
Message Authentication Codes from

Unpredictable Block Ciphers

Yevgeniy Dodis1 and John Steinberger2

1 Department of Computer Science, New York University. dodis@cs.nyu.edu
2 Department of Mathematics, University of British Columbia. jpsteinb@gmail.com

Abstract. We design an efficient mode of operation on block ciphers,
SS-NMAC. Our mode has the following properties, when instantiated
with a block cipher f to yield a variable-length, keyed hash function H:

(1) MAC Preservation. H is a secure message authentication code
(MAC) with birthday security, as long as f is unpredictable.

(2) PRF Preservation. H is a secure pseudorandom function (PRF)
with birthday security, as long as f is pseudorandom.

(3) Security against Side-Channels. As long as the block cipher f
does not leak side-channel information about its internals to the
attacker, properties (1) and (2) hold even if the remaining imple-
mentation of H is completely leaky. In particular, if the attacker
can learn the transcript of all block cipher calls and other auxiliary
information needed to implement our mode of operation.

Our mode is the first to satisfy the MAC preservation property (1) with
birthday security, solving the main open problem of Dodis et al. [7] from
Eurocrypt 2008. Combined with the PRF preservation (2), our mode
provides a hedge against the case when the block cipher f is more secure
as a MAC than as a PRF: if it is false, as we hope, we get a secure
variable-length PRF; however, even if true, we still “salvage” a secure
MAC, which might be enough for a given application.
We also remark that no prior mode of operation offered birthday secu-
rity against side channel attacks, even if the block cipher was assumed
pseudorandom.
Although very efficient, our mode is three times slower than many of
the prior modes, such as CBC, which do not enjoy properties (1) and
(3). Thus, our work motivates further research to understand the gap
between unpredictability and pseudorandomness of the existing block
ciphers, such as AES.

1 Introduction

Most primitives in symmetric-key cryptography are built from block ciphers,
such as AES. Typically, one models the block cipher as a fixed-input-length (FIL)
pseudorandom permutation (PRP), and then builds a more complex variable-
input-length (VIL) primitive under this assumption. For many such VIL primi-
tives, like pseudorandom functions (PRFs), this strong assumption on the block
cipher is justifiable. One exception here is the design of message authentication
codes (MACs): since the resulting primitive only needs to be unpredictable, it
would be highly desirable to only assume that the block cipher is unpredictable

as well, as opposed to pseudorandom. Indeed, it seems that assuming the block
cipher is unpredictable is a much weaker assumption than assuming full pseu-
dorandomness: to break the latter, all one needs to do is to predict one bit of
“random-looking” information about the block cipher with probability just a
little over 1/2, while the former requires one to fully compute the value of the
block cipher on a new point with non-trivial probability. Thus, it is natural to
ask the following central question of this work:

Question 1. Can one build an efficient variable-input-length MAC from a block
cipher which is modeled as an unpredictable permutation (UP) on n-bits?

We will argue that no existing constructions are really satisfactory for achiev-
ing this natural goal. In order to discuss this precisely, we briefly recall some key
quantities which determine the security of a construction. In this paper we con-
sider only two types of adversaries: distinguishers, whose goal is to distinguish
a function from an ideal primitive (as for PRFs and PRPs) and forgers, whose
goal is to predict the value of the function on an un-queried message (as for
MACs and UPs). As there often exist constant-query attacks using very long
messages, the most important measure of an adversary’s efficiency is the total
length of messages that it queries. This upper bounds, among others, the number
of queries made by the adversary. For functions that are built from a smaller
primitive (such as, in all the cases we consider, a permutation), a more conve-
nient efficiency measure is the number of queries one must make to the smaller
primitive in order to evaluate the adversary’s queries. In this section we let q
stand for the latter number, as opposed to the number of queries actually made
by the adversary to its oracle.

Let C be a function built from a block cipher f . The security1 ε = ε(q) of
C is the maximum advantage of an adversary for which the number of calls to
f necessary to compute the adversary’s queries to C does not exceed q. Thus,
lower ε implies better security. We write εmac and εprf to distinguish the security
C as MAC and PRF, respectively. Likewise the block cipher has a security εup

and εprp as a UP and as PRP, respectively.2 The rate of a VIL-function C is
the number of times the block cipher has to be called on each input block, so it
measures the efficiency of C. We can now rephrase our goal as follows. Given a
block cipher f with UP security εup, construct a VIL-MAC C such that:

(a) C has small constant rate;
(b) the security εmac of C is as small as possible as a function of εup.

A good way to quantify the “goodness” of εmac is to assess the maximum q for
which the achieved bound is meaningful, assuming that the block cipher has ideal
security εup ∼ 1/2n as an unpredictable permutation. For example, if εmac =
O(εup · q

2), then the bound is meaningful for q up to ∼ 2n/2, which matches the
classical birthday bound typically achieved when one models the block cipher as

1 Other parameters, such as the running time allowed to the adversary, may be relevant
for the security, but these are not important here.

2 In fact εup = εmac for a block cipher, since these refer to the same notion, but we
write εup to emphasize the difference with C.

a PRP. As argued by Preneel and van Oorschot [15], a simple extension attack
shows that the birthday security is the best security one may hope to achieve
by natural “iterative” constructions. On a positive, several elegant (iterative)
constructions matching this bound are known, when modeling the block cipher
as a PRP. On a negative, no existing constructions, iterative or otherwise, come
even close to the birthday security when assuming UPs as opposed to PRPs.
Thus, our “golden standard” to answer Question 1 will be to solve

Question 2. Build an (iterative) VIL-MAC from UPs, having constant efficiency
rate and (nearly) birthday security.

Jumping ahead, this will be our main result, therefore resolving the main open
question of Dodis et al. [7] from Eurocrypt 2008. But first, let us survey what
is known, to better understand the difficulties we will have to face, and also
motivate our approach.

1.1 Inapplicability of Existing Solutions

There is a huge number of proposals for building a VIL-MAC out of a block
cipher. Unfortunately, it turns out that most of them are insecure when instan-
tiated with unpredictable block ciphers, — often despite having simple proofs of
security when one models the block cipher as a PRP, — and the few that are se-
cure, achieve extremely poor rate and/or security. In the full version [9], we give
a detailed listing of many “failed” approaches to build an efficient VIL-MAC
from an unpredictable block cipher. Here, we will only give a brief summary,
concentrating on the approaches most relevant to our eventual solution.

