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Abstract. In this paper we construct a chosen-key distinguisher and a
related-key attack on the full 256-bit key AES. We define a notion of
differential q-multicollision and show that for AES-256 q-multicollisions
can be constructed in time q · 267 and with negligible memory, while
we prove that the same task for an ideal cipher of the same block size

would require at least O(q · 2
q−1
q+1 128

) time. Using similar approach and
with the same complexity we can also construct q-pseudo collisions for
AES-256 in Davies-Meyer mode, a scheme which is provably secure in
the ideal-cipher model. We have also computed partial q-multicollisions
in time q · 237 on a PC to verify our results. These results show that
AES-256 can not model an ideal cipher in theoretical constructions. Fi-
nally we extend our results to find the first publicly known attack on the
full 14-round AES-256: a related-key distinguisher which works for one
out of every 235 keys with 2120 data and time complexity and negligible
memory. This distinguisher is translated into a key-recovery attack with
total complexity of 2131 time and 265 memory.

Keywords: AES, related-key attack, chosen key distinguisher, Davies-
Meyer, ideal cipher.

1 Introduction

The Advanced Encryption Standard (AES) is a block cipher which was chosen
by NIST from a set of 15 candidate designs in a thorough evaluation process
that lasted from September 1997 till October 2000. On November 26, 2001 Rijn-
dael [5], a 128-bit block, 128/192/256-bit key block cipher has become a standard
as U.S. FIPS 197 [12]. In June 2003 the US government has approved the use
of 128, 192, 256 bit key AES for SECRET and 192, 256-bit key AES for TOP
SECRET information [13]. In the last ten years AES has been subject to very
intensive cryptanalytic effort, with best currently known attacks breaking 7, 10,
10 rounds for respective keysizes (128, 192, 256), with very high complexities.

In this paper we show for the first time in the open literature distinguishers
and related-key attacks on the full 14-round 256-bit key AES. Research presented
in this paper follows the logic described in Fig. 1. First we identified slow diffusion
and other differential weaknesses in the key schedule of AES-256 which match



nicely with the differential properties of the round function. This allows us to
construct local collisions for AES, i.e. two round difference propagation patterns
which result in low weight difference in the subkeys and zero difference in the
128-bit block. We concatenate four such local collisions together and add another
6-round trail on top in order to cover full 14 rounds of AES-256. The trail1 has 41
active S-boxes (36 in the block and 5 in the key schedule), so we apply a special
tool, a triangulation algorithm (designed for the purpose of finding collisions in
hash functions), in order to find keys and plaintexts that conform to the trail.
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Fig. 1. Outline of the research presented in this paper.

From this point we go in two directions. First we show that for AES-256
one can construct a chosen-key distinguisher based on the new notion of a dif-
ferential q-multicollision in time q · 267 and with negligible memory. We prove
that the same task for an ideal cipher of the same block size would require at
least q · 2

q−1
q+1 128 time for q ≤ 57 and at least q · 2

q−2
q+2 128 for q > 57. I.e. for

q > 3 the differential multicollision for AES-256 can be constructed significantly
faster than for an ideal cipher. Previously a known-key distinguisher for seven
rounds of AES with 256 texts was found in [11]. To verify our results we found
partial q-multicolisions in several hours on a PC using the publicly available
implementation of AES-256.

As a direct application of this differential q-multicollision distinguisher we
show that AES-256 when used in the Davies-Meyer mode allows to construct q
pseudo-collisions with fixed differences ∆IV , ∆M in the IV and the message with
complexity q · 267. Again, such a result would require at least q · 2

q−2
q+2 128 time for

the ideal cipher in the Davies-Meyer mode. Results of this type try to enchance
our definitions of block cipher security and to fill the gap between theoretical
models like random oracle and ideal cipher and the real world of ciphers which

1 We use colors in the diagrams of the trails, so please refer also to the tables in the
appendix if you print this paper on a black and white printer.



have fixed description and are efficiently computable [2,4]. However a proper
security definition which would capture the intuition behind chosen/known key
attacks is still an open problem.

The second direction that we studied was application of the trails that we
have found to more standard attacks on a block cipher, for example related-key
attacks. In particular we show that by changing the top two rounds of the trail
that we used previously one obtains a differential trail with only 24 active S-
boxes (19 in the round function and 5 in the key schedule). From this trail we
can construct a differential distinguisher for AES-256 which works for one key
out of 235 and has complexity 2120 data and time, and negligible memory. This
distinguisher can be used to mount a key-recovery attack on AES-256 with total
complexity of 235+96 = 2131 time and 265 memory. We summarize our findings
in Table 1.

This paper is organized as follows: in Section 2 we prove a lower bound on
the complexity of finding differential q-multicollisions in the case of an ideal
cipher and construct a distinguisher for the full AES-256. In Section 3 we show
an application of these results to finding pseudo-collisions for the Davies-Meyer
hashing mode instantiated with AES-256. In Section 4 we show a related-key
attack on the full AES-256. In Section 5 we discuss new design criteria for block
cipher key schedule as a consequence of our attack. Section 6 concludes the
paper. In Appendix A we provide technical details about our differential trails.

