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Abstract. A bi-directional Private Authentication, or Unlinkable Secret
Handshake, allows two parties to authenticate each other as certified by
given certification authorities (i.e. affiliated with given groups), in a mu-
tually private way, in the sense that the protocol leaks no information
about either participant to a party which does not satisfy that partici-
pant’s authentication policy. In particular, the protocol hides what group
this participant belongs to, and protocol instances involving the same
participant are unlinkable. We construct the first realization of such pri-
vate authentication using O(1) exponentiations and bilinear maps, secure
under Strong Diffie-Hellman and Decisional Linear assumptions.

Our protocols rely on a novel technical tool, a family of efficient Private
Conditional Oblivious Transfer (COT) protocols, secure under DDH, for
languages defined by modular arithmetic constraints (e.g. equality, in-
equality, sums, products) on discrete-log representations of some group
elements. (Recall that (w1, ..., wn) is a representation of C in bases
(g1, ..., gn) if C = gw1

1 ...gwn
n .) A COT protocol for language L allows

sender S to encrypt message m “under” statement x so that receiver
R gets m only if R holds a witness for membership of x in L, while S
learns nothing. A private COT for L hides not only message m but also
statement x from any R that does not know a witness for x in L.

1 Introduction

Authentication Privacy and Mutual Authentication. It seems evident
that if party A authenticates itself to some verifier then A must necessarily
reveal some information about itself in the process. At the minimum, an au-
thentication protocol seemingly needs to reveal that A is credentialed by a given
Certification Authority (CA), because the goal of (policy-based) uni-directional
authentication is to let any verifier learn whether A holds valid credentials from
a given CA. However, in the case of a mutual authentication, where A authen-
ticates itself to B as certified by a CA of B’s choice but it cares to do so only if
B is itself appropriately certified by the CA of A’s choice, we can ask whether
we can protect each party’s privacy fully, including its affiliation with particular
CA, against any entity which does not satisfy this party’s authentication policy.
In other words, we ask for a protocol which mimics the following ideal private
mutual authentication functionality, or an (unlinkable) Secret Handshake (SH):
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A and B input their certificates and authentication policies, and the function-
ality returns 1 if A’s certificate matches B’s policy and B’s certificate matches
A’s policy, and 0 otherwise. To be practical, SH scheme should match the per-
formance of a standard non-private PKI system (or a Group Signature Scheme):
The certificate of each user should be short and re-usable, the CA’s public key
should be short, authentication protocol should take O(1) rounds and public-key
operations, revocation information should be at most linear in the number of re-
voked players, and the scheme should support escrow, i.e. protocol participants
should be efficiently traceable by a trusted party from protocol transcripts.

Applications of private mutual authentication range from peer-to-peer groups
to law-enforcement agencies who might be concerned with their privacy in the
sense of not wanting to publicly advertise the fact of their membership in a given
group. They might want to do this due to privacy concerns, e.g. in the case of
parties or clubs, to business concerns, e.g. a company who wants its employ-
ees or trading partners to be unrecognizable by competition, or due to security
concerns, e.g. in the case of members of some law-enforcement agency whose
safety is enhanced if their membership in the agency is not advertised. Secret
Handshakes allow members in any such group to constrain the dissemination of
the fact of their group membership only to other group members. Any group
member can still identify other members by engaging them in an authentica-
tion protocol, but using privacy escrow and revocation mechanisms a group can
revoke any member who poses a privacy risk to others.