In brief, the existing approaches in question include the following: (1) generic
route from unpredictability to pseudorandomness [10,13]; (2) CBC-MAC [4,14];
(3) HMAC/NMAC [3, 6]; (4) various ad-hoc methods (e.g., iterating the trun-
cated version of the block cipher); (5) hash-then-MAC using (almost) univer-
sal hashing [3,5]; (6) hash-then-MAC using collision-resistant hashing; (7) Feis-
tel Network [8, 11]; and (8) the current best method called “enhanced CBC”
mode [7]. Of these, approaches (2), (3), (4) and (5) are completely insecure
when instantiated with generic UPs (as opposed to PRPs!). This is simple to
see for (3), (4) and (5), and was shown by An and Bellare [2] for the CBC-MAC
(approach (2)). The generic approach (1) is secure, but very inefficient, which is
not surprising.

Approach (6), using a collision-resistant hash function (CRHF) H to hash
the VIL message before applying a FIL-MAC, also works in principle, but is
not satisfactory. In theory, the assumption that CRHFs exist is much stronger
than the existence of UPs (or even PRPs); for example, there is a black-box
separation [18] between these assumptions. Even in practice, where many hash
functions are built from block ciphers, the resulting hash functions appear to
require a larger security parameter than the “stand-alone” block ciphers they
are built from. For example, while the industry standard AES has input length
128, no existing hash function with 128-bit output is considered secure (e.g.,
MD5 and related functions are broken [19]); in fact, NIST does not recommend
using any hash function with output size below 256, including 160-bit SHA-1.

Weak Collision-Resistance. Thus, we would like to base security of the
“hash-then-mac” approach on weaker hash functions than CRHFs. As was demon-
strated by [6], the precisely correct notion for this task is that of Weak Collision
Resistance (WCR). Such hash functions H are keyed, and their key is part of
the secret key for the resulting VIL-MAC. In terms of security, it should be
infeasible for the attacker to come up with distinct inputs x and y such that
H(x) = H(y), even when given oracle access to H. An and Bellare [2] then
showed that WCR hash functions have similar properties to CRHFs: in par-
ticular, the (strengthened) Merkle-Damgard transform gives a VIL-WCR hash
function from a FIL-WCR hash function, which can then be used in “hash-then-
mac” approach. Moreover, both security reductions are tight for our purposes.

Thus, to efficiently answer Question 1, it is sufficient to build a fixed-input-
length sufficiently compressing (say, two-to-one) WCR hash family. Indeed, this
is the route of all existing solutions (e.g., approaches (7) and (8)), as well as our
solution. However, to also answer Question 2 would additionally require a WCR
hash with birthday security, which was not known prior to this work.

Building WCR from UP. This question appears to be non-trivial. In par-
ticular, only two secure solutions were known prior to this work (approaches
(7) and (8) above). First, Dodis and Puniya [8] showed how to construct a
two-to-one FIL-WCR from ω(log κ) independent UPs, where κ is the security
parameter. The construction applied ω(log κ) rounds of the Feistel Network
π(x‖y) = (y‖f(y)⊕x) to the 2n-bit input, each with a different UP f , and then
truncated the last output in half. Moreover, they showed that O(log κ) rounds are
generally insufficient for this task (extending the three-round counter-example
of [2], and in sharp contrast to the setting of PRPs, where three rounds are
already enough [11]). This means that the resulting super-constant rate ω(log κ)
of this particular construction cannot be improved, making it somewhat inef-
ficient for practice. More significantly, the security of this construction proven
by [8] was only O(εup · q

6), meaning that it can only be secure for at most 2n/6

messages, which is unacceptable for n = 128.
The best current WCR construction from UPs comes from the work of

Dodis et al. [7], who made the surprisingly simple observation that the function
h(x‖y) = f1(x) ⊕ f2(y) is a two-to-one, rate-2 WCR hash function, assuming
f1 and f2 are two independent UPs. This immediately gives a rate-2 VIL-MAC
from UPs, which is very efficient, and is the first (and only) constant-rate solu-
tion to Question 1 known prior to this work. Unfortunately, the security of this
WCR function (and the resulting VIL-MAC) is O(εup · q

4). Moreover, it is easy
to see that this bound is actually tight. Thus, the construction can only be secure
for at most 2n/4 messages, again making it fall short of our goal of obtaining
security up to 2n/2. In fact, this question of achieving “birthday security” 2n/2

(which is our Question 2) was the main open question posed in [7].

1.2 Our Results

In this work we resolve this question in the affirmative. Concretely, we construct
a VIL-MAC, called SS-NMAC, from four independent UPs f1, . . . , f4, which

achieves rate 3 and security εmac ≈ O(εupq2 log2(q)), meaning it can be secure
for almost 2n/2 messages. This is the first constant-rate MAC with birthday
security built from an unpredictable block cipher. The construction of SS-NMAC
is depicted in Figure 2, where the message is x = x1 . . . xℓ.

Our construction uses the WCR approach mentioned earlier: namely, it uses
the (strengthened) Merkle-Damgard iteration of the 2n-bit to n-bit compres-
sion function F (x‖y) = f1(x) ⊕ f3(f1(x) ⊕ f2(y)), which is shown in Figure 1.
This function was originally suggested by Shrimpton and Stam [17], who argued
that F is collision-resistant with birthday security, assuming that f1, f2, f3 are
public random functions (i.e., random oracles). In contrast, our main technical
result (Theorem 1) shows that this function is (weakly) collision-resistant (with
birthday security), even if f1, f2, f3 are only (keyed) unpredictable functions.

We note that since any FIL-MAC is FIL-WCR (Lemma 4.4 [2]) it would suf-
fice to prove the Shrimpton-Stam compression function is a good MAC in order
to show it is WCR. However, as explained in the full version [9], the Shrimpton-
Stam compression function is not a good enough MAC for our purposes, showing
the necessity of directly proving WCR security.

Comparison with [17]. On a technical level, both results appear similar. In
both cases, assuming the adversary A has oracle access to f1, f2, f3, one has
to argue that A has low chance of finding a collision to F . However, the key
difference is that the fi’s are assumed truly random in [17], whereas we can
only assume unpredictable fi’s. In particular, while [17] could directly bound
the probability of A finding the collision in F using an information-theoretic
argument, we have to build an efficient reduction from the presumed collision-
finding attacker A to a UP-forger B forging one of the MACs. It is well known
that such information-theoretic arguments often do not have direct analogs in
the computational setting. To illustrate this more concretely, let us only discuss
the most interesting such difficulty we had to resolve.

