence this number does not depend
on x and the claim follows. Claim 2 follows from the definition of ri(C). As to
Claim 3, this follows from Lemma 3 plus pruning. As to Claim 4, if |A| ≤ ti(C),
then there exists c′′ ∈ C with πi(c′′) = 1 and πA(c′′) = 0. This implies that for
each (x,y) with x ∈ Fq and y ∈ πB(C), there exists c′′ ∈ C with πi(c′′) = x
and πA(c′′) = y. More precisely, their number is equal to the cardinality of the
kernel of the map πA∪{i}, and the claim follows. As to Claim 5, this follows from



Lemma 3. As to Claim 6, by Lemma 2 it holds that for each y ∈ F|A|q , there
exists c ∈ C with πA(c) = y. Their number is equal to the cardinality of the
kernel of the map πA, and, as maximality also follows from Lemma 2, the claim
follows. 4

Remark 1 Let C ∈ C(Fq) and let i ∈ I(C). Then Σ(C, i) can be viewed as an
LSSS.

Proof. Assume for simplicity in notation that i = 0. Choose a generator
matrix G for the code C, i.e., a matrix with k columns and n+ 1 rows such that
the columns jointly constitute an Fq- basis of C. Write v0 for the top row, write
vi for the i-th row below, and write Vi for the Fq-vector space spanned by it,
which is one-dimensional as vi 6= 0 (i = 1 . . . n). Since dmin(C) > 1, it follows
by Lemma 1 that there exists a vector x = (x0, x1, . . . , xn)T ∈ Fn+1

q such that
GTx = 0 and x0 = 1, where GT denotes the transpose of G. Thus, v0 is in the
Fq-linear span of the vi, i = 1, . . . , n. The parameter e from the LSSS definition
is equal to k, the dimension of C. Thus, (Fq, n, e,v0, V1, . . . , Vn) thus defined is
an LSSS by definition. The secret sharing scheme it generates (see Section 2) is
identical to choosing b ∈ Fn+1

q at random and setting (s0, s1, . . . , sn)T = Gb.
Since G is a generator matrix of C, this secret sharing scheme is identical to
Σ(C, i). 4

4 Strongly Multiplicative LSSS from Codes

In this section we define a special class of codes that imply strongly multiplicative
LSSS.

Definition 6 For x = (x1, . . . , xn) ∈ Fnq ,y = (y1, . . . , yn) ∈ Fnq , their Schur-
product x ∗ y ∈ Fnq is defined as (x1y1, . . . , xnyn). Let C be a linear code over
Fq. The linear code Ĉ over Fq is the linear code Fq < {x ∗ y}x,y∈C >, i.e., the
Fq-linear span of the vectors of the form x ∗ y with x,y ∈ C.

Lemma 4 Let C be a linear code over Fq with n(C) ≥ 1 and let i ∈ I(C). Then:
1) n(Ĉ) = n(C). 2) ui 6∈ Ĉ implies ui 6∈ C. 3) ui 6∈ C⊥ if and only if ui 6∈ (Ĉ)⊥.
4) I(Ĉ) ⊂ I(C). 5) 1 ≤ dmin(Ĉ) ≤ dmin(C).

Generally, ui 6∈ C does not necessarily imply ui 6∈ Ĉ.

Definition 7 C†(Fq) denotes the set of all Fq-linear codes C with I(Ĉ) 6= ∅.

Note that C†(Fq) 6= ∅ for all finite fields Fq.

Definition 8 For C ∈ C†(Fq), t̂(C) = maxi∈I(Ĉ) min{ti(C), n(Ĉ) − ri(Ĉ)}.
The LSSS Σ(C) is by definition Σ(C, i) where i is the smallest index where this
maximum is attained. Write is for this index.



Note that ri(Ĉ) is well-defined in the definition of t̂(C) since Ĉ ∈ C(Fq) and
i ∈ I(Ĉ).

Generally, C ∈ C(Fq) does not even need to imply C ∈ C†(Fq). In fact, only
for special classes of codes one seems to be able to bound t̂(C) non-trivially,
sometimes in combination with this Corollary to Theorem 1.

Corollary 2 Let C ∈ C†(Fq). Suppose that dmin(C⊥) > t+1 and dmin(Ĉ) >
t+ 1 for some integer t ≥ 1. Then t̂(C) ≥ t.

Lemma 5 Let e be a positive integer. Then:

– 〈v ⊗w,a⊗ b〉 = 〈v,a〉 · 〈w,b〉, for all v,w,a,b ∈ Feq.
– Let x,y ∈ Fe2q . Then x = y if and only if 〈x,a ⊗ b〉 = 〈y,a ⊗ b〉 for all

a,b ∈ Feq.