Related Work. There exist efficient linkable Secret Handshakes which hide
the participants’ policy and source of certificates [BDS+03,CJT04,JKT07,JL08],
but they publicly reveal unique tokens assigned to each certificate, thus mak-
ing protocol instances executed by the same party linkable. SH’s can also be
thought of as a bidirectional counterpart to private uni-directional authentica-
tion, i.e. identity-escrow [KP97], group signatures [CvH91], or unlinkable creden-
tials [CL01], but uni-directional authentication unconditionally reveals prover’s
affiliation to any verifier. An SH scheme without key escrow would be implied
by key-private broadcast encryption, whose ciphertext cannot be linked to the
broadcast encryption key. The two parties could then privately establish an
authenticated key by encrypting nonces under broadcast encryption keys as-
sociated with their CA’s. However, the ciphertexts of existing broadcast en-
cryption schemes, e.g. [NNL02,BGW05], can be easily linked to the revocation
lists corresponding to their encryption keys. The key-private broadcast encryp-
tion of [BBW06] has limited applicability because its ciphertext size is linear
in group size, while the key-private broadcast encryption of [JL07] is stateful,
and the corresponding SH scheme works only if group members have roughly
synchronized certificate revocation lists. (Private) attribute-based encryption
[GPSW06,BSW07] allows the sender to encrypt a nonce so that it can be de-
crypted only by a holder of a certificate for specified attributes issued by some
public key, and the ciphertext can hide this attribute from anyone who does
not have the corresponding certificate. However, the ciphertext in these schemes
hides only the attributes and not the public key that issues the certificates.
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Our Contributions. Our first contribution is the first practical private bi-
directional authentication scheme a.k.a. an (unlinkable) Secret Handshake (SH),
and the first practical private envelope scheme, a.k.a. an Anonymous Credential
scheme (AC), i.e. an envelope scheme with the privacy properties corresponding
to SH’s. Namely, the receiver can recover an encrypted message if and only if
its certificate matches sender’s authorization policy, but the protocol hides the
sender’s policy from any un-authorized receiver and it hides all information about
the receiver from the sender. All our schemes support certificate revocation and
privacy escrow, i.e. the group manager can recover otherwise hidden identity
of protocol participants from protocol transcripts. Our SH protocol has O(1)
communication rounds (3 in ROM) and requires about 40 exponentiations and
6 bilinear maps per player, with additional 2r bilinear maps if r is the size of the
revocation list, and our AC scheme has twice smaller costs because it is actually
just a one-sided version of our SH scheme.

Our technical contribution is an enabling tool of our SH and AC schemes,
a family of efficient Conditional Oblivious Transfer (COT) protocols for certain
cryptographically useful class of relations. A COT protocol for relation R is a
protocol between a sender S and a receiver R, which allows S, running on input a
statement x and a message m, to disclose m to R if and only if R holds a witness
for x in the language associated with relation R, i.e. a string w s.t. (x,w) ∈ R.
The protocol is oblivious in the sense that S does not learn anything, not even
whether there exists w which is a valid witness for sender’s statement x. We
call such COT protocol private if it also hides S’s statement x from any receiver
who does not hold a valid witness for x. COT is implied by secure two-party
computation [Yao86], but it was introduced as a primitive in [COR99], extended
to private COT in [Cre00], and later considered e.g. in [AIR01,BK04,LL07]. All
these works used slightly different terminology than ours, calling inputs x and
w just bitstrings and not statement and witness as we do, and they constructed
COT protocols at the cost of O(1) modular exponentiations for an equality
relation on bitstrings [AIR01], i.e. x = w, and at the O(k)-exponentiations cost
for monotonic Boolean formulas of size k [COR99,Cre00,AIR01,LL07,BK04].

We show practical COT protocols for relations that commonly appear in
various cryptographic protocols e.g. group signatures, e-cash schemes, or thresh-
old schemes. Recall that a representation of a group element C in bases G =
(g1, ..., gm) is a vector w = (w1, ..., wm) s.t. C =