The key argument of [17] was a technical calculation, using factorials, bino-
mials and various probability manipulations, that A is unlikely to find an “n-way
multi-collision” in the auxiliary function h(x‖y) = f1(x) ⊕ f2(y), when f1 and
f2 are truly random functions. To adapt this (critical) part of the argument to
our computational setting, we would have to take an efficient attacker A′ ca-
pable of finding such a multi-collision in h with probability ε, and turn it into
a forger B′ for either f1 or f2, succeeding with probability Ω(ε/q2). As far as
we could see, the probability calculations in [17] give no guidance of how to do
such a reduction. And, indeed, finding such a reduction required a completely
new approach, relating to a natural “balls-and-bins” game that we analyzed (see
Lemma 1), and resulting in a very non-obvious construction of B. We discuss
this construction in detail in Section 4.2, only mentioning that it gave us a bet-
ter understanding of the security of the Shrimpton-Stam compression function,
and even implicitly improved the probability calculations of [17] for the special
case of truly random functions (corresponding to ε = 2−n in our reduction). In
particular, for the case of random functions we get a convenient closed form of
O(q2 log2(q)/2n) for the collision resistance of the Shrimpton-Stam compression

function, where, as per our convention for this section, q is the total number of
block cipher queries allowed (cf. Theorem 1).

Strong PRF preservation. We also notice that our new mode has the fol-
lowing desirable multi-property preservation guarantee advocated by [7]: if the
block cipher is unpredictable, we get a MAC with message security roughly 2n/2,
while if it happens to be pseudorandom, we get a PRF with message security
roughly 2n/2. In other words, we expect and hope that practical block ciphers
(such as AES) are in fact PRPs with good security. If our hope is correct, we
would get a full-fledged pseudorandom function with good security; however,
even if the block cipher turns out to be a much better MAC than it is a pseu-
dorandom function, we still get a MAC with excellent security, which could be
reassuring for many applications. Details are sketched in Section 5.

More interestingly, even in the setting of PRPs, our SS-NMAC construction
yields a more “leakage-resilient” VIL-PRF H than the prior constructions. In
particular, in Section 6 we show that the resulting PRF is secure even in the
so called oracle cipher model, first considered by Dodis et al. [8]. Recall, in
the standard model for PRFs, the attacker only learns the output H(x) of the
PRF on input x, but does not learn any of the intermediate values, such as
the inputs/outputs to the block cipher or any of the chaining variables. Indeed,
this secrecy of the intermediate values is completely essential to the security of
most standard constructions, such as CBC-MAC or the standard Luby-Rackoff
transformation [11]. In other words, these constructions are actually broken in
the oracle cipher model, irrespective of the strength of the block cipher used (e.g.,
even with AES). In contrast, our SS-NMAC construction is a secure VIL-PRF
— with (essentially) the same birthday security — even when the attacker learns
all the intermediate values needed to obtain H(x), except for what is done inside
the actual block-cipher computations. More precisely, even if the attacker learns
all the computation history of our SS-NMAC construction on a bunch of points
(not including the internals of the block ciphers), the value of the function at any
set of non-queried points looks random to the attacker. Thus, as long as the block
cipher is implemented in a “leakage-resilient” way, the remaining implementation
of SS-NMAC can be completely insecure with respect to side-channel attacks!
We believe that the security in the oracle model is quite important, since we
envision secure hardware-based implementation of block-ciphers, later composed
with much less secure software-based solutions, to yield various more advanced
VIL primitives. We also remark that none of the two previous PRF constructions
in the oracle cipher model [7, 8] achieved anything close to birthday security.

Summary. To summarize, in addition to yielding a more secure VIL-MAC than
prior constructions in the case when εup ≪ εprp, our construction gives a more
“leakage-resilient” (and equally secure!) VIL-PRF even when assuming εprp is
nearly as good as εup. Moreover, we only pay a small constant factor price in
efficiency for these (significant) security enhancements. In Section 7, we briefly
discuss whether this slowdown is justifiable in practice, which ultimately calls
for more research to understand the gap between unpredictability and pseudo-
randomness of the existing block ciphers, such as AES.

2 Security Definitions

We briefly recall the standard security notions for MACs and PRFs. In each
case we are interested in resistance to chosen message attacks. For a MAC, an
adversary succeeds if it can forge the MAC on an un-queried value. For a PRF,
the adversary succeeds if it can distinguish the PRF from a truly random oracle.
To measure an adversary’s efficiency we count not only the number of oracle
queries made but also the time and the total length of queried messages (as
the oracles accept variable length inputs). In this section we use the variable q̃
to denote the number of queries made by the adversary to its oracle in order
to emphasize the distinction from the variable q used in Section 1, which was
defined as the (distinct) number of block cipher calls necessary to evaluate those
queries (the adversary does not have direct access to the block cipher). In later
sections we maintain the spirit of this convention, using q̃ for queries made to
VIL-functions and q for queries made to FIL-functions (usually block ciphers).

A function family is a map f : {0, 1}κ×Dom(f)→ {0, 1}n where Dom(f) ⊆
{0, 1}∗. The strings in {0, 1}κ are the keys of f and we write fk(x) for f(k, x)
for k ∈ {0, 1}κ and x ∈ Dom(f). The function fk is called a member of f .

For MACs we consider the following game, where A is an adversary with
oracle access to fk:

Game Forge(A, f):
k ← {0, 1}κ; (x, y)← Afk

If x ∈ Dom(f), fk(x) = y and x was not a query of A then A
wins, otherwise A looses.

Following An and Bellare [2] we define the insecurity of f as a MAC to be

InSecmac
f (t, q̃, µ) := max

A
Pr[A wins Forge(A, f)]

where the maximum is taken over all adversaries A making at most q̃ queries
whose total combined length is at most µ bits and of “running time” at most t.
The “running time” is defined to be the total running time of the experiment,
including the time necessary to compute the answers to A’s queries. (The advan-
tage of this definition is that a simulator running A and computing the answer
to A’s queries from scratch has essentially the same running time t.)

For PRF security the game is modified by either giving A access to a random
fk or to a random oracle g : Dom(f)→ {0, 1}n with probability 1

2 and A wins if it
correctly identifies whether its oracle is fk or g. Call this game ‘Identifies(A, f)’.
Then

InSecprf
f (t, q̃, µ) := max

A
Pr[A wins Identifies(A, f)]−

1

2

where again the maximum is taken over all adversaries A making at most q̃
queries of total length µ and of running time t, with the same convention con-
cerning running time.

The proof finally uses the notion of “weak collision resistance” (WCR), which
measures the collision resistance of a function only available as an oracle to the

adversary. In the weak collision resistance game for the function family f , A is
given oracle access to a random fk and wins if it succeeds in querying fk on two
distinct points x, y such that fk(x) = fk(y). Then InSecwcr

f (t, q̃, µ) is defined
similarly with respect to this game as InSecmac

f (t, q̃, µ) is defined with respect
to the game Forge(A, f).

3 The SS-NMAC construction

The basic SS-NMAC scheme is shown in Figure 2. The scheme uses the Merkle-
Damgard iteration of the 2n-bit to n-bit compression function of Shrimpton and
Stam [17] shown in Figure 1. We start by describing this compression function.