Proof. The definitions of tensor product and scalar product imply the first
claim. The second follows by combination of the bilinearity of the scalar product
and the facts that the Fq-linear span of the vectors a⊗b with a,b ∈ Feq is equal
to Fe2q and that the scalar-product with a given vector is always zero if and only
if that vector equals the zero-vector. 4

Theorem 2 Let C ∈ C†(Fq). Suppose t̂(C) ≥ 1 and let t be an integer with
1 ≤ t ≤ t̂(C). Then: t ≤ 1

3 · (n(C) − 1), Σ(C) has (n(C) − 2t)-reconstruction,
and Σ(C) has t-strong multiplication.

Proof. We first argue t-strong multiplication. Assume w.l.o.g. that is = 0
(Definition 8). By Theorem 1,Σ(C) satisfies t-privacy. Write n = n(Ĉ) (= n(C)).
Since t̂(C) ≥ 1, r0(Ĉ) < n. Now choose a generator matrix G for C. Write v0 for
its top row, write vi for the i-th row below and write Vi for the one-dimensional
space Vi spanned by it, i = 1 . . . n. Let B ⊂ {1, . . . , n} be a nonempty set.
First, note that there exists a vector λ ∈ Fnq such that

∑
i∈B πi(λ)(vi ⊗ vi) =

v0 ⊗ v0 if and only if 〈
∑
i∈B πi(λ)(vi ⊗ vi),b ⊗ b′〉 = 〈v0 ⊗ v0,b ⊗ b′〉 for all

b,b′ ∈ Feq. Indeed, the forward direction follows by rewriting and the reverse
direction follows from Lemma 5 (2nd item). By re-writing and by using Lemma 5
(1st item), this is equivalent to

∑
i∈B πi(λ)〈vi,b〉〈vi,b′〉 = 〈v0,b〉〈v0,b′〉 for all

b,b′ ∈ Feq. This may be rewritten as 〈(Gb) ∗ (Gb′),y〉 = 0 for all b,b′ ∈ Feq,
where π0(y) = −1, πi(y) = πi(λ) if i ∈ B, and πi(y) = 0 for all other indices.
Equivalently,

∑
i∈B λiπi(c)πi(c′) = π0(c)π0(c′) for all c, c′ ∈ C, since G is a

generator matrix of C. By definition of t, there exists, for each choice of B with
|B| = n−t, a vector λ ∈ Fnq such that the latter condition is satisfied for the setB.
We conclude that t-strong multiplication holds, as desired. As to the remaining
claims, let B ⊂ {1, . . . , n} be such that |B| = n− 2t. Write A = {1, . . . , n} \B.
Choose a disjoint partition A0 ∪ A1 = A with |A0| = |A1| = t. By Lemma 2
there exists c′ ∈ C such that π0(c′) = 1 and πA0(c′) = 0. Let c ∈ C be arbitrary
and consider the vector c ∗ c′ ∈ Ĉ. Note that this vector has coordinates equal
to zero at those indices i with i ∈ A0. Since Ĉ has (n − t)-reconstruction,



there exists a vector x ∈ Fnq such that it has coordinates equal to zero at those
indices i with i ∈ A1 and π0(c ∗ c′) =

∑n
i=1 πi(x)πi(c ∗ c′). It now follows

that π0(c) =
∑
i∈B(πi(x) · πi(c′))πi(c), for all c ∈ C. Thus, there is (n − 2t)-

reconstruction. Since there is also t-privacy, it follows that t ≤ 1
3 (n(C) − 1).

Finally, the remark about fulfilment of the conditions follows from Theorem 1.
4

We introduce the notion of asymptotic optimal corruption tolerance for the
class of codes C†(Fq).

Definition 9 Let Fq be a finite field. For C ∈ C†(Fq), we define τ̂(C) = 3·t̂(C)
n(C)−1 .

We call value τ̂(C) the corruption tolerance of the code C.

Note that 0 ≤ τ̂(C) ≤ 1 always, where the upper bound follows from Theo-
rem 2. Let t, n be positive integers with 3t < n and let Fq be a finite field with
q > n. If C is a polynomial evaluation code (“Reed-Solomon code”) over Fq of
length n + 1, defined from evaluation of the polynomials of degree at most t,
then τ̂(C) = 1, and, of course, Σ(C) is Shamir’s (n, t+ 1, t)-threshold LSSS.

Definition 10 (Asymptotic optimal corruption tolerance). Let Fq be a finite
field. Then we define τ̂(q) = lim supC∈C†(Fq) τ̂(C).

Note that τ̂(C) = 1 implies that Σ(C) is an (n, t+ 1, t)-threshold LSSS over
Fq, with n = 3t + 1. For fixed q there are only finitely many C ∈ C†(Fq) such
that τ̂(C) = 1 (the proof for this statement is easily extracted from [8]; in fact,
in Section 8 we prove a stronger statement). Since for each length there are only
a finite number of codes of that length when Fq is constant, this means that for
each ε > 0 there exists an infinite family of codes C ∈ C†(Fq) with `(C) tending
to infinity and |τ̂(q)− τ̂(C)| < ε.