∏m
i=1(gi)wi . We exhibit two

private COT protocols, one perfectly secure for the receiver and the other per-
fectly secure for the sender, with the computationally protected side in both
protocols secure under the DDH assumption, for any relation RREP(Φ) of the
following form: The relation RREP(Φ), for a predicate Φ on an n×m matrix w,
consists of pairs ((C,G),w) s.t. Φ(w) = 1 and the i-th row of w is a repre-
sentation of the i-th element in C in bases formed by the i-th row of G. Both
protocols we propose use a single execution of a ZKPK of values in the same
matrix w committed using the Pedersen commitment scheme [Ped91] (or its
computationally-private but perfectly-binding modification) s.t. Φ(w) = 1. The
cost of our COT protocols is the cost of the ZKPK plus about (4 · |w|) expo-
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nentiations for either party. Note that there exist ZKPK’s for various conditions
on values committed in Pedersen commitments, e.g. equality or inequality of
modular sums, products, or inverses, all using O(1) exponentiations. Our re-
sults transform any such ZKPK proof system into a private COT protocol for
the same relation, at the cost comparable to the cost of the ZKPK. Previous
COT constructions do not enable efficient COT protocols for such relations, and
since many cryptographic applications rely on efficiently provable relations on
committed values, practical COT protocols for such relations might enable new
privacy-protecting mechanisms beyond our SH and AC schemes.

Note that private COT forms an encryption counterpart to a zero-knowledge
proof of knowledge: The verifier can use a COT protocol to encrypt some message
m “under” a statement x, and the COT protocol ensures that the prover can
decrypt m only if she holds a valid witness w for x. However, private COT’s
can enable higher level that what is zero-knowledge proofs achieve: Consider a
server who wants to grant access to some resource m to a client if and only
if the client’s credential cert satisfies the sender’s authorization policy Pol, i.e.
Ver(Pol, cert) = 1. If a client proves in zero knowledge that Ver(Pol, cert) = 1,
this reveals the fact that the client holds a certificate which satisfies policy Pol
to any party who engages the client in this zero-knowledge proof as a verifier.
Moreover, the server who engages in a proof system as a verifier on its statement
Pol, even if this proof system is zero-knowledge, might also end up revealing this
statement to any party, whether or not this party holds a valid witness for this
statement. In contrast, the privacy of both parties is protected if the server
sends m to the client in a private COT protocol for relation Ver. Thus private
COT protocols for relation Ver would enable (fully) private envelopes, and a bi-
directional version of this envelope would make a private authentication scheme,
and in particular this is how our AC and SH schemes are constructed.

Organization. We start with a technical roadmap in Section 2. We set notation
in Section 3. We define private COT in Section 4. In Section 5 we construct a
private COT for relations on discrete logarithm representations with perfect se-
curity for the receiver. (For lack of space we have to omit from these proceedings
our alternative protocol with perfect security for the sender.) In Section 6 we
define SH schemes and construct such scheme on the basis of a group signature
by Boneh and Shacham [BS04] and a COT protocol like that of Section 5.

2 Technical Roadmap

We construct an unlinkable secret handshake using a group signature scheme
and a COT protocol on an appropriate relation. One possible way of doing this
could be as follows. Party A issues a group signature on a challenge message,
and B sends a nonce to A via a private COT protocol, s.t. A receives it if and
only if A’s commitment opens to a group signature which verifies under the
key specified in B’s authentication policy. Then the roles of the two parties are
reversed: B creates and commits to its signature, and A sends its nonce to B via
the COT protocol on the same condition applied to B’s commitment and A’s
authentication policy. The first technical challenge lies in handling revocations:
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It’s not clear how to check whether a signature is issued by some revoked member
when the signature is hidden behind the commitment, unless the signer (receiver
in the COT protocol) also attaches a proof that the committed signature is not
issued by anyone in the receiver’s revocation list. This seems hard because the
revocation list assumed by each party should also be hidden, or otherwise the
affiliation of that party is immediately revealed.

To avoid the problem caused with revocation we turn to the group signa-
ture (GS) scheme with verifier-local revocation (VLR) introduced by Boneh and
Shacham [BS04]. In a VLR-GS scheme the signer’s certificate consists of two
parts: The first is a random revocation token, unrelated to the group’s public
key, and the second is essentially a group manager’s signature on this revocation
token. In the VLR-GS scheme the signer first commits to its token using a com-
mitment scheme which is unlinkable without the knowledge of the committed
token, but is traceable given the token. (This latter property enables efficient
revocation.) The group signature then consists of this committed token and a
Zero-Knowledge Proof of Knowledge (ZKPK) of group manager’s signature on
this committed token, made non-interactive using the Fiat-Shamir heuristic.