The Shrimpton-Stam compression function. The Shrimpton-Stam com-
pression function is a 2n-bit to n-bit compression function that uses calls to three
different n-bit to n-bit primitives f1, f2, f3. We write the compression function
as F [f1, f2, f3] to emphasize its dependence on f1, f2, f3. It is defined by

F [f1, f2, f3](x‖y) = f1(x)⊕ f3(f1(x)⊕ f2(y))

for any pair of n-bit strings x, y.
Shrimpton and Stam [17] proved that F [f1, f2, f3] has optimal (i.e. birthday)

collision resistance if f1, f2, f3 are random functions. They also conjectured that
the construction remains collision resistant if fi(x) is replaced with πi(x) ⊕ x
where π1, π2, π3 are random permutations, which would enable the construction
to be implemented with fixed key block ciphers. This conjecture was verified by
Rogaway and Steinberger [16].

f2y

f1x

f3 F (x, y)

Fig. 1: The Shrimpton-Stam compression function. All wires carry n-bit values.

For our purposes, the key property of F [f1, f2, f3] is that an adversary with
oracle access to the fi’s can only learn F [f1, f2, f3](x‖y) on roughly as many
inputs x‖y as it makes queries. This should be contrasted for example to the
compression function h[f1](x‖y) = f1(x ⊕ y) of the CBC MAC or the “xor
compression function” g[f1, f2](x‖y) = f1(x) ⊕ f2(y) of the enciphered CBC
construction of Dodis, Pietrzak and Puniya [7], where f1, f2 are again n-bit to
n-bit functions. An adversary querying h[f1] can learn to evaluate h[f1] on 2n

inputs x‖y in a single query; an adversary querying g[f1, f2] can learn to evaluate

f2

f1

f30n

x1

f2

f1

f3

x2

b b b f2

f1

f3

xℓ

f2

f1

f3

〈ℓ〉

f4

Fig. 2: The SS-NMAC mode of operation.

g[f1, f2] on q2 inputs x‖y in q queries. Another compression function that could
be used equally well in place of F [f1, f2, f3] is the LP231 compression function
of Rogaway and Steinberger [16], which also uses three calls to n-bit to n-bit
primitives. However we use F [f1, f2, f3] because it is simpler and sufficient for
our purposes.

Iteration and Padding. First we define PadAp(x) to be x10k〈ℓ〉 where k
is the least integer such that x10k has length a multiple of n, where ℓ is the
number of n-bit blocks in x10k, and where 〈ℓ〉 is ℓ written as an n-bit binary
integer (messages with maximum length 2n are sufficient for most applications).
Appending 〈ℓ〉 amounts to using Merkle-Damgard strengthening, which we do
in order to keep our space of messages suffix-free. Any other suffix-free encoding
of messages would do as well.

To iterate F [f1, f2, f3] we define the “SS-cascade” G[f1, f2, f3] of an nℓ-bit
string x = x1‖· · · ‖xℓ where each xi is an n-bit string by G[f1, f2, f3](x) = yℓ

where y0 = 0n and yk = F [f1, f2, f3](xk‖yk−1) for 1 ≤ k ≤ ℓ. Finally, given an
additional n-bit to n-bit function f4 we define the SS-NMAC H[f1, f2, f3, f4] by

H[f1, f2, f3, f4](x) = f4(G[f1, f2, f3](x)).

for all x ∈ Dom(H) := {PadAp(y) : y ∈ {0, 1}∗}. See Figure 2, where x =
x1‖· · · ‖xℓ‖〈ℓ〉. Note that to query H[f1, f2, f3, f4] on its domain an adversary
must pad the input itself before giving it to the oracle. Thus queries must be
at least n bits long and the number of queries made by an adversary is upper
bounded by µ/n where µ is the total length of messages queried by the adversary.

For the remainder of the paper we let f : {0, 1}κ × {0, 1}n → {0, 1}n be an
arbitrary, fixed function family. We consider H as a function family of signature
{0, 1}4κ × Dom(H) → {0, 1}n, where Hk1k2k3k4

(x) := H[fk1
, fk2

, fk3
, fk4

](x).
Likewise we consider F as a function family of signature {0, 1}3κ × {0, 1}2n →
{0, 1}n defined by Fk1k2k3

(x‖y) = F [fk1
, fk2

, fk3
](x‖y).

4 Security of SS-NMAC as a MAC

4.1 Overview

In this section we outline the proof that SS-NMAC is a secure MAC when
f1, . . . , f4 are secure MACs. The proof shows that H is a secure MAC family if

f is a secure MAC family. In fact,

InSecmac
H (t, q̃, µ) ≤

(

1 + 30q2 log2(q)
)

· InSecmac
f (t + O(q2n), q, qn) (1)

where q = µ/n (q̃ is inconsequent, though one automatically has q̃ ≤ q). The
O(q2n) difference in running time is due to the overhead of a simulator.

Like Dodis, Pietrzak and Puniya [7], our security proof follows the approach
developed by An and Bellare [2], who reduce the VIL-MAC security to FIL-WCR
security. In order to summarize their method in a convenient way we refer to the
members of a function family as being MAC-secure or WCR-secure (see section
2 for the definition of WCR security) though security is really a property of the
function family. An and Bellare reduce the MAC security of a VIL function to
the WCR security of a FIL function in two steps:

Step 1: The composition of a secure FIL-MAC fk and a secure WCR func-
tion Gk′ is a secure VIL-MAC fk(Gk′(·)) (Lemma 4.2 [2]). Applying this to the
case where fk = fk4

and Gk′ = G[fk1
, fk2

, fk3
] it therefore suffices to show that

G[fk1
, fk2

, fk3
] is WCR-secure if f is a secure MAC family in order to show that

H[fk1
, fk2

, fk3
, fk4

] = fk4
(G[fk1

, fk2
, fk3

]) is a secure MAC family.

Step 2: On a suffix-free domain of inputs the Merkle-Damgard iteration of a
FIL-WCR compression function gives a VIL-WCR function (Lemma 4.3 [2]).
Thus, by step 1, it suffices to show that the Shrimpton-Stam compression func-
tion F [fk1

, fk2
, fk3

] is FIL-WCR when f is a secure MAC family.

Steps 1 and 2 give a qualitative description of An and Bellare’s approach. Quan-
titatively, their Lemmas 4.2 and 4.3 imply that

InSecmac
H (t, q̃, µ) ≤ InSecmac

f (t, q, qn) + InSecwcr
F (t, q, 2qn) (2)

where q = µ/n. Since InSecmac
f (t, q, qn) ≤ InSecmac

f (t + O(q2n), q, qn) it there-
fore suffices to prove

InSecwcr
F (t, q, 2qn) ≤ 30q2 log2(q) · InSecmac

f (t + O(q2n), q, qn) (3)

in order to prove (1). Inequality (3) is really the paper’s main result, and we
state it as a theorem:

Theorem 1. Let f : {0, 1}κ×{0, 1}n → {0, 1}n and let F : {0, 1}3κ×{0, 1}2n →
{0, 1}n given by Fk1k2k3

(x‖y) = F [fk1
, fk2

, fk3
](x‖y) = fk1

(x) ⊕ fk3
(fk1

(x) ⊕
fk2

(y)). Then

InSecwcr
F (t, q, 2qn) ≤ 30q2 log2(q) · InSecmac

f (t + O(q2n), q, qn).