5 Bounding τ̂ (q) Away from Zero for Arbitrary Fq

The main result of this section is the fact that τ̂(q) > 0 for every finite field Fq.
First, we need to restate and reprove part of the results (Theorems 3 and 6) of [8]
on algebraic geometric strongly multiplicative secret sharing in the technical
framework of the present paper. Throughout this section Fq denotes the finite
field with q elements.

Theorem 3 (Chen and Cramer [8]) Let F be an algebraic function field over
Fq. Suppose |Pq(F)| > 4(g(F) + 1). Let t, n be any integers such that 1 ≤ t < n,
|Pq(F)| ≥ n+ 1, and 3t < n− 4 · g(F). Then there exists a code C ∈ C†(Fq) such
that `(C) = n+ 1 and t̂(C) ≥ t. In particular, Σ(C) has t-strong multiplication.

Proof. By the condition on |Pq(F)|, there exist integers t, n satisfying the
constraints from the theorem. Now fix such t, n. By Corollary 2, it is sufficient
to show the existence of C ∈ C†(Fq) with `(C) = n + 1, dmin(C⊥) > t + 1



and dmin(Ĉ) > t + 1. Write g = g(F). Let P0, P1, . . . , Pn ∈ Pq(F) be distinct
places of degree 1, and define the divisor D =

∑n
i=0 Pi. Choose a divisor G with

supp(G) ∩ supp(D) 6= ∅ and deg(G) = 2g + t. This is possible by the Weak
Approximation Theorem (see e.g. [27]). Alternatively, in case |Pq(F)| > n + 1,
select a place Q ∈ Pq(F) \ {P0, P1, . . . , Pn} and define G = (2g + t) · Q. In any
case, it holds that dimFq

(L(G)) = g+t+1. Next, define C as the evaluation code
C(D;G). Arbitrarily choose i ∈ {0, 1, . . . n}, A ⊂ {0, 1, . . . n} \ {i} with |A| = t.
Since 2g − 2 < deg(G − Pi −

∑
j∈A Pj) < deg(G −

∑
j∈A Pj), it holds that

dimFq
(L(G − Pi −

∑
j∈A Pj)) < dimFq

(L(G −
∑
j∈A Pj)). Hence, there exists

f ∈ L(G) such that f(Pi) = 1 and f(Pj) = 0 for all j ∈ A. In particular,
for C as well as for Ĉ it holds that the i-th coordinate is not always zero.
Second, since f · g ∈ L(2G) if f, g ∈ L(G), it follows that Ĉ ⊂ C(D; 2G). From
deg(2G) = 4g+2t and 4g < n−3t, it follows that dmin(Ĉ) ≥ n+1−deg(2G) =
n+ 1− (4g+ 2t) > t+ 1. In particular, it follows that ui 6∈ Ĉ. We conclude that
C ∈ C†(Fq) and I(C) = I(C), and using Theorem 1, that t ≤ min0≤j≤n tj(C) =
dmin(C⊥) − 2. Hence dmin(C⊥) > t + 1. By Corollary 2, t̂(C) ≥ t. The claim
about t-strong multiplicativity of Σ(C) follows from Theorem 2. 4

It follows from this theorem that τ̂(q) > 0 if A(q) > 4, where A(q) is Ihara’s
constant (see Section 2). Recall that the Drinfeld-Vladuts bounds states that
A(q) ≤ √q − 1. For our purposes, however, we need a lower bound. Ihara [18]
has shown that if q is a square, then A(q) ≥ √q−1, so that the Drinfeld-Vladuts
bound is sharp. Later, Garcia and Stichtenoth [15] showed this result by more
explicit methods (see also [1] for recent results over cubic fields).

Theorem 4 (Ihara [18], Garcia and Stichtenoth [15]) Let Fq be a finite field and
let q be a square. Then A(q) =

√
q − 1. More precisely, there exists an infinite

family of algebraic function fields (in one variable) {F(m)}m≥1 over Fq such that
for all m ≥ 1, Fq is the full constant field of F(m), |Pq(F(m))| ≥ (q−√q)√qm−1

and g(F(m)) ≤ √qm.

Theorem 5 (Serre [25]) There exists a positive constant c∗ ∈ R such that for
all finite fields Fq we have A(q) ≥ c∗ · log q.

Combining Theorems 3, 4 and 5, we can bound τ̂(q) away from zero if either
q is a square or q is extremely large 6. Also, we see that τ̂(q) tends to 1 if |Fq|
tends to infinity.

Theorem 6 (Chen and Cramer [8])

– τ̂(q) ≥ 1− 4
A(q) if Fq is a finite field with A(q) > 4. In particular, A(q) > 4

if q is large enough, more precisely, if q > 2
4
c . Here, c ∈ R is any positive

constant so that Theorem 5 holds with c∗ = c.7.
6 The results in [8] only considered the case q ≥ 49 with q a square. But the com-

bination of Theorem 3 with Theorem 5 is straightforward, so we attribute that in
essence to [8].

7 Currently, c∗ ≥ 1
91

is the best known approximation, see [29]



– τ̂(q) ≥ 1− 4√
q−1 for all finite fields Fq such that q ≥ 49 and q is a square.