Attack # rounds # keys Data Time Memory Source

Known-key integral 7 1 256 256 256 [11]

Partial sums 9 256 285 2226 232 [6]

Related-key rectangle 10 64 2114 2173 ? [1,10]

q-multicollisions 14 2q 2q q · 267 - Sec. 2

Partial q-multicollisions 14 2q 2q q · 237 - Sec. 2.3

Related-key distinguisher 14 235 2119 ∗ 2119 ∗ - Sec. 4.1

Related-key key recovery 14 235 296 ∗ 296 ∗ 265 Sec. 4.2

∗ — for each key.

Table 1. Best attacks on AES-256

Discussion. It is clear that the open key (chosen or known) security model
is new and is still lacking a proper security definition. However we think that
if one can support an open-key attack with a proof of security against such
attack for the ideal cipher, this gives additional confidence that such property
(in our case ”differential multicollisions”) should not be present in a good cipher.



There are many constructions provably secure [3,7] in the ideal cipher model.
This model assumes that both the key and the plaintext are accessible to the
attacker. If a block cipher (e.g., AES) exhibits a property that should not appear
in the ideal cipher then instantiation of a provably secure construction with this
cipher could undesirably weaken the construction. Our Davies-Meyer example
is exactly to show that a construction provably secure in the ICM can break
down if instantiated with AES-256 (such a hash function was never proposed for
another reason — 128-bit state is too short for a modern hash). The fact that
this property does not automatically carry on to Davies-Meyer instantiated with
all the other block-ciphers (hopefully), shows a non-trivial weakness of AES-256.

2 Multicollision distinguisher

In this section we provide a chosen-key distinguisher for AES-256 which has
practical complexity.

Definition 1. A set of two differences and q pairs

{∆K , ∆P ; (P1,K1), (P2,K2), . . . , (Pq,Kq))}

is called a differential q-multicollision for a cipher EK(·) if

EK1(P1)⊕ EK1⊕∆K
(P1 ⊕∆P ) = EK2(P2)⊕ EK2⊕∆K

(P2 ⊕∆P ) =
= · · · = EKq

(Pq)⊕ EKq⊕∆K
(Pq ⊕∆P ). (1)

A differential q-multicollision can be also viewed as a set of q right pairs with
respect to the related-key differential, where the key is not fixed.

We compare the task of constructing a differential q-multicollision for an
ideal cipher with that for AES-256. This task for an ideal cipher, i.e. a set of
2k randomly chosen permutations, would require treating it as a black-box and
making only encryption/decryption queries. We expect that for a good cipher
with no (yet discovered) structural flaws, the task of constructing a differential
q-multicollision would have the same complexity as for an ideal cipher.

Let us compute this complexity measured in the number of queries. Since
the cipher is ideal, an adversary is only given an access to the encryption and
decryption oracles, both having two inputs (a key and a plaintext/ciphertext)
and one output. This is the same model of an adversary as in [2,3, p. 329].

In the beginning no triplet 〈plaintext, key, ciphertext〉 is defined. Then, for
each query of the adversary ”EK(P ) = ?” the encryption oracle takes a random
value C from a possible range (where EK(·) is yet undefined) and thus defines
EK(P ) = C. Also E−1

K (C) becomes defined. The same rule holds for a decryption
query.

Lemma 1. To construct a differential q-multicollision for an ideal cipher with
an n-bit block an adversary needs at least O(q · 2

q−2
q+2n) queries on the average.



Proof. See Sec. 2.1.

Remark 1. For small q, when the lower bound does not exceed 2n−1, a better
estimate is obtained (see the proof of the lemma). In our case, for n = 128, an
adversary needs at least q · 2

q−1
q+1 128 queries if q ≤ 57.

Surprisingly, differential multicollisions for AES-256 can be constructed sub-
stantially faster. Furthermore, we can set ∆P = 0 in a multicollision, so a
stronger statement holds.

Theorem 1. A differential q-multicollision with ∆P = 0 for AES-256 can be
found with time complexity q · 267.

Proof. See Sec. 2.2.

Thus for q > 3 a differential q-multicollision for AES-256 can be constructed
significantly faster than for an ideal cipher.2 Therefore, AES-256 can not model
an ideal cipher.

2.1 Proof of Lemma 1

Proof. Let A be an adversary attacking the cipher, and assume that A asks its
oracles a total of L queries, where L < 2n−1. Assume that a multicollision of the
form (1) is found. Let us compute the probability of this event. First, we rewrite
(1) as U1 = U2 = · · · = Uq. With each term Uj = EKj (Pj)⊕EKj⊕∆K

(Pj ⊕∆P )
we associate an integer tj such that tj-th oracle query determines the value of
Uj , i.e., computes the last (chronologically) element of the sum. Without loss of
generality, assume that t1 < t2 < · · · < tq. Finally, define t′1 as the index of the
query that determines the first element of the sum U1.