We construct an unlinkable SH scheme using the same components of the
VLR-GS scheme, but replacing the above NI-ZKPK proof with a private COT
scheme for the same relation. Namely party A commits to its token, B uses the
traceability procedure to check if the committed token has not been revoked, and
if the check passes then B sends a nonce to A via a COT protocol s.t. A receives
the nonce if and only if A has a group manager’s signature on the committed
token, and then the roles are reversed. The reason this yields an efficient SH
construction when the VLR-GS scheme is instantiated with the scheme of [BS04]
is that the relation involved in the above COT protocol belongs to the class
RREP(Φ) of relations on discrete-log representations satisfying some arithmetic
constraints. In other words, the commitment to a token and the group public
key can be represented as a vector C and a matrix G of group elements, while
the decommitment and the group manager’s signature on the committed token
form a matrix of exponents w s.t. w satisfies certain set of arithmetic constraints
Φ and each row of w is a discrete-log representation of a corresponding element
in C in a vector of bases form by the same row of G.

Technically, the security argument for the above SH scheme follows easily
from the unforgeability of the group manager’s signatures if the COT protocol
guarantees extractability of a witness for the receiver’s statement from a receiver
which tells some information about the transferred message: In such case an
adversary which breaks the security of the authentication scheme immediately
implies efficient computation of a forgery of the group manager’s signature, since
the witness to the sender’s statement must be a valid signature on an unrevoked
token, and an unrevoked token is an unsigned message from adversary’s point
of view. A privacy argument for this SH scheme will be similarly aided if the
COT protocol also guarantees extractability of a witness from a receiver which
tells any information about the sender’s statement. This is why the security and
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privacy notion we give for a COT protocol in Section 4 requires extraction of
inputs from a “successful” receiver.

Finally, we sketch our COT construction for relation RREP(Φ). The receiver
cannot just run a ZKPK of w s.t. the arithmetic constraint Φ is satisfied and w
is the representation of C in bases G, where (C,G) is the statement assumed by
the receiver, because this would reveal this part of the receiver’s inputs to any
sender, and in particular it could reveal the CA who issued the receiver’s certifi-
cate. Instead, the receiver can independently commit to vector w and perform a
zero-knowledge proof of knowledge of a committed w which satisfies constraint
Φ. This protects all information about w (except that Φ(w) = 1, but this is
presumably true of any party engaging in this protocol) and it also ensures ef-
ficient extraction of some w s.t. Φ(w) = 1 from any malicious receiver. If the
receiver’s proof verifies then the sender follows an encryption-like procedure -
somewhat reminiscent of Cramer-Shoup’s projective hash [CS01] – which trans-
fers sender’s message M to the receiver but ensures that the receiver gets no
information about either the sender’s message M or its statement (C,G) unless
the committed matrix w is a representation of C in bases G. Looking ahead, in
the COT protocol of Figure 2 this additional commitment to w is denoted D,
and the encryption-like procedure outputs E, F, K̂ on inputs C,G,D and M .

3 Cryptographic Setting and Notation

Throughout the paper we assume that G is a multiplicative group of prime order
q, and that g is its generator. Our security statements in section 5 assume an
exact security version of the DDH assumption, i.e. we say that DDH is (t, ε)-hard
in group G if any t-time algorithm A has at most ε advantage in distinguish-
ing distributions {(g, ga, gb, gab)}a,b←RZq and {(g, ga, gb, gc)}a,b,c←RZq . If A is a
probabilistic algorithm then A(x; r) denotes an output of A on x and random
tape r. We use bold letters to denote vectors or matrices. We write w ∈ Sn×m

to denote a matrix w with dimensions n × m and elements in set S. We use
w[i, j] to designate an element in the i-th row and j-th column of w.