– lim|Fq|→∞ τ̂(q) = 1, where Fq ranges over all finite fields.

Thus, it remains to bound τ̂(q) away from zero in the cases where q is small
(2 ≤ q < 49) or q > 49 is not a square and q is at most moderately large. We
resolve this by means of a dedicated field-descent that allows us to lower bound
τ̂(q) as a function of τ̂(qm). At its heart it uses the following notion.

Definition 11 A multiplication-friendly embedding of the extension field Fqm

over Fq is a triple (r, σ, ψ) where r is a positive integer and where σ : Fqm → Frq
and ψ : Frq → Fqm are Fq-linear maps such that xy = ψ(σ(x) ∗ σ(y)) for all x, y
in Fqm . The integer r is called the expansion.

Note that σ is an injective Fq-linear map between Fq-vectorspaces: σ(x) =
σ(y) implies x = x · 1 = ψ(σ(x) ∗ σ(1)) = ψ(σ(y) ∗ σ(1)) = y · 1 = y. Note that
this notion has been studied in the context of asymptotic arithmetic complexity
(see [4] and [28]). We can now state and prove our field-descent theorem. Elemen-
tary constructions of multiplication-friendly embeddings are given afterwards.

Theorem 7 Let t, r be integers with t, r ≥ 1. Suppose C ∈ C†(Fqm) with t̂(C) ≥
t and suppose there exists a multiplication-friendly embedding of Fqm over Fq
with expansion r. Then there exists C1 ∈ C†(Fq) such that n(C1) = r · n(C) and
t̂(C1) ≥ t.

Proof. Write n = n(C). W.l.o.g., is = 0 (Definition 8), i.e., t̂(C) is attained
for i = 0. In particular, 0 ∈ I(Ĉ). Let πB denote the projection π

(qm,n+1)
B and

let π′B denote the projection π
(q,rn+1)
B (Definition 1). For an index-set I(), I∗()

denotes I() \ {0}. Consider the set G = C ∩ (Fq
⊕

(Fqm)n), i.e., all c ∈ C
with π0(c) ∈ Fq. Note that G 6= ∅, G is not an Fqm-linear code, but G is an Fq-
linear subspace of the Fqm-linear code C. Let (r, σ, ψ) be a multiplication-friendly
embedding of Fqm over Fq. Define the Fq-linear map χ : Fq

⊕
(Fqm)n → (Fq)1+rn

by (c0, c1, . . . , cn) 7→ (c0, σ(c1), . . . , σ(cn)). Now define the Fq-linear code C1 as
C1 = χ(G) ⊂ Frn+1

q . We first show C1 ∈ C†(Fq). Write u0 = (1, 0, . . . , 0) ∈ Fn+1
q

and u′0 = (1, 0, . . . , 0) ∈ Frn+1
q . Since 0 ∈ I(Ĉ), u0 6∈ C⊥ by Lemma 4, or

equivalently, there is c ∈ G with π0(c) = 1. Since π′0(χ(c)) = 1, u′0 6∈ (C1)⊥,
and by Lemma 4, u′0 6∈ (Ĉ1)⊥. Note that if

∑
k σ(x(k)) ∗ σ(y(k)) = 0 ∈ Frq for

some x(k)’s and y(k)’s in Fqm , then
∑
k x

(k) · y(k) =
∑
k ψ(σ(x(k)) ∗ σ(y(k))) =

ψ(
∑
k σ(x(k)) ∗ σ(y(k))) = ψ(0) = 0 ∈ Fqm . Using this, it is verified easily

that u′0 ∈ Ĉ1 would imply u0 ∈ Ĉ, a contradiction. In conclusion, 0 ∈ I(Ĉ1)
and hence, I(Ĉ1) 6= ∅. We now show t̂(C1) ≥ t. If we call each j ∈ I∗(C) a
“parent” index, then, using the definition of χ, each of those Fqm-parent indexes
can be said to have r Fq-sibling indexes. If A ⊂ I∗(C1) is a non-empty set,
then β(A) ⊂ I∗(C) denotes the set of parent indexes of these siblings. Note
that |β(A)| ≤ |A|. Finally, α(A) ⊂ I∗(C1) denotes the set of all siblings of the
elements in β(A). Note that A ⊂ α(A). Now let A ⊆ I∗(C1) with |A| = t. Since



|β(A)| ≤ t ≤ t0(C), there exists c ∈ G such that π0(c) = 1 and πβ(A)(c) = 0.
Since π′0(χ(c)) = 1, π′α(A)(χ(c)) = 0, and A ⊂ α(A), it follows that t0(C1) ≥ t.