U1︷ ︸︸ ︷
EK1(P1)︸ ︷︷ ︸

queried at t′1

⊕EK1⊕∆K
(P1 ⊕∆P )︸ ︷︷ ︸

queried at t1

=

U2︷ ︸︸ ︷
EK2(P2)︸ ︷︷ ︸

queried before t2

⊕EK2⊕∆K
(P2 ⊕∆P )︸ ︷︷ ︸

queried at t2

=

= · · · =

Uq︷ ︸︸ ︷
EKq

(Pq)︸ ︷︷ ︸
queried before tq

⊕EKq⊕∆K
(Pq ⊕∆P )︸ ︷︷ ︸

queried at tq

. (2)

Now compute for every (t′1, t1, t2, t3, . . . , tq) the probability that this set de-
fines a differential q-multicollision. Before submitting ti-th query, i > 1, the
following equation holds:

U1 = U2 = · · · = Ui−1,

where terms of U1, U2, . . . , Ui−1 are completely determined by a tuple (t′1, t1,
t2, t3, . . ., ti−1). Indeed, from t′1 and t1 we define K1, ∆K , P1, ∆P ; from tj we
define Kj and Pj .

2 Moreover, even for q = 3 we are not aware of any algorithm faster than 22n/3.



Just before the moment ti only one term of Ui is computed — w.l.o.g. let it
be EKi

(Pi). Thus the equality Ui−1 = Ui should hold, i.e.

Ui−1 = EKi
(Pi)⊕ EKi⊕∆K

(Pi ⊕∆P )︸ ︷︷ ︸
queried at ti

By our definition, ti is the first moment when EKi⊕∆K
(Pi ⊕ ∆P ) is queried.

Then either the decryption or the encryption oracle is called. In the first case
the decryption oracle is called with a ciphertext C and a key K, which for some
i should be equal to Ki⊕∆K . By the definition of ti, the value C is chosen from
the set where EKi⊕∆K

(·) is undefined. To become a part of a multicollision,
there should exist Pi such that C = EKi

(Pi) ⊕ Ui−1. On the other hand, after
the decryption oracle is called, the following equation should hold:

E−1
Ki⊕∆K

(C) = Pi ⊕∆P . (3)

Since L < 2n−1, not more than 2n−1 texts were encrypted or decrypted with the
key Ki ⊕∆K . So the probability that (3) holds does not exceed 1/2n−1.

In the second case, let the encryption oracle be queried with a plaintext P
and a key K, which for some i should be equal to Ki ⊕∆K . For an answer C, a
similar equation should hold:

C = Ui−1 ⊕ EKi(Pi). (4)

The same probability argument holds for this equation. Therefore, for every
i ≥ 2 we get a multiplier 21−n to the probability that a tuple (t′1, t1, t2, t3, . . . , tq)
defines a differential q-multicollision. There are

(
L
q+1

)
such tuples, each defining

a differential q-multicollision with probability at max 2(q−1)(1−n). We get the
following equation for the number of queries required to get a q-multicollision
with probability 1/2: (

L

q + 1

)
≥ 2(q−1)(n−1)−1. (5)

Let us simplify the left part:(
L

q + 1

)
=

L!
(L− q − 1)!(q + 1)!

=
L(L− 1) · · · (L− q)

(q + 1)!
≤

≤ Lq+1

(q + 1)!
≤ Lq+1

(q+1)q+1

eq+1

=
(

eL

q + 1

)q+1

. (6)

Substitute the result to (5):(
eL

q + 1

)q+1

≥ 2(q−1)(n−1)−1 ⇒ L ≥ q + 1
e

2
q−1
q+1 (n−1)−1 = O(q · 2

q−1
q+1n). (7)

This is the bound for the number of queries needed to construct a multicollision
with probability 1/2. By Markov’s inequality, the average number of queries



exceeds this bound divided by two, so the right part of (7) is still a correct lower
bound.

Now consider the case when L ≥ 2n−1. Let K be the set of keys such that
there were more than 2n−1 encryption or decryption queries on each of these
keys. Define l = |K|. If l > q − 2 then L exceeds q · 2n−2, which implies the
statement of the lemma. If l ≤ q − 2 then there are at least q − l sums Ui in (2)
that do not involve keys from K. So if a q-multicollision has been found, then a
(q− l)-multicollision has too been found such that it does not involve keys from
K. Then all the arguments on the probability of this event can be carried out
from the first part of the proof.

Therefore, we gets the following inequality on L:

L ≥ q − l + 1
e

2
q−l−1
q−l+1 (n−1)−1 + l · 2n−1.