4 Definition of Private Conditional Oblivious Transfer

A COT protocol for message space M and relation R (and the language LR
implied by R as well as an implicit universe of “statement-looking” strings UR ⊇
LR) consists of two probabilistic interactive algorithms S and R, which execute
on S’s private inputs a message M in M and a bitstring x, and on R’s private
input a bitstring w. At the end of the interaction, R outputs message M if and
only if (x,w) ∈ R, and S has no output. (See Figure 1.) A COT protocol must
meet the following basic properties:

Definition 1 (Completeness). A COT protocol for relation R and message
space M is complete if for any (x,w) ∈ R and any M ∈M, at the end of the
interaction between S(x,M) and R(w), R outputs M .
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S’s private input: R’s private input:
statement x, message M witness w

oo
//

. . .S’s output: ⊥ R’s output: M if (x, w) ∈ R

Fig. 1. Functionality of a COT scheme for relation R between sender S and receiver R

Definition 2 (Security). A COT protocol for relation R and message space
M is (t, ε)-secure if for any x 6∈ LR, any M0,M1 ∈ M, any t-time algorithm
A, and any auxiliary information z,∣∣∣Pr[AS(x,M0)(x,M0,M1, z) = 1]− Pr[AS(x,M1)(x,M0,M1, z) = 1]

∣∣∣ ≤ ε

where the probabilities are taken over the randomness of A and S.

Definition 3 (Receiver Privacy). A COT protocol for relation R is (t, ε)-
receiver private if for any t-time algorithm A, any w0, w1, and any auxiliary
information z,∣∣∣Pr[AR(w0)(w0, w1, z) = 1]− Pr[AR(w1)(w0, w1, z) = 1]

∣∣∣ ≤ ε

where the probabilities are taken over the randomness of A and R.

However, the above security property has several limitations. First, it allows
the protocol to reveal sender’s message to any receiver if the sender’s statement
x is in the language. A more useful notion would require that the message is
revealed only to the receiver who holds a valid witness for x. This requirement
can be captured via extractability, i.e. if the receiver distinguishes the execution
of S(x, M0) and S(x, M1) then a witness w for x can be efficiently extracted
from this receiver. Moreover, a private COT protocol should protect sender’s
statement in a similar way, i.e. if the receiver distinguishes the execution of
S(x0,M) and S(x1,M) then a witness for either x0 or x1 can be extracted
from this receiver. We capture both of these properties in a notion of strong
security and sender privacy defined below. Technically, we define this notion
in terms of distinguishing between a “real” sender S(x,M) and a “simulated”
sender S(x′,M ′) which runs on any statement x′ and a random message M ′:
An adversary can distinguish between these two only if a witness for x in LR
can be extracted from this adversary. Note that this notion implies the intuitive
security and sender privacy properties discussed above. Moreover, this notion
is convenient for arguing security of applications of a private COT because it
implies that if an adversary distinguishes real and simulated protocols then the
reduction can extract a witness for the real sender’s statement.
Definition 4 (Strong Security and Sender Privacy). A COT protocol for
relation R, statement universe U , and message space M is strongly secure and
sender private with soundness error δ if there exists an efficient extractor al-
gorithm Ext and a polynomial p(·) s.t. for any x, x′ ∈ U , any M ∈ M, any



8

efficient probabilistic algorithm A, any auxiliary information z (w.l.o.g. z con-
tains x, x′,M), and any randomness vector r, if

εA,z,r
4
=

∣∣∣Pr{$S}[A
S(x,M)(z; r) = 1]− Pr{$S,M ′←RM}[A

S(x′,M ′)(z; r) = 1]
∣∣∣ > δ

then Pr{$Ext}

[
(x,w) ∈ R| w ← ExtA(z;r)

]
≥ p(εA,z,r − δ)

where $S and $Ext are the randomness of S and Ext respectively.
In concrete security terms, we call a COT protocol (t, text, qext, d, e)-strongly
secure and sender private with soundness error δ if the above requirement is
satisfied for any t-time adversary A, for polynomial p(ε) = dεe, and for algorithm
Ext running in time text and making at most qext calls to A.