It remains to prove that r0(Ĉ1) ≤ rn − t. Let A1 ⊂ I∗(Ĉ1) with |A1| = t be
an arbitrary set. Since A1 ⊂ α(A1), it will be sufficient to show that (0, B1) is
a reconstruction-pair for Ĉ1, where B1 = I∗(Ĉ1) \ α(A1). Write B = I∗(Ĉ) \
β(A1). Note that |B| ≥ n − t. Since r0(Ĉ) ≤ n − t, there exists an Fqm -linear
reconstruction function ρB,0 for Ĉ. We extend the definition of the map ψ as
follows: if x = (x0,x1, . . . ,xn) ∈ F1+rn

q , where x0 ∈ Fq and x1, . . . ,xn ∈ Frq, then
ψ(x) = (x0, ψ(x1), . . . , ψ(xn)) ∈ Fn+1

qm . Observe that this map is also Fq-linear
and that ψ(χ(c) ∗ χ(c′)) = c ∗ c′ for all c, c′ ∈ G. Moreover if π′B1

(x) = π′B1
(y),

then observe that πB(ψ(x)) = πB(ψ(y)). For arbitrary c, c′ ∈ G, ρB,0 ◦ πB(c ∗
c′) = π0(c ∗ c′) = c0c

′
0 ∈ Fq. Hence, ρB,0 ◦ πB ◦ ψ(χ(c) ∗ χ(c′)) = c0c

′
0. We

conclude by this composition and observation above that there exists an Fq-
linear map ρ′B1,0

such that ρ′B1,0
◦ π′B1,0

(χ(c) ∗ χ(c′)) = c0c
′
0 for all c, c′ ∈ G.

Therefore, since all elements of Ĉ1 are of the form
∑
i λi · (χ(ci) ∗ χ(c′i)) with

λi ∈ Fq and ci, c′i ∈ G, and since ρ′B1,0
◦ π′B1,0

is an Fq-linear map, it holds that
r0(Ĉ1) ≤ rn− t as claimed. 4

We now present some elementary constructions of multiplication-friendly em-
beddings.

Theorem 8 Let m ≥ 2 be an integer with q ≥ 2m − 2, then there exists a
multiplication-friendly embedding of Fqm over Fq with expansion 2m− 1.

Proof. Let α ∈ Fqm such that 1, α, . . . , αm−1 is a basis of Fqm as an Fq-
vector space. Consider the Fq-vector space Fq[X]<m of polynomials in Fq[X]
with degree at most m − 1. There is an isomorphism of Fq-vector spaces φ :
Fq[X]<m → Fqm given by f(X) 7→ f(α). Now take 2m − 2 distinct elements
in Fq, β1, β2, . . . , β2m−2, and define the map ξ : Fq[X]<m → (Fq)2m−1 given by
f(X) 7→ (f(β1), . . . , f(β2m−2), µ(f)) where µ(f) denotes the coefficient am−1

of Xm−1 in f(X). Define σ = ξ ◦ φ−1. For all x, y ∈ Fqm , we then have
that σ(x) = (f(β1), . . . , f(β2m−2), µ(f)) and σ(y) = (g(β1), . . . , g(β2m−2), µ(g))
where f(X),g(X) ∈ Fq[X] are the unique polynomials of degree at most m − 1
with f(α) = x, g(α) = y. We have σ(x)∗σ(y) = (fg(β1), . . . , fg(β2m−2), µ(fg)).
Since f(X) · g(X) ∈ Fq[X] is of degree at most 2m − 2, evaluations in 2m − 2
points of Fq determine it up to to multiplicative factor (from Fq). This factor is
clearly uniquely determined when, in addition, µ(fg) is taken into account. It
follows that xy = fg(α) is determined uniquely by σ(x) ∗ σ(y), i.e. there exists
a function ψ such that xy = ψ(σ(x) ∗ σ(y)) for all x, y ∈ Fqm . It is not difficult
to see that ψ is Fq-linear. 4

A construction without any constraint on q and m is presented next. The
expansion in this case is quadratic in the degree of the extension. However, for
quadratic extensions it is exactly the same as above.

Theorem 9 There exists a multiplication-friendly embedding of Fqm over Fq
with expansion

(
m+1

2

)
.



Proof. Let α ∈ Fqm such that 1, α, . . . , αm−1 is a basis of Fqm as an Fq-vector
space. Consider the map σ : Fqm → (Fq)r given by x 7→ (x0, . . . , xm−1, x0 +
x1, . . . , x0+xm−1, . . . , xm−2+xm−1), where x =

∑m−1
i=0 xiα

i. Given two elements
x, y ∈ Fqm , the coordinates of σ(x) ∗ σ(y) precisely exhaust all possible expres-
sions xiyi, as well as all possible expressions xiyi + xjyj + xiyj + xjyi for i 6= j.
Hence, for each pair of indexes (i, j) with i 6= j, there exists an Fq-linear map φi,j
such that φi,j(σ(x) ∗ σ(y)) = xiyj + xjyi. Since xy =

∑2m−2
k=0 (

∑
i+j=k xiyj)α

k =∑m−1
i=0 xiyiα

2i +
∑2m−2
k=0 (

∑
i+j=k,i<j xiyj + xjyi)αk, it follows that there exists

an Fq-linear map ψ such that xy = ψ(σ(x) ∗ σ(y)). 4

Corollary 3 Let Fq be a finite field. There exists a multiplication-friendly
embedding of Fq2 over Fq with expansion equal to 3. Moreover, there exists a
multiplication-friendly embedding of F64 over F4 with expansion equal to 5.