For l < q/2 we get the following:

L ≥ q

2e
2

q−2
q+2 (n−1)−1 = O(q · 2

q−2
q+2n). (8)

For l ≥ q/2 we get
L ≥ q · 2n−2 = O(q · 2n). (9)

Equations (7), (8), and (9) complete the proof. �

Remark 2. The function F∆K ,∆P
(K,P ) = EK(P ) ⊕ EK⊕∆K

(P ⊕∆P ) is a xor
of two permutations. Patarin in [14] has shown that the xor of two random
permutations can not be distinguished from a pseudo-random function with less
than 2n queries. In [15] it was proven that q-multicollision search for a random
function requires at least (q!)

1
q 2

q−1
q n effort. In our case we can not use this result

since it assumes that ∆K and ∆P are fixed in advance while we allow an attacker
to choose them during the attack.

2.2 Proof of Theorem 1

Here we construct a differential q-multicollision (1) with ∆P = 0 in q · 267 time.
This is done in 5 steps:

1. Build a differential trail, which is efficient for the multicollision search.
2. Derive ∆K from the trail.
3. Choose the active S-boxes, whose inputs will be fixed in the triangulation

algorithm. Denote this set by S.
4. Run the triangulation algorithm and derive a set of free variables.
5. Produce q pairs (P,K) for (1) as follows:

(a) Assign inputs to S-boxes from S with admissible values.
(b) Assign free variables randomly.
(c) Produce (P,K).
(d) Check if (P,K) and (P,K ⊕∆K) fit (1).

We expect that most of our readers are familiar with the description of AES
and thus point out only main features of AES-256 that are crucial for our proof.



Differential trail

Notations. Differential trail (also called differential characteristic) is a sequence
of differences in all the internal states of the cipher and all the subkeys. If we
distinguish only between zero and non-zero (byte) differences, we call such a trail
a trail with truncated differences.

We denote the subkey of round i by Ki, i.e. the first (whitening) subkey is
K0, the subkey of round 1 is K1, etc., the last subkey is K14. The difference in
Ki is denoted by ∆Ki. Bytes of a subkey are denoted by Kl

i,j , where i stands
for the row index, and j stands for the column index in the standard matrix
representation of AES. Bytes of the plaintext are denoted by Pi,j , and bytes
of the internal state after the SubBytes transformation in round r are denoted
by Ari,j . Let also Bri,j denote a byte in position (i, j) after the r-th application
of MixColumns.

Features of AES-256. AES-256 has 14 rounds and a 256-bit key, which is two
times larger than the internal state. Thus the key schedule consists of only 7
rounds. One key schedule round consists of the following transformations:

Ki,0 ← S(Ki+1,7)⊕Ki,0 ⊕ Cr, 0 ≤ i ≤ 3;
Ki,j ← Ki,j−1 ⊕Ki,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3;
Ki,4 ← S(Ki,3)⊕Ki,4, 0 ≤ i ≤ 3;
Ki,j ← Ki,j−1 ⊕Ki,j , 0 ≤ i ≤ 3, 5 ≤ j ≤ 7,

(10)

where S() stands for S-box, and Cr — for the round-dependant constant. There-
fore, every round has 8 S-boxes.

SubBytes

ShiftRows
MixColumns

Key schedule round

Key schedule round

Fig. 2. A local collision.

Weakness in the key schedule. Two fea-
tures of the key schedule help us to build
a good differential trail. First, the key
schedule has a slow diffusion in backward
direction. It means that a difference in a
single byte K0,0 will propagate to only
two bytes, K0,0 and K0,1, if we apply the
inversion of the key schedule round. The
next inverted round will affect only one
more byte, etc. Thus we can build a trail
with a low-weight difference in key sched-
ule if we start with a low-weight differ-
ence in the last round and then step back-
wards.

The second feature is unique to AES-
256 due to its ”key size”/”state size” ra-
tio, Nk/Nb = 2. We can inject ”good”
values with the first part of the key and
then cancel them, after they pass the round, with the second part of the key. We
call this a local collision (Fig. 2).



Constructing a trail. Step by step, we construct a differential trail from the last
rounds to the first ones. The trail is described in details in Appendix A, both in
a truncated form and with the actual differences given. The trail has 41 active
S-boxes, and 5 of them are in the key schedule.

Search for a solution. After the trail has been defined, we produce a pair (P,K)
which with pair (P,K + ∆K) fits the trail and thus is a part of a differential
multicollision (1) since all such pairs have the same difference in the ciphertext.
Now note that the trail explicitly states all the non-zero input δI and output δO
differences of the S-boxes. According to the S-box properties, there are at most
4 solutions of the equation S(x⊕ δI)⊕ S(x) = δO. This set of solutions we call
admissible inputs. Therefore, (P,K) and (P,K + ∆K) fit the trail if and only
if in the execution EK(P ) all active S-boxes get admissible inputs. In the next
paragraphs we explain how to construct such executions efficiently.