5 Private COT Protocol for Relations on Representations

We give two constructions of a private COT protocol for any relation on so-called
representations of group elements. Our first construction relies on a witness-
indistinguishable proof of knowledge (WIPoK) for the same relation on values
committed using Pedersen commitment scheme [Ped91]. The second construction
needs a Strong WIPoK for the same relation on values committed in the follow-
ing simple perfectly binding but computationally hiding commitment scheme:
Comg,h,y(m) = (gr, yrhm). Security and sender privacy of the first COT proto-
col construction relies on the DDH assumption and the strong soundness of the
WIPoK proof system, while receiver privacy relies on witness-indistinguishability
of the WIPoK. For the second construction, security and sender privacy relies on
strong soundness of the SWIPoK, while receiver privacy relies on DDH assump-
tion and strong witness-indistinguishability of the SWIPoK. We show the first
construction below, while for lack of space we relegate our second construction
to the full version of this paper.

Let G be a multiplicative group of prime order q. A representation of group
element C ∈ G in bases (g1, ..., gn) ∈ Gn is any vector (w1, ..., wn) ∈ (Zq)n

s.t. C =
∏n

i=1(gi)wi . Let Φ be a relation on sets of n × m elements in Zq,
i.e. Φ : (Zq)n×m → {0, 1}. Assume that Φ is satisfiable, i.e. there exists w s.t.
Φ(w) = 1. Moreover, assume that there exists an efficient procedure to find (any)
w, s.t. Φ(w) = 1.

We define a language REP(Φ) as a set of pairs (G,C),

G =


G[1, 1], G[1, 2], . . . , G[1,m]
G[2, 1], G[2, 2], . . . , G[2,m]

. . .
G[n, 1], G[n, 2], . . . , G[n, m]

 ∈ Gn×m , C =


C[1]
C[2]
. . .

C[n]

 ∈ Gn

s.t. ∃ w ∈ (Zq)n×m s.t. Φ(w) = 1 and C[i] =
∏m

j=1(G[i, j])w[i,j] for all i ∈ [1..n].

RREP(Φ) is a relation corresponding to this language, i.e. set of pairs ((G,C), w)
which satisfy the above conditions, and UREP(Φ) includes all (G,C) ∈ Gn×m×Gn.
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Construction of Private COT for Relation RREP(Φ). We construct a private
COT protocol for RREP(Φ) given a witness-indistinguish- able proof of knowledge
(WIPoK) for the following language:

PedREPg,h(Φ)
4
=

{
D ∈ Gn×m s.t. ∃w, r ∈ (Zq)n×m s.t. Φ(w) = 1

and ∀(i,j)∈[1..n]×[1..m] D[i, j] = gw[i,j] · hr[i,j]

}
Note that PedREP is a trivial language, i.e. every D ∈ Gn×m is in PedREP.

However, we require a (non-trivial) proof of knowledge of (w, r), given D, s.t.
(D, (w, r)) ∈ RPedREP whereRPedREP is a relation corresponding to this language,
i.e. set of pairs (D, (w, r)) which satisfy above conditions.