The full proof of Theorem 1 is proven in the full version [9], but we give an
outline in the next section.

Together with Lemmas 4.2 and 4.3 of [2], Theorem 1 implies inequality (3),
which we restate as our theorem characterizing the MAC security of SS-NMAC:

Theorem 2. Let f : {0, 1}κ×{0, 1}n → {0, 1}n and let H : {0, 1}4κ×Dom(H)→
{0, 1}n be the SS-NMAC function family. Then, letting q = µ/n,

InSecmac
H (t, q̃, µ) ≤

(

1 + 30q2 log2(q)
)

· InSecmac
f (t + O(q2n), q, qn).

4.2 Proof Outline

In this section we give a proof of Theorem 1 under several simplifying assump-
tions, which make our presentation considerably easier, while maintaining the
key ideas of the full proof. Recall, we need to upper bound the WCR-insecurity
of the Shrimpton-Stam compression function F in terms of the MAC-insecurity
of f . Equivalently, we must lower bound the MAC-insecurity of f in terms of the
WCR-insecurity of F . To do the latter, we show how an ε-collision-finding ad-
versary A for F can be turned into a δ-MAC-forging adversary B for f , where B
uses the same number of queries but has chance of success δ = Ω(ε/q2 log2(q)).

First, instead of giving A oracle access to F [f1, f2, f3], we directly give it
oracle access to f1, f2, f3, with q queries allowed to each fi. Clearly, such an ad-
versary can simulate q queries to F , so we only made A more powerful. (Note, this
strengthened attacker will be useful when we extend our argument to the “oracle
cipher” model in Section 6.) Let us generally denote the inputs to f1, f2, f3 by
x, y, z, respectively, and also denote by x1 . . . xq, y1 . . . yq and z1 . . . zq the or-
dered inputs to f1, f2, f3 supplied by A. As expected, the forger B will simulate
this adversary A when trying to forge one of the fi’s, by using its own oracle
to simulate the corresponding fi, and simulating the other fj ’s by picking their
secret keys by itself and answering honestly.

Simplifying Assumptions. Before proceeding further, we state our simplifying
assumptions on the behavior of A, which will make our construction of B much
simpler, while retaining the key ingredients of the general case.

– (No Collision in fi’s) For any distinct inputs xr and xs that A supplied
to f1, f1(xr) 6= f1(xs). Similar conditions also hold for f2 and f3.

– (Query Order) All the calls to f1 and f2 are made by A before any call to
f3 is made.

Let us briefly comment on these assumptions. The first assumption regarding the
collisions in the fi’s is very minor, and is done for convenience only. Indeed, in
the actual applications, the fi’s are permutations, so the assumption is trivially
true. And even if the fi’s are arbitrary length-preserving MACs, the failure to
satisfy our assumption with probability Ω(ε) trivially leads to a simple attacker
B, forging the corresponding fi with probability Ω(ε/q2), by simply guessing the
indices r, s ∈ {1 . . . q} of the colliding queries. So the only “real” assumption we
make is the Query Order Assumption. This assumption is provably impossible
for the “initial” attacker who has oracle access to F [f1, f2, f3], as opposed to
f1, f2, f3 (since f3 will be called on the first call there), and is even more
unreasonable for the generalized attacker that can query the fi’s in any order it
wants. However the assumption is used in a rather weak way in the proof sketch,
as we will see, so that eliminating it only requires additional casework, and no
significant new ideas.

Notation and Terminology. A ball is a pair (x, y) where x, y ∈ {0, 1}n. A
bin is a value z ∈ {0, 1}n. It is instructive to associate balls (x, y) with the inputs
to F , and the bins z with the inputs to f3. After A makes q queries x1 . . . xq to
f1 and y1 . . . yq to f2, we get Q = q2 potential balls (xr, ys) “thrown” by A. In

particular, we will say that such (xr, ys) is placed into the bin z = f1(xr)⊕f2(ys),
and let Bin(z) = {(xr, ys) : f1(xr) ⊕ f2(ys) = z} denote the set of balls placed
into bin z. Notice, each query xr to f1 allows the attacker to simultaneously place
j ≤ q balls (xr, y1), . . . , (xr, yj), where j is the number of queries to f2 made so
far. However, under our No Collision assumption of f2, all these j balls go to
distinct bins f1(xr) ⊕ f2(ys), where 1 ≤ s ≤ j. Similar discussion holds for the
calls to f2. Also, under our Query Order Assumption, the attacker A places
all Q balls into the appropriate bins in the first stage, before making any of its
queries z1 . . . zq to f3 in the second stage. And after each such query zt to f3, A
learns the value of F (x‖y) = f1(x)⊕ f3(zt) precisely for all (x, y) ∈ Bin(zt).

Back to Reduction. By our assumption, A will find a collision (x, y) 6=
(x′, y′) to F with probability ε. Without loss of generality, we assume that A
makes the queries necessary to verify this collision. Thus, x, x′ ∈ {x1, . . . , xq},
y, y′ ∈ {y1, . . . , yq}, and z, z′ ∈ {z1, . . . , zq}, where z = f1(x) ⊕ f2(y) and z′ =
f1(x

′) ⊕ f2(y
′). Notice, under our No Collision assumption on f1 and f2, we

claim that z 6= z′. Otherwise, f3(z) = f3(z
′) and f1(x) ⊕ f3(z) = F (x‖y) =

F (x′‖y′) = f1(x
′)⊕f3(z

′) imply that f1(x) = f1(x
′), meaning that x = x′. Then

f2(y) = f1(x)⊕z = f1(x
′)⊕z′ = f2(y

′), so y = y′, meaning that (x, y) = (x′, y′).
Hence, the “colliding” bins z and z′ queried by A must be distinct.

We now define a key parameter which will determine the behavior of our
forger B: the maximum bin size m = maxz |Bin(z)| after the calls to f1 and
f2 (the “filling” stage). We consider two complementary cases: (1) A finds a
collision and m ≤ log(q), meaning that every bin z contains at most log(q) balls
after the calls to f1 and f2 are finished; and (2) m > log(q), meaning that A
managed to produce more than log(q) pairs (xr, ys) resulting in the same value
z = f1(xr)⊕ f2(ys).