Triangulation algorithm

Search for free variables. The triangulation algorithm was proposed in [9] as
a tool for solving systems of non-linear equations, which appear in differential
attacks. Given the constraints on the internal variables, the algorithm outputs a
special set of variables, called free variables. These free variables can be assigned
randomly; and this assignment together with pre-fixed variables completely and
efficiently determines the whole execution. The fewer variables are fixed the
better the algorithm works.

Our goal is to efficiently produce the cipher executions in which active S-
boxes get admissible values. However, the algorithm can not process all the
active S-boxes of our trail since they are positioned too far from one another.

We found that we can fix inputs to 30 out of 41 S-boxes: all the active S-
boxes in the internal states of rounds 1–4 and all the 5 active S-boxes in the key
scheduling. The triangulation algorithm outputs 18 free variables, out of these 11
are in the key and provide freedom in the choice of the key for the distinguisher.
These free variables are listed below.

Key Internal state
K1

2,0, K
1
3,0, K

1
3,1, K

2
0,1, K

3
0,1 A2

0,1, B
2
1,1, B

2
1,2

K3
2,0, K

3
3,0, K

3
2,1, K

4
0,1, K

5
0,1, K

5
3,3 B2

2,3, B
2
3,3, A

3
1,1, A

3
1,2

Constructing a pair. Having assigned 18 free variables randomly and 30 S-box
inputs with an admissible value, we substitute these values to the equations,
which have been ordered by the triangulation algorithm. One by one, all the
variables are determined and thus a pair (P,K) is defined. It fits the trail if and
only if the 11 S-boxes not covered by the triangulation algorithm get admissible
values as inputs. For the S-box in round 6 only 2 values are admissible so the
probability is 2−7 while for the other 10 S-boxes 4 values are admissible. This



results in the overall probability 2−(7+10·6) = 2−67. Thus out of 267 pairs one fits
the trail on average. We wrote a program and checked that the distribution of
the pairs is random enough so the probability estimates are likely to be correct.
We also checked experimentally that bottom 7 rounds of AES produce expected
difference after 230 pairs on the average, exactly as predicted by the trail.

The complexity of the attack. Recall the scheme of the attack, which was given in
the beginning of the proof. The first four steps are precomputations and actually
have negligible cost. The triangulation algorithm works less than a second. The
last step requires only to substitute the values into the equations one by one,
which is computationally equivalent to a single encryption. Thus to get a right
pair we need about 267 operations each equivalent to one encryption. The attack
needs negligible memory and is fully parallelizable.

2.3 Practical distinguisher

The definition of differential q-multicollision can be further relaxed if we allow
arbitrary difference at some byte positions of ∆P , ∆K or ∆C . Although an at-
tacker gets more freedom, finding such a construction for an ideal cipher becomes
easier as well. To get a lower bound, only a slight modification of Lemma 1 is
required.

For the 13 rounds of AES-256 the complexity of finding this type of differen-
tial 5-multicollision, with fixed difference in 14 bytes of the plaintext and fixed
ciphertext difference can be lower bounded by 2

4·112
6 = 274.6 computations. For

the full AES-256 a differential 10-multicollision with half of the plaintext differ-
ence fixed, and the fixed ciphertext difference the lower bound is 2

9·64
11 = 252.3

computations. Note that these lower bounds are far from being tight. In practice
we expect an efforts of 2112 and 264 for finding each extra collision for 13 and 14
rounds of AES-256 respectively, since the differences are structured and fixed.

At the same time we can do it much faster, in just q ·237 in both cases, which
allowed us to compute these distinguishers in several hours on a PC. The actual
values will be given in the extended version of this paper. The core of a practical
distinguisher is a multicollision trail (Figure 5), where the behavior of S-boxes
in the first two rounds is not restricted. Computing from the middle, we get
14 bytes with fixed difference before the second round, and 8 bytes with fixed
difference before the first round. The triangulation algorithm covers all but six
active S-boxes in rounds 3–14 so that we find a (partial) q-multicollision with
complexity q · 237.

3 Pseudo-collisions for AES-based hashing

The Davies-Meyer mode of blockcipher-based hashing has been proven collision-
resistant if instantiated by an ideal cipher [3]. In this section we show a similar
proof in the ideal-cipher model for the q pseudo-collision resistance, when dif-
ferences in the IV and the message (∆I , ∆M ) are fixed. We then show that it



is relatively easy to find q pseudo-collisions for AES-256 in the Davies-Meyer
mode. We also point out that we construct one-block pseudo-collisions and thus
the technique of Joux [8] does not apply here.