Proof. In the case of quadratic extensions, both multiplication-friendly em-
beddings give the result. For the second case, we apply Theorem 8. 4

We are now ready to bound τ̂(q) away from zero for all finite fields Fq.

Definition 12 We define ν(q) as follows: ν(2) = 1/35 ≈ 2.86%; ν(3) = 1/18 ≈
5.56%; ν(4) = 3/35 ≈ 8.57%; ν(5) = 5/54 ≈ 9.26%; for q square, q ≥ 49,
ν(q) = 1− 4√

q−1 ; for the remaining values of q, ν(q) = 1
3 (1− 4

q−1 )

Theorem 10 Let Fq be a finite field. Then τ̂(q) ≥ ν(q).

Proof. If q ≥ 49 and q is a square, then τ̂(q) ≥ (1− 4√
q−1 ) by Theorem 6.

Using a degree 2 descent from the combination of Theorem 7 and Corollary 3,
this immediately yields τ̂(q) ≥ 1

3 ·(1−
4
q−1 ) if 7 ≤ q < 49, or if q > 49 and q is not

a square. For q = 4, F64 is a degree 3 extension of F4. Combining Theorem 7,
instantiated with the multiplication-friendly mapping from F64 to (F4)5 from
Corollary 3, with the fact that τ̂(64) ≥ 3

7 , it follows that τ̂(4) ≥ 1
5 ·

3
7 = 3

35 . For
q = 2, 3, 5 a further degree 2 descent in combination with the results above leads
to τ̂(2) ≥ 1

3 ·
3
35 = 1

35 , τ̂(3) ≥ 1
3 ·

1
6 = 1

18 , and τ̂(5) ≥ 1
3 ·

5
17 = 5

54 . 4
We note that it is possible to further improve these lower bounds especially

for small values of q using more advanced techniques from algebraic geometry,
as we show in upcoming work [5].

6 Consequences for LSSS with Strong Multiplication

We now state the consequences for LSSS with strong multiplication explicitly.

Definition 13 Let Σ = (S0, S1, . . . , Sn) be an SSS. The (average) information
rate λ(Σ) is defined as λ(Σ) =

∑n
i=1H(Si)

n·H(S0) . F = {Σn}n∈N is a family of secret
sharing schemes if N ⊂ N is an infinite set and for all n ∈ N , Σn is a secret
sharing scheme with |P(Σn)| = n. The (average) information rate λ(F) of the
family F is the function λF : N −→ R≥0 with n 7→ λ(Σn).



Definition 14 F = {Σn}n∈N is a family of ideal LSSS (over Fq) with strong
multiplication if the following properties hold. F is a family of secret sharing
schemes such that for all n ∈ N , Σn = (Fq, n, e(n),v(n)

0 , V
(n)
1 , . . . , V

(n)
n ) is an

LSSS. Moreover, for each n ∈ N , Σn is “ideal”, i.e., dimV
(n)
i = 1 for i =

1, . . . n,. Finally, for all n ∈ N , Σn has tn-strong multiplication, where tn is the
maximum integer with that property. The corruption tolerance t̂F of F is defined
as the function t̂F : N → R≥0 with n 7→ 3tn

n−1 . Such a family is asymptotically
good if lim supn∈N t̂F (n) > 0, and asymptotically bad otherwise.

Combining Theorem 10 with Theorem 2, there are the following consequences
for strongly multiplicative LSSS.

Theorem 11 Let Fq be an arbitrary finite field. There exists an asymptotically
good family F = {Σn}n∈N of ideal LSSS over Fq with strong multiplication such
that limn→∞ t̂F (n) = ν(q).

Note that over F2, for example, t is at least a 1/105-fraction of n, i.e. 0.95%
of the players. Also note that by making q large enough, ν(q) gets arbitrarily
close to 1 and, hence, t gets arbitrarily close to 1

3n.

7 Asymptotically Bad Yet Elementary Schemes

We have shown that a combination of strong methods from algebraic geometry
with a dedicated field-descent method leads to asymptotically good schemes
over any finite field. We now show an elementary construction that also works
over any finite field Fq. However, it is asymptotically bad. Yet it gives t-strong
multiplication for t = Ω(n/((log log n) log n)). A combination of results from [7]
with replication gives an elementary family with t = Ω(