(Interestingly, this parameter m corresponds to the largest “multi-collision”
generated by A in the “filling” stage. As argued by Shrimpton and Stam [17] for
the case of truly random functions fi and q ≈ 2n/2, the value m must be smaller
than n1+o(1) ≈ log q with high probability, more or less corresponding to saying
that the attacker A must almost always be in case (1).)

By assumption that A succeeds to find a collision with probability ≥ ε, at
least one of these complementary cases happens with probability ≥ ε/2.

Case (1): A finds a collision and m ≤ log(q). This is the “easy” case. Intuitively,
by querying at most q bins z in the second stage, A learned the value of F in
at most qm ≤ q log(q) points (x, y). As we will see, it will allow B to guess
the colliding points (x, y), (x′, y′) with probability 1/(q log(q))2, and then forge
the value f3(z

′) = f3(z) ⊕ f1(x) ⊕ f1(x
′). More formally, B starts by choosing

two random indices j < i between 1 and q. Let zi, zj be the i-th and j-th
queries made to f3. When the query f3(zi) is made, B chooses random elements
(xi, yi) ∈ Bin(zi) and (xj , yj) ∈ Bin(zj) (assuming these sets are nonempty,
otherwise B gives up), and predicts that f3(zi) = f1(xi)⊕f1(xj)⊕f3(zj). Notice,
this corresponds to guessing that F (xi, yi) = F (xj , yj), which implies that A is
about to find a collision. This strategy cannot be successful unless A finds a
collision (which we are assuming happens in this case), and unless the colliding

bins zi and zj are distinct, which we also argued earlier as following from our No
Collision assumption. But when A does find a collision, B’s chance of guessing
the indices i, j correctly is 1/

(

q
2

)

≥ 1/q2. Moreover if maxz |Bin(z)| ≤ log(q),
B’s chance of guessing the right elements (xi, yi) and (xj , yj) in Bin(zi) and
Bin(zj) is at least 1/ log(q) each. Thus B’s chance of success with this strategy
is at least 1/q2 log2(q) when maxz |Bin(z)| ≤ log(q) and A finds a collision.

Case (2): A produces m > log(q). This is the “hard” case, where our balls-
and-bins terminology comes in handy. Intuitively, if A throws q2 balls with a
guarantee that some bin will contain a lot of balls at the end, B should have a
non-trivial chance (analyzed below) to guess the bin z corresponding to some
ball (x, y) before this ball is thrown. To effect such a guess, when A “throws” the
ball (x, y) by querying, say, f1(x) after previously querying f2(y), B can predict
that f1(x) = z ⊕ f2(y), or conversely with f1 and f2 reversed if A queries f2(y)
after querying f1(x). In other words, predicting the output of f1 or f2 on a value
queried by A is equivalent to predicting the bin where a particular ball (x, y) will
land at the point when the latest of the two queries f1(x), f2(y) is made. Thus,
we may view B’s task as consisting of observing a set of Q = q2 balls being
placed by groups in 2n bins, and interrupting the game at some point to predict
the bin where a particular ball that is about to be placed. We model this by a
“balls-and-bins” game played by A and B, where A is incrementally throwing
Q balls into bins, trying to fill some bin with more than log(q) balls, and yet
without having B be able to guess the position of a ball before it is placed. Based
on our discussion, the precise “rules” of this game are as follows:

Balls-and-Bins Game:

– The game proceeds in 2q rounds, after which A is required to throw exactly
Q = q2 balls.

– Before each round, A announces to B at most q balls b1, . . . , bt that it will be
throwing into (necessarily) distinct bins in this round. [Intuitively, a round
corresponds to a query to f1(xr) (or f2(ys)), and the balls are the corre-
sponding values (xr, yj) (or (xi, ys)) for prior xi’s or yj ’s.]

– In turn, B can secretly “pass” or make a “guess” (ℓ, z) that the ball bℓ will
be thrown into bin z (where 1 ≤ ℓ ≤ t). [Intuitively, a successful guess will
allow B to forge either f1 or f2, as outlined earlier.]

– A announces to B the bins where b1 . . . bt are thrown. [Intuitively, B learns
the value of f1 or f2 at the queried point, allowing it to learn the bin iden-
tities.]

– If B made a guess during this round, B wins the game if the guess is correct,
and loses otherwise. If B did not make a guess, proceed to the next round.

– B must make a guess at some round, while A must fill at least one bin with
more than (log q) balls.

Lemma 1. Irrespective of A’s strategy, there exists an efficient strategy for B
to win the above game with probability at least 1/4q2 whenever some bin contains
more than log(q) balls at the end of the game.

Proof. B’s strategy is relatively simple:

1. Choose a random index i between 1 and q2, and a second random integer k
between 1 and log(q).

2. Pass in all the rounds before the i-th overall ball is about to be thrown.
3. When the i-th ball is about to be thrown, make a secret guess that this ball

will be thrown in a random bin z chosen among those bins already containing
at least k balls prior to this round (or guess any bin if no such bin exists).

We argue that with this strategy, B’s chance of success is at least 1/4q2, provided
that some bin contains more than log(q) balls by the end of the game. Let cj be
the total number of balls that are thrown into bins that already have at least j
balls in them right before the round when this ball is thrown. Thus c0 = q2 and
clog(q) ≥ 1 by assumption that a “heavy” bin exists at the end of the game. Also
note that cj is an upper bound for the number of bins that have j + 1 balls in
them at the end of the game, since for a bin to receive j + 1 balls, some ball has
to be thrown into it when the bin already has j balls.

For a fixed value of k, B’s chance of correctly guessing the bin is at least
ck

q2 ·
1

ck−1
= 1

q2 ·
ck

ck−1
. This is because B has chance at least ck

q2 of choosing a

ball thrown into a bin with at least k balls, and then has at least chance 1
ck−1

of

choosing the bin correctly, given that there are at most ck−1 bins with k balls
in them even at the end of the game, let alone in some intermediate round.
Summing over the different values of k (which each have chance 1/ log(q) of
being selected), we thus see that B’s chance of success is

log(q)
∑

k=1

1

log(q)
·

1

q2
·

ck

ck−1
=

1

q2
ArithmeticMean

(

c1

c0
, . . . ,

clog(q)

clog(q)−1

)

≥
1

q2
GeometricMean

(

c1

c0
, . . . ,

clog(q)

clog(q)−1

)

=
1

q2

(

clog(q)

c0

)
1

log(q)

≥
1

q2

(

1

q2

)
1

log(q)

=
1

4q2

as claimed, where we used c0 = q2 and clog(q) ≥ 1. �

The above lemma immediately gives us a forger B for Case (2), which suc-
ceeds to forge either f1 or f2 with probability at least 1/4q2 > 1/(q log(q))2

for that case. As B chooses randomly which strategy to use and one of the two
cases must occur with probability at least ε/2, B’s chance of success is at least
ε
2 min(1/(q log(q))2, 1/4q2) = ε/2(q log(q))2, completing the WCR proof under
our two simplifying assumptions.