Practical ZKPK (and WIPoK) proofs exist for languages PedREPg,h(Φ) for
many useful constraints Φ. First, note that there exist efficient HVZKPK proof
systems with special HVZK and properties for many constraints involving val-
ues committed in Pedersen commitment, e.g. linear equations, i.e. φ(w) = 1 if
a1w[i1, j1] + a2w[i2, j2] = a3w[i3, j3] for some i1, i2, i3 ∈ [1..n] and j1, j2, j3 ∈
[1..m] and constants a1, a2, a3, or quadratic equations, i.e. w[i1, j1] = w[i2, j2] ·
w[i3, j3] (see e.g. [CM99]), a “less than” relation [Bou00], i.e. φ(w) = 1 iff
w[i1, j1] ≤ w[i2, j2], or an inequality relation, i.e. φ(w) = 1 iff w[i1, j1] 6=
w[i2, j2]. Secondly, by results of[CDS94], such HVZKPK’s can be “compiled”
into an efficient HVZKPK’s for any constraint Φ formed by conjunctions and
disjunctions of such constraints. Finally, all such HVZKPK proof systems can
be compiled, with negligible overhead, into ZKPK proof systems, non-interactive
in ROM model (using Fiat-Shamir heuristic), 3-round in CRS model [Dam00],
or 5-round in the standard model [MP03].

The protocol proceeds given group G with generator g, on sender’s private
inputs an instance (G,C) ∈ Gn×m×Gn and a message M ∈ G, and on receiver’s
private input w. First the sender S sends to the receiver R a random h in G\{1}.
R aborts if h = 1. If Φ(w) 6= 1, then R picks w′, s.t. Φ(w′) = 1, and sets w← w′.
Then R sends to S Pedersen commitments to all w[i, j]’s in w: picks r←R Gn×m,
creates D, s.t. D[i, j] = gw[i,j]hr[i,j], and proves using the WIPoK proof system
for PedREPg,h(Φ) that the committed values w satisfy the Φ relation, i.e. that
(D, (w, r)) ∈ RPedREP. If R passes the proof, S uses the instance (G,C) and
commitments D to encrypt M as follows: S picks random si’s in Zq for every
i ∈ [1..n] and random ti,j ’s in Zq for every (i, j) ∈ [1..n]× [1..m], and sends to R
the sets E,F of ciphertexts E[i, j] and F[i, j],

∀(i,j)∈[1..n]×[1..m] E[i, j] = (G[i, j])sigti,j and F[i, j] = hti,j

together with value K̂ =
∏n

i=1 Ki ·M , where

∀i∈[1..n] Ki = (C[i])si ·
m∏

j=1

(D[i, j])ti,j

Finally R decrypts (E,F, K̂) as M ′ ← K̂ ·K ′1 · ... ·K ′n, where

∀i∈[1..n] K ′i =
m∏

j=1

(E[i, j])w[i,j] · (F[i, j])r[i,j]
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S’s private input: ((G,C), M) R’s private input: w

Pick h←R G \ {1} h // Abort if h = 1
If Φ(w) 6= 1

pick w′ in (Zq)
n×m, s.t.

Φ(w′) = 1, and set w← w′

Pick r←R (Zq)
n×m

Create D, s.t. D[i, j] = gw[i,j]hr[i,j]Doo
WIPoK for

D∈PedREPg,h(Φ)ooCreate E, F and K̂ as follows:
∀i,j∈[1..m]×[1..n]

pick si ←R Zq, ti,j ←R Zq

E[i, j]← (G[i, j])si · gti,j

F[i, j]← hti,j

Ki ← (C[i])si ·
Qm

j=1(D[i, j])ti,j

K̂ ←M ·
Qn

i=1 Ki
(E,F,K̂) // ∀i∈[1..n]

K′
i ←

Qm
j=1(E[i, j])w[i,j] · (F[i, j])r[i,j]

M ′ ← K̂ ·
�Qn

i=1 K′
i

�−1

Fig. 2. COT Protocol for Relation RREP(Φ) (and Message Space G)

Theorem 1. If DDH problem is (tddh, εddh)-hard, and the proof system in the
construction is (text, qext, d, e)-strongly-sound with soundness error δ, then the
above construction of COT protocol for RREP(Φ) is (tadv, text,
qext, d

′, e′, )-strongly-secure-and-sender-private, with soundness error δ′, where
tadv = tddh−O(nm)texp, d′ = 1

2e+1 d, e′ = e + 1, δ′ = 2δ + 4nmε, and texp is the
time for one exponentiation operation.