√
n), which is much

worse. Our construction here consists of applying a combination of Theorems 7
and 9 to Shamir’s LSSS over a tower of extension fields of the base field Fq,
where the degree of the extension tends to infinity. For every m > 0, define
rm = (qm)bq

m/2c. Consider the [n+ 1, t]rm
-Reed-Solomon code Cm with n+ 1 =

rm and t = b 1
3 (rm − 2)c, i.e. Σ(Cm) is a Shamir’s LSSS over Frm

with rm − 1
players and t-strong multiplication. Now apply the construction in Theorem 7
to the codes Cm, using the multiplication-friendly embedding from Theorem 8,
and we descend from LSSS over Frm

to LSSS over Fqm . Using Theorem 9, we
descent again from LSSS over Fqm to LSSS over Fq. Note that the final number
of players is now (rm − 1)(2bqm/2c − 1)

(
m+1

2

)
Theorem 12 Let Fq be an arbitrary finite field. The above (elementary) con-
struction yields a family F = {Σn}n∈N of ideal LSSS over Fq with t(n)-strong
multiplication, where t(n) = Ω(n/((log log n) log n).

Proof. Write nm = (rm− 1)(2bqm/2c− 1)
(
m+1

2

)
. The code C̃m constructed

as above gives an LSSS Σnm
for nm players and tnm

-strong multiplication for
tnm

= b 1
3 (rm − 2)c. On the other hand, it is easy to see that m = O(log log nm)

and m · qm = O(log nm). The desired result follows. 4



8 Upper Bounds on Optimal Corruption Tolerance

So far we have presented asymptotic lower bounds on optimal corruption toler-
ance. We now turn to (non-asymptotic) upper bounds on corruption tolerance
of a code. Using arguments given in [8], it follows easily that τ̂(C) < 1 for all
C ∈ C†(Fq) with `(C) large enough as a function of q (note that τ̂(C) = 1 is
achievable if n ≤ q). In Theorem 15 below we improve this bound. The improve-
ment is based on a combination of Theorem 2 with Theorem 13, a more general
result for LSSS we prove below. Namely, we lower bound the information rate
as a function of the threshold gap. Here, the threshold-gap of an SSS is defined
as the difference between its reconstruction- and privacy-thresholds. A further
implication is that in all interesting cases, the threshold gap necessarily grows at
least as Ω(log n), where n is the number of players, in any family of LSSS over
Fq with positive information rate. Let Σ = (Fq, n, e,v0, V1, . . . , Vn) be an LSSS
over Fq.

Theorem 13 Set g(Σ) = r(Σ)− t(Σ), the threshold gap of Σ. If t(Σ) ≥ 1 and
r(Σ) < n, then dimΣ ≥ n

ḡ(Σ) · logq(
n+ḡ(Σ)+2

2ḡ(Σ) ).

This generalizes a result from [11] where a lower bound in the dimension of
any threshold LSSS over F2 is proven. In our result, the threshold gap can be
greater than 1 (and q is arbitrary). The proof of Theorem 13 will rely in part on
Theorem 14 and Corollary 4 below.

Theorem 14 Let G be a non-empty collection of subsets of P(Σ) such that
G ⊂ A(Σ) and, for any A,B ∈ G with A 6= B, A∪B ∈ Γ (Σ). Then,

∑
A∈G dA ≥

|G| · logq(|G|), where dA is the dimension of VA for all A ∈ G.

Proof. Our proof uses a lower bound technique from Karchmer and Wigder-
son [21] (and our claim is essentially a slight generalization of their result). De-
fine H1 = {φ ∈ Hom(Feq,Fq) : φ(v0) = 1}. For all non-empty A ⊂ P, define
H1,A = H1∩V ⊥A . Note that, by the characterization from Section 2.2, A ∈ Γ (Σ)
if and only if H1,A = ∅. By linear algebra, |H1| = qe−1 and |H1,A| = qe−dA−1

if A /∈ Γ (Σ). Moreover, if A,B ∈ G, then A ∪ B ∈ Γ (Σ). Hence, H1,A∪B =
H1,A ∩ H1,B = ∅. Therefore, |

⋃
A∈G H1,A| =

∑
A∈G |H1,A| So qe−1 = |H1| ≥

|
⋃
A∈G H1,A| =

∑
A∈G |H1,A| =

∑
A∈G q

e−dA−1. This gives
∑
A∈G q

−dA ≤ 1. By
the log-sum inequality,8

∑
A∈G dA ≥ |G| · logq(

|G|∑
A∈G q

−dA
) ≥ |G| · logq(|G|). 4

Definition 15 G = {A1, . . . , Am} is a greedy partition of P(Σ) if m is a
positive integer, A1, . . . , Am ⊂ A(Σ),

⋃m
i=1Ai = P(Σ), Ai∩Aj = ∅ (1 ≤ i < j ≤

m), and, for k = 1, . . . ,m, Ak is maximal in A(Σ) subject to Ak ⊂ P \
⋃k−1
j=1 Aj

(A0 = ∅).

8 The log-sum inequality asserts that for non-negative real numbers a1, . . . , ar and

b1, . . . , br
∑r

i=1 ai logq( ai
bi

) ≥ (
∑r

i=1 ai) logq

∑r
i=1 ai∑r
i=1 bi

.