General Case. Note that our (main) Query Order Assumption (namely
that queries to f3 come before queries to f1 and f2) is only used rather weakly,
in the sense that A could make its queries in any order as long as the query which
completes the collision is a query to f3. Thus removing this assumption amounts
to handling two extra cases, in which collisions are completed with queries to f1

or f2 instead of f3. It turns out these cases can be handled fairly similarly to
the f3 case. The details are deferred to the full version [9].

5 Security of SS-NMAC as a PRF

In this section we show that SS-NMAC is a secure PRF if f is a secure PRF.
We will prove a stronger property in Section 6; here we give a proof reducing to
the security of encrypted CBC-MAC, which gives a weaker result but a better
security bound. The precise statement is the following theorem.

Theorem 3. Let f : {0, 1}κ × {0, 1}n → {0, 1}n and let H be the SS-NMAC

function family. Then, letting q = µ/n and ε = InSecprf
f (t, q, qn), we have

InSecprf
H (t, q̃, µ) ≤ 5q2/2n + 4ε.

Proof. Let H∗ be the SS-NMAC construction where f1, f2, f3, f4 are random
functions. Then obviously InSecprf

H (t, q̃, µ) ≤ InSecprf
H∗(t, q̃, µ)+4ε, so it suffices

to show that InSecprf
H∗(t, q̃, µ) ≤ 5q2/2n where q = µ/n.

We show that InSecprf
H∗(t, q̃, µ) ≤ 5q2/2n by reducing to the security of the

“original” encrypted CBC-MAC, which is defined using a function family f of
n-bit to n-bit functions by

C[f1, f2](x1‖. . . ‖xm) = f2(. . . f1(f1(x1)⊕ x2) . . .)

Let C∗ be the instance of C where f1, f2 are random functions (namely, f is the

set of all functions {0, 1}n → {0, 1}n). It is known that InSecprf
C∗ (t, q̃, µ) ≤ q2/2n

where still q = µ/n [14]. The security proof in [14] is also easily seen to apply to
the case of a three-keyed, “alternating” encrypted CBC-MAC defined by

CA[f2, f3, f4](x1‖. . . ‖xm) = f4(. . . f2(f3(f2(x1)⊕ x2)⊕ x3) . . .)

in which encryptions by f2 and f3 alternate. Thus InSecprf
C∗

A
(t, q̃, µ) ≤ q2/2n

where C∗

A is the random function implementation of CA.
Note that CA becomes H if each block of input is repeated once and encrypted

with a call to f1. Thus a distinguisher D for H∗ can be used to obtain a distin-
guisher D′ for C∗

A: sample a key k1 to simulate the function fk1
, then simulate a

query x1‖· · · ‖xm of D to the oracle H∗ by passing fk1
(x1)‖fk1

(x1)‖fk1
(x2)‖fk1

(x2) · · ·
fk1

(xm)‖fk1
(xm) to the oracle for C∗

A.
If the oracle is a true instance of C∗

A the answers returned to D look exactly
as the answers of an oracle to H∗, so D’s chance of distinguishing correctly is
unaffected in that case. If on the other hand the oracle is a random function
the answers returned to D are independent random values except when the
same input is queried twice to the random oracle, which can happen because of
collisions in fk1

. The chance of a collision in fk1
when q = µ/n blocks of message

are queried and fk1
is a random function is at most q2/2n, however, so D and

D′’s distinguishing advantages differ by at most q2/2n. Thus, since D′ uses twice
the message length, we get the desired

InSecprf
H∗(t, q̃, µ) ≤ InSecprf

C∗

A
(t, q̃, 2µ) + q2/2n ≤ 5q2/2n.

�

6 Enhanced PRF Security in the Oracle Cipher Model

In this section, we introduce (following [8]) a strictly stronger PRF security
notion for block-cipher-based PRFs in the so called oracle cipher model, and show
that SS-NMAC has (nearly) birthday “oracle cipher security” when instantiated
with a secure PRP.

Let H be a function using a fixed-key block cipher f (or a small set of
different fixed key block ciphers). Essentially, the oracle cipher model is designed
to allow the adversary to view computation transcripts of H, but not including
the internals of the block cipher calls. For example, one can imagine that the
adversary witnesses a trusted party’s computation of H on various inputs, where
the trusted party out-sources the block cipher calls to a smart-card, so that the
secret keys remain hidden from the adversary. We argue that H is a good random
function if, subsequent to viewing a number of such computations, the adversary
is unable to distinguish H (queried on new values) from a truly random function.

Let Mf be an oracle Turing machine implementing H. Before the game starts
random keys are chosen for the block ciphers, a random function h with same
domain and range as H is sampled, and a coin flipped to determine whether
the adversary will be in the “real world” or “random world”. We allow the
adversary two types of queries: “transcript” queries and “oracle” queries. When
the adversary A makes a transcript query the transcript of the computation
Mf (x) is returned to A. When the adversary makes a oracle query (oracle queries
must be distinct from transcript queries), the adversary either gets Hf (x) or h(x)
depending on whether it is in the real world or the random world. The adversary
wins if it can distinguish the two worlds.

We call the advantage of an adversary at winning this game the oracle ci-
pher PRF security of H, denoted εoprf . Clearly εoprf ≥ εprf for the same num-
ber of queries and the same computational resources, since the adversary is
free to play the oracle cipher game without making any transcript queries. Let
InSecoprf

H (t, q̃, µ) be the maximum εoprf over all adversaries running in time at
most t, making at most q queries of total (padded) length at most µ, where
the running time includes the time necessary to run H and Mf . (Obviously,

InSecoprf
H (t, q̃, µ) implicitly depends on the choice of M .) We have the following

theorem showing that the oracle cipher security of SS-NMAC is nearly equivalent
to its standard PRF security.

Theorem 4. Let f : {0, 1}κ × {0, 1}n → {0, 1}n, let H : {0, 1}4κ ×Dom(H)→
{0, 1}n be the SS-NMAC function family, and let Mf1,f2,f3,f4 be the natural
oracle Turing implementation of SS-NMAC , which makes 3ℓ + 1 oracle calls to
compute H(x) on a padded input of ℓ blocks. Then with respect to this oracle

Turing machine, and letting q = µ/n and ε = InSecprf
f (t, q, qn), we have

InSecoprf
H (t, q̃, µ) ≤ 30q2 log2(q)/2n + 4ε.