Our goal is for fixed differences ∆I , ∆M to find many pseudo-collisions for
the HE(I,M) def= EM (I) ⊕ I which is the Davies-Meyer compression function
with AES-256 as the underlying cipher. Here I is the 128-bit IV, and M is a
256-bit message block. A pseudo-collision satisfies the following equality:

HE(I,M) = HE(I ⊕∆I ,M ⊕∆M )

Let us rewrite it:

EM (I)⊕ I = EM⊕∆M
(I ⊕∆I)⊕ I ⊕∆I ⇔

⇔ EM (I)⊕ EM⊕∆M
(I ⊕∆I) = ∆I . (11)

While finding many pseudo-collisions with different ∆I , ∆M can be done
using the birthday paradox, the same task for fixed∆I , ∆M is hard. This problem
can be expressed as finding a solution of

EM1(P1)⊕ EM1⊕∆M
(P1 ⊕∆I) = EM2(P2)⊕ EM2⊕∆M

(P2 ⊕∆I) = · · · =
= EMq

(Pq)⊕ EMq⊕∆M
(Pq ⊕∆I) = ∆I , (12)

which is harder than finding a differential q-multicollision for EK(·), because the
ciphertext difference is unrestricted in (1). Therefore, Lemma 1 gives us a lower
bound on the complexity of this attack.

Corollary 1. To construct q pseudo-collisions (12) with fixed ∆I , ∆M for an
ideal cipher with an n-bit block an adversary needs at least O(q · 2

q−2
q+2n) queries

on average.

Theorem 2. For AES-256 in the Davies-Meyer mode q pseudo-collisions (12)
can be found in time q · 267.

Proof. Pseudo-collision attack on the Davies-Meyer mode requires the difference
in the plaintext P to be equal to the difference in the ciphertext C. The Davies-
Meyer feed-forward would then cancel this difference. Our differential trail needs
only to be slightly modified for this purpose. The first round of the new trail is
shown in Fig. 3 (the actual values are given in Appendix A); the other rounds
are the same.

The resulting trail has 41 active S-boxes. The triangulation algorithm cov-
ers the same active S-boxes as in the proof of Theorem 1 and outputs 18 free
variables. The complexity is thus the same.

Corollary 2. AES-256 can not be used to instantiate the Davies-Meyer hashing
mode.

We expect that similar results can be shown for the other blockcipher-based
constructions which are provably secure in the ideal-cipher model [3].
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Fig. 3. The first round of the differential trail for the attack on AES-256 in the
Davies-Meyer mode.

4 Related-key attack on AES-256

In this section we demonstrate two results: a related-key distinguisher and a
key-recovery attack based on this distinguisher for the full AES-256.

4.1 Distinguisher

The first two rounds of the multicollision trail can easily be modified to build
a related-key distinguisher with relatively few active S-boxes — see Appendix
A for the details of the trail. The resulting trail has 19 active S-boxes in the
internal states. The difference propagates through 14 S-boxes with probability
2−6·14, and through the remaining five with prob. 2−7·5. Therefore, we get a
distinguisher with probability 2−(14·6+5·7) = 2−119. However, the trail has five
additional active S-boxes (each with probability 2−7) in the key schedule. As a
result, the distinguisher works for 1 out of 235 related-key pairs on the average.

4.2 Key recovery

There are several ways how our trail can be used for the full 256-bit key recovery.
Here we present one possibility. Steps of the attack are illustrated in Fig. 4 and
are described below.

First step. We change the trail (see Fig. 4 or Appendix) to get more active
S-boxes in the first two rounds which allows us to recover the key bytes at the
entrance to these S-boxes. A new trail has eight active S-boxes in the first round
in a ”checkerboard pattern” and two in the second round. Our goal is to find
ten key bytes K0

0,0, K0
0,2, K0

1,1, K0
1,3, K0

2,0, K0
2,2, K0

3,1, K0
3,3, K1

0,0, K1
0,2 so we

execute the following procedure for each of the 235 related-key pairs:

1. Repeat 231 times:



(a) Compose two structures of 264 plaintexts as specified below.
(b) Encrypt the 1st structure with K and the 2nd with K ⊕∆K .
(c) Sort the ciphertexts and check for a pair with the difference ∆C .
(d) Save a good pair if it is found.

2. For each candidate pair derive 216 variants for the ten key bytes (see details
below).

3. Pick the key candidate with the maximal number of votes.

The overall complexity of this procedure is 231+65 = 296 data and time, and 264

memory, and it finds 80 bits of the key.
Each structure has all the possible values in bytes {Pi,j , (i+ j) mod 2 = 0}

(these bytes line up in columns 0 and 2 after the ShiftRows of the 1st round). The
other bytes are random constants with the constraint that the two structures are
related by ∆P as in the distinguisher. For a fixed key, each structure contains
264 pairs with the proper differences after the S-boxes of the 2nd round (yellow
differences in two bytes). The remaining active S-boxes in rounds 3–14 require
probability 2−93 for the trail to be fulfilled. Each structure produces a right pair
of ciphertexts with probability 264−93 = 2−29. Thus 231 structures produce on
average 4 right pairs and 231+128−128 = 231 wrong pairs.