Proof sketch: First, by splitting lemma, if adversary A has εA advantage in
distinguishing the real game from the random game, i.e., between S(x, M) and
S(x′,M ′) for random M ′ in G, then for εA/2 portion of the h values sent by
S in the first round, A has εA/2 advantage in distinguishing the two games,
where in both games h is fixed to this chosen value. Suppose h sent by S is
from this portion. By strong soundness of the proof system, a pair (w, r) can
be extracted from A, s.t. D[i, j] = gw[i,j] · hr[i,j]. So what remains to argue
is that the extracted w is the witness for the real sender S(x, M)’s statement
x = (G,C). Note that (1) for each (i, j) pair, (F[i, j],E[i, j]) is an ElGamal
encryption of element (G[i, j])si under “key” h. Therefore by DDH assump-
tion (E,F) is indistinguishable from UGn×m×Gn×m , where UG denotes uniform
distribution over group G. Hence (E′,F′, K̂ ′) sent by S(x′,M ′) in the random
game is indistinguishable from UGn×m×Gn×m×G because M ′ is random in G;
and (2) Ki = C[i]si ·

∏m
j=1(D[i, j])ti,j computed by S((G,C),M) is indeed∏m

j=1((E[i, j])w[i,j] · (F[i, j])r[i,j]) · (C[i] · (
∏n

j=1(G[i, j])−w[i,j]))si . If w is not the
witness for (G,C), then there exists at least one i, s.t. C[i] 6=

∏n
j=1(G[i, j])w[i,j].
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Then because si is random in Zq, Ki is random in G and so is K̂. Hence
(E,F, K̂) sent by the real sender S((G,C),M) is also indistinguishable from
UGn×m×Gn×m×G. Therefore, the only way A can tell a difference between the
real and random games is either by breaking the DDH assumption or by feed-
ing the “correct” witness for the real sender S(x,M)’s statement and then the
extractor can extract it with large enough probability. �

The proof of the following theorem is simple, so we omit it for lack of space:
Theorem 2. If the proof system for PedREP is (t, ε)-witness-indistinguishable,
then the constructed COT protocol is (t, ε)-receiver-private.

6 Construction of Unlinkable Secret Handshake Scheme

We construct an unlinkable SH scheme from so-called “Verifier-Local Revoca-
ble” Group Signatures (VLR GS), introduced and realized under Strong Diffie-
Hellman and Decisional Linear assumptions by Boneh and Shacham [BS04].
Below we define unlinkable secret handshakes, specify the properties of a VLR-
GS scheme that are useful to us, and show a construction of an SH scheme using
such VLR-GS scheme and private COT protocol.

6.1 (Unlinkable) Secret Handshakes: Definition

An (Unlinkable) Secret Handshake Scheme (SH) is an authenticated key ex-
change protocol which operates in an environment with many groups, each man-
aged by some group manager GM, and N users P1, ..., PN , each of which can be
a member of several groups. Each GM plays a role of the Certificate Authority
for its group, issuing certificates to any user it wants to admit to its group, and
publishing revocation tokens for any user it wants to revoke from it. An SH
scheme consists of three algorithms Setup, KGen, and Trace, and an interactive
procedure Handshake, s.t.

– Setup on security parameter κ outputs parameters par (and key space K).
– KGen, executed by a group manager GM on input par, outputs a group public

key gpk and a vector of user keys usk = (usk[1],usk[2], . . . , usk[N ]) and re-
vocation tokens urt = (urt[1],urt[2], . . . ,urt[N ]). For notational simplicity
we assume that user Pi is given key usk[i] for every group it belongs to.

– Handshake is an interactive protocol between two users, where each Pi runs
on its private inputs (usk[i], gpk), and outputs a pair (k, tr) where k ∈ K
is a key material to be used for subsequent secure communication with the
protocol counterparty and tr is an escrow of that counterparty’s identity.

– Trace, on inputs (tr,urt[i]) outputs 