Proof. Let H∗ be the instantiation of H with a truly random function family
instead of with f . We clearly have InSecoprf

H (t, q̃, µ) ≤ InSecoprf
H∗ + 4ε, so it

suffices to show InSecoprf
H∗ ≤ 30q2 log2(q)/2n.

We now modify the game like so: for each type of query (transcript and ora-
cle), the adversary is allowed to view the transcript of the computation of H∗(x)
up to the application of f4. Then for a transcript query the actual application of
f4 is shown as part of the transcript to the adversary, whereas for an oracle query
the value of the oracle query is simply appended to the transcript (which will be
the value of f4 in the real world, or else simply the value of the random function
h). Note the adversary knows in either case which type of query it is witnessing,
but cannot independently verify f4 for oracle queries unless it happens to make
another query later (either transcript or oracle) which results in the same input
to f4. In fact, if the adversary never makes two queries at least one of which is
an oracle query that result in the same input to f4, the two worlds look exactly
alike (because f4 is uniformly random) and the adversary has zero advantage.

Thus the adversary’s advantage is upper bounded by its probability of finding
a collision at the input to f4 with free oracle access to f1, f2, f3, which is in turn
upper bounded by the collision resistance of the Shrimpton-Stam compression
function when instantiated with random functions. Thus Theorem 1 applied with
MAC insecurity 1/2n gives InSecoprf

H∗ (t, q̃, µ) ≤ 30q2 log2(q)/2n, as desired. �

7 Unpredictability vs. Pseudorandomness

Given that our solution is three times slower than CBC-MAC, it is interesting
to see if existing block ciphers, such as AES, are indeed more unpredictable than
pseudorandom. Notice, even if our n-bit block cipher is completely ideal, it has
security εprf ∼ q2/2n+1 as a one-block PRF, and a much better security εmac ∼
1/(2n−q) as a one-block MAC, where q is the number of input queries issued by
the attacker. Also, in theory is is trivial to construct artificial block ciphers which
are much more unpredictable than pseudorandom. Unfortunately, existing block
ciphers are neither ideal nor artificial. For such “real” block ciphers, to the best
of our knowledge, this gap between unpredictability and pseudorandomness has
not been researched extensively. In part, this might be due to the cryptanalytic
“culture” to call the attack truly “successful” if it actually recovers the secret
key, which, obviously, will not demonstrate the gap we are seeking here.

We give a (rather weak) example to demonstrate this point. It is well known in
complexity theory [20] that no pseudorandom generator with κ-bit key can have
security more than 2−κ/2 (against non-uniform attackers), even against linear
tests.3 This means that no non-trivial PRF with a κ-bit key can have security
εprf ≤ 2−κ/2, even for q = O(1) (e.g., AES cannot be more than 2−64 secure,
even for q = 2!). In contrast, no such limitation is known for unpredictability,
even for exponentially high number of queries q (e.g., for all we know, AES
might be almost 2−128 secure, even for q = 260 or higher). However, the above
theoretical “separation” is not considered a “real attack”, since the best known
way to translate this specific 2−κ/2 distinguishing attack to the key recovery
attack takes time Ω(2κ), which is trivial.

3 Since an ε-secure pseudorandom generator must also be an ε-biased set [12], and
such sets must have seed length at least 2 log(1/ε) (see [1]). Thus, κ < 2 log(1/ε).

We hope that our work will motivate further research to understand the gap
between unpredictability and pseudorandomness of existing block ciphers, such
as AES. In particular, to answer the question if existing modes, such as CBC-
MAC or HMAC, should be replaced by slower, but more “resilient” modes, such
as SS-NMAC.

References

1. Noga Alon, Oded Goldreich, Johan Hastad, Rene Peralta, Simple Construction

of Almost k-wise Independent Random Variables. Random Struct. Algorithms,
3(3):289–304, 1992.

2. Jee Hea An, Mihir Bellare, Constructing VIL-MACs from FIL-MACs: Message

Authentication under Weakened Assumptions, CRYPTO 1999, pages 252–269.
3. Mihir Bellare, New Proofs for NMAC and HMAC: Security without Collision-

Resistance, CRYPTO 2006, pages 602–619.
4. Mihir Bellare, Joe Kilian, Phillip Rogaway, The Security of Cipher Block Chaining,

CRYPTO 1994, pages 341–358.
5. Mihir Bellare, Ran Canetti, Hugo Krawczyk, Pseudorandom Functions Re-visited:

The Cascade Construction and Its Concrete Security, FOCS 1996, pages 514–523.
6. Mihir Bellare, Ran Canetti, Hugo Krawczyk, Keying Hash Functions for Message

Authentication, CRYPTO 1996, pages 1–15.
7. Yevgeniy Dodis, Krzysztof Pietrzak, Prashant Puniya, A New Mode of Operation

for Block Ciphers and Length-Preserving MACs, EUROCRYPT 2008, pages 198–
219.

8. Yevgeniy Dodis, Prashant Puniya, Feistel Networks Made Public, and Applica-

tions, EUROCRYPT 2007, pages 534–554.
9. Yevgeniy Dodis, John Steinberger, Message Authentication Codes from

Unpredictable Block Ciphers. Full version of this paper. Available at
http://people.csail.mit.edu/dodis/ps/tight-mac.ps.

10. Oded Goldreich and Leonid Levin, A hard-core predicate for all one-way functions,
STOC 1989, pages 25–32.

11. Michael Luby and Charles Rackoff, How to construct pseudo-random permutations

from pseudo-random functions, SIAM J. Comput. 17(2):373–386, 1988.

12. Joseph Naor, Moni Naor. Small-Bias Probability Spaces: Efficient Constructions

and Applications. SIAM J. Comput. 22(4):838–856, 1993.
13. Momi Naor, Omer Reingold, From unpredictability to indistinguishability: A sim-

ple construction of pseudo-random functions from MACs, CRYPTO 1998, pages
267–282.

14. Erez Petrank, Charles Rackoff, CBC MAC for Real-Time Data Sources, J. Cryp-
tology 13(3):315–338, 2000.

15. Bart Preneel and Paul C. van Oorschot, MD-x MAC and building fast MACs from

hash functions, CRYPTO 1995, pages 1–14.
16. Phillip Rogaway and John Steinberger, How to Build a Permutation-Based Hash

Function, CRYPTO 2008, pages 433–450.
17. Thomas Shrimpton and Martijn Stam, Building a Collision-Resistant Compression

Function from Non-Compressing Primitives, ICALP 2008, pages 643–654.
18. Daniel R. Simon, Finding Collisions on a One-Way Street: Can Secure Hash Func-

tions Be Based on General Assumptions?, EUROCRYPT 1998, pages 334–345.
19. Xiaoyun Wang, Hongbo Yu, How to break MD5 and Other Hash Functions, EU-

ROCRYPT 2005, pages 19–35.
20. David Zuckerman, Private communication.