Due to the uniform differential properties of AES S-boxes each active S-
box for which we know input and output differences would suggest to us two
candidates for the key byte of this S-box. For a candidate pair we guess two byte
differences3 at B1

0,0 and B1
0,2. We know the difference in the remaining three

bytes of each column, since they should cancel out with the differences coming
from the key. Thus we can undo the MixColumns for each column which allows
us to know the output differences of eight S-boxes of the 1st round. We know
the input differences for these S-boxes from the plaintext. In addition the two
guessed difference bytes serve as inputs to the two active S-boxes of the 2nd
round. The output differences for these S-boxes are known from the trail. Thus
we have 10 S-boxes for which we know input and output differences which gives
us 210 · 8 · 8 = 216 possibilities for 80-bits of the key per candidate pair. The 231

wrong pairs would suggest 216 · 231 = 247 random keys, while the four good ones
would all vote for the correct 80-bit key and some random keys. No wrong key
guesses survive this step and we get 80 key bits as a result.

Second step. We proceed with changing top rounds of the trail to derive other
key bytes. We remove the 2−6 condition on the input to the active S-box (0,0) of
the 3rd round. Then we get five active S-boxes in the second round and 16 active
S-boxes in the first round. We prepare 290 pairs with the ciphertext difference
as in the trail and decrypt them. We will try to detect pairs (290−87 = 8 on the
average) that pass the conditions in rounds 3–14. We partially encrypt all the
resulting plaintext pairs using the known 80-bits and check whether the columns
∆B1
∗,0 and ∆B1

∗,2 follow the trail. This is a 48-bit filter on the pairs and thus
we are left with 242 candidate pairs. Then we guess the differences in bytes B1

1,1

3 For each byte difference there are only 8 possibilities that would not contradict with
the five known differences in the 1st and 2nd rounds.



and B1
3,3 (eight possibilities due to impossible input/output constraints in five

corresponding S-boxes of the 1st and 2nd rounds), and undo the MixColumns.4.
As a result, we have 242+6 = 248 key candidates from all pairs counting on a
64+16 = 80 bit key (64 from K0 and 16 from bytes K1

1,1,K
1
3,3). No wrong key

guesses survive this step. We find the remaining 12 bytes of K1 by exhaustive
search in 296 steps. The total complexity of the attack is thus dominated by the
296+35 = 2131 complexity of the first step.

SubBytes

ShiftRows

MixColumns

2−93

SubBytes

Determine 80 bits

I II with TA

— fixed variables

— free variables

Key

0

1

2

3

4

5

6

7

Determine 141 bits

SubBytes

ShiftRows

MixColumns

2−87

SubBytes

Determine 64 bits

II

A1

B1

A2

B2

Fig. 4. Key recovery steps.

Second step with TA. If we want to avoid the chosen-ciphertext framework,
there is a way to combine the knowledge of 80 key bits on top and 35 key bits
in the middle with a bit higher complexity. The problem is that the fixed bits
are positioned far from one another (3 key schedule rounds apart), so it seems
hard to make an efficient exhaustive search on the remaining part of the key.

We solve this problem by running the triangulation algorithm on the key
schedule only, where 15 bytes are marked as fixed. The algorithm outputs 17
bytes in different subkeys as free variables. Then we assign these variables ran-
domly, choose admissible values for the remaining ones, and thus define the key
guess. There are 217·8+5 = 2141 possible assignments, which would determine the
complexity of the key recovery.
4 We use the knowledge of the key byte K1

0,0 to find the differences in the green
diagonal at the 2nd round.



5 New design criteria for block ciphers

Our results imply new design criteria for the key schedules of the block ciphers.
First of all, local collisions should be prevented. Although it is usually easy to
arrange a local collision in one round, there should be no good patterns for several
rounds. A slow diffusion in the AES-256 key schedule helped us to concatenate
many local collisions into a differential trail for the whole cipher. This should
not be possible in a good cipher.

The key schedule should be also desynchronized with respect to the internal
state. The active injection bytes in our AES trails are always located in the first
row, which is not rotated. Therefore, the differences to be cancelled in a local
collision should be located in the same column, or exactly 4 columns to the right
in the subkey. This shift is preserved by the key schedule round, which should
be certainly avoided.

Slow diffusion in the key schedule makes it also vulnerable to the triangula-
tion algorithm or similar tools. Our preliminary analysis shows that the trian-
gulation algorithm can cover up to two times the number of rounds needed for
the full diffusion. If the key schedule in AES was ideal, we would be able to solve
systems of equations on at most three-four rounds, while now we can attack five.

Finally, if one considers known or chosen key attacks as a threat he needs
to add two extra full diffusions on top of the number of rounds secure against
standard statistical attacks.