Note that if A,B ∈ G, then A ∪ B ∈ Γ (Σ). If t(Σ) ≥ 1, there exists a
greedy partition by induction. Moreover, the size m of a greedy partition can be
bounded in terms of r(Σ), since any set in the partition has at most r(Σ) − 1
elements.

Corollary 4 Suppose t(Σ) ≥ 1 and let G be a greedy partition of P(Σ). Then
dimΣ ≥ |G| · logq |G|. In particular, dimΣ ≥ d n

r(Σ)−1e · logq(d n
r(Σ)−1e).

Proof (of Theorem 13). We use a dualization technique from [11]. Set r =
r(Σ), t = t(Σ) and g = g(Σ). Note that if Σ∗ is an LSSS over Fq whose access
structure is the dual of Σ’s, then g(Σ∗) = g(Σ). Sort the players 1, . . . , n so
that di ≤ dj if i ≤ j. Let Σ1 be the LSSS restricted to the first r + 1 players
(this is possible since r < n). Clearly t(Σ1) ≥ t(Σ) and r(Σ1) ≤ r(Σ), so
g(Σ1) ≤ g(Σ). There exists an LSSS Σ∗1 over Fq and defined over the first r+ 1
players such that dimΣ1 = dimΣ∗1 and Γ (Σ∗1 ) is the dual access structure to
Γ (Σ1) (see the remark in Section 2.2). Note that t(Σ∗1 ) ≥ 1 and that r(Σ∗1 ) =
r+ 1− t(Σ1) ≤ r+ 1− t = g+ 1. By Corollary 4, dimΣ1 = dimΣ∗1 ≥ d r+1

r(Σ∗1 )−1e ·
logq(d r+1

r(Σ∗1 )−1e) ≥ d
r+1
ḡ e · logq(d r+1

ḡ e). Because of the sorting of the players,
dimΣ ≥ n

r+1 · dimΣ1 ≥ dnḡ e · logq(d r+1
ḡ e). Finally, let Σ∗ now be an LSSS over

Fq such that dimΣ = dimΣ∗ and Γ (Σ∗) is the dual access structure to Γ (Σ)
(note that t(Σ∗) ≥ 1 since r < n and r(Σ∗) < n since t ≥ 1). Applying the
bound we have just derived, we get dimΣ∗ ≥ d n

ḡ(Σ∗)e · logq(d
r(Σ∗)+1
ḡ(Σ∗) e). But

ḡ(Σ∗) = ḡ and r(Σ∗) = n − t, so dimΣ = dimΣ∗ ≥ dnḡ e · logq(dn−t+1
ḡ e). It is

easy to see then that dimΣ ≥ n
ḡ logq(

n+ḡ+2
2ḡ ).

4

Corollary 5 Let F = {Σn}n∈N be a family of LSSS over Fq. If the growth rate
of the threshold gap is smaller than logarithmic in the number of players, i.e.,
lim supn∈N

ḡ(Σn)
logq n

= 0, then the information rate satisfies lim supn∈N λF (n) = 0.

Theorem 15 Let C ∈ C†(Fq). We have t̂(C) ≤ 1
3 · (n(C)− 1

2 · logq(n(C) + 2))

and therefore τ̂(C) ≤ 1− logq(n(C)+2)−2

2n(C)−2

Proof. Assume wlog that t̂(C) is attained for i = 0 (i.e., is = 0, see
Definition 8) and write t = t̂(C). Then t0(C) ≥ t and r0(C) ≤ n(C) − 2t,
by Theorem 2. Now set ḡ = ḡ(Σ(C)) and n = n(C). So, on the one hand,
t̂(C) ≤ 1

3 (n− ḡ). On the other hand, Σ(C) is an “ideal” LSSS. Theorem 13 then
implies n ≥ n

ḡ logq(
n+ḡ+2

2ḡ ). Thus, ḡ ≥ logq(
n+2
2ḡ ) ≥ logq(n+ 2)− logq(2ḡ). Then

ḡ+logq(2ḡ) ≥ logq(n+2), and since ḡ ≥ logq(2ḡ) for any ḡ ≥ 1, ḡ ≥ 1
2 logq(n+2).

Combining these facts, the result follows. 4
Note that this non-asymptotic upper bound on corruption tolerance does not

imply τ̂(q) < 1.



9 Open Problems

First, our main Theorem 10 implies that the asymptotic optimal corruption
tolerance τ̂(q) satisfies τ̂(q) > 0 for all finite fields Fq. The proof of that theorem
makes crucial use of strong results from algebraic geometry (namely, good towers
of algebraic function fields). Is that essential? Though it is not unlikely that
“strong algebraic geometry” is inherent to strong lower bounds on τ̂(q), is there
perhaps a more elementary proof just that τ̂(q) > 0? Second, it seems likely
that the bound from Theorem 15 can be sharpened considerably. Third, it is
interesting to improve our lower bounds for τ̂(q). We have already noted that in
forthcoming work we do so for small values of q, using more advanced methods
from algebraic geometry.
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