6 Conclusions

In this paper we show a chosen key distinguisher for the 256-bit key AES with
almost practical complexity of q · 267 queries and negligible memory. It was
verified by computing partial q multicollisions in time q · 237 which takes several
hours on a PC. We also show the first related-key attack on the full AES-256
with 296 data and time complexity and 265 memory which works for 1 out of
every 235 keys on average.
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de la Recherche Luxembourg grant TR-PHD-BFR07-031.

References

1. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and
rectangle attacks. In EUROCRYPT’05, volume 3494 of LNCS, pages 507–525.
Springer, 2005.

2. John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function. In FSE’06, volume 4047 of LNCS, pages 328–340. Springer, 2006.



3. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the
block-cipher-based hash-function constructions from PGV. In CRYPTO’02, vol-
ume 2442 of LNCS, pages 320–335. Springer, 2002.

4. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

5. Joan Daemen and Vincent Rijmen. The Design of Rijndael. AES — the Advanced
Encryption Standard. Springer, 2002.

6. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael. In FSE’00,
volume 1978 of LNCS, pages 213–230. Springer, 2000.
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A Details on Trails

The actual differences. The actual difference values should satisfy conditions
imposed by the S-box properties, the presence of MC-columns in the subkeys,
etc. We also require that differences in rounds 5 and 7–13 propagate through
S-boxes with maximal probability — 2−6. We programmed the search for the
actual values and validated that those conditions do not lead to contradictions.
The search has a negligible cost. We thus have defined the differences ∆K (de-
termined by subkeys K0 and K1) and ∆C (determined by the subkey K14). In
the following subsections we list the actual differences in the trails.
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Davies-Meyer trail (the first two rounds)

i Plaintext Subkey Ciphertext

0

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

0f 0e 0f 0e
07 07 07 07
07 07 07 07
09 09 09 09

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

i After SB After MC Subkey i After SB After MC Subkey

1

30 0f 44 b0
7c b5 93 08
78 d6 c2 57
e7 c3 29 03

65 00 2b 00
1f 2c 1f 00
1f 00 e2 00
21 00 21 33

37 00 37 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

2

1b 00 07 00
00 12 00 00
00 00 1a 00
00 00 00 16

0c 00 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

0f 01 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

Related-key distinguisher (the first two rounds)

i Plaintext Subkey Ciphertext

0

0e 0e 0e 0e
07 07 07 07
07 07 07 07
09 09 09 09

0f 0e 0f 0e
07 07 07 07
07 07 07 07
09 09 09 09

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

i After SB After MC Subkey i After SB After MC Subkey

1

1f 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 3e 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

37 00 37 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

2

07 00 07 00
00 00 00 00
00 00 00 00
00 00 00 00

0e 00 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

0f 01 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

Note on the colors. Differential trails are given in our figures in a truncated
form, we marked distinct difference values with different colors. The reader does
not need to care about the actual values in order to understand how the trail is
constructed. However all the trail differences are provided in the tables of this
Appendix.

The white cell stands for zero difference in a byte, the non-white cells stand
for the non-zero differences. The same colors mean the same values except for
the green, which denotes arbitrary differences. The exact relation between the
colors and the values can be derived from the list of the actual differences. Grey
and blue columns stand for MC-columns. In a spoiled MC-column one byte is
marked with another color.



Differential trail for finding multicollisions:

i Plaintext Subkey Ciphertext

0

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

0f 0e 0f 0e
07 07 07 07
07 07 07 07
09 09 09 09

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

i After SB After MC Subkey i After SB After MC Subkey

1

30 5c e1 b0
7c b5 ed 72
a6 d6 c2 16
82 eb 29 03

65 00 02 00
1f 25 1f 00
1f 00 e2 00
21 00 21 33

37 00 37 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

2

1b 00 07 00
00 12 00 00
00 00 1a 00
00 00 00 16

0c 00 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

0f 01 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

3

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 3e 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

37 37 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

4

07 07 00 00
00 00 00 00
00 00 00 00
00 00 00 00

0e 0e 00 00
07 07 00 00
07 07 00 00
09 09 00 00

0f 0e 00 00
07 07 00 00
07 07 00 00
09 09 00 00

5

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

37 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

6

07 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

0e 00 00 00
07 00 00 00
07 00 00 00
09 00 00 00

0f 01 01 01
07 00 00 00
07 00 00 00
09 00 00 00

7

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

3e 3e 3e 3e
1f 1f 1f 1f
1f 1f 1f 1f
21 21 21 21

3e 3e 3e 3e
1f 1f 1f 1f
1f 1f 1f 1f
21 21 21 21

8

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 00 01 00
00 00 00 00
00 00 00 00
00 00 00 00

9

1f 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 3e 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

3e 00 3e 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

10

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 01 00 00
00 00 00 00
00 00 00 00
00 00 00 00

11

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 3e 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

3e 3e 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

12

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

13

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

3e 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

14

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

Table 2. Multicollision trail.
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Fig. 5. Multicollision trail. The actual values are given in Table 2.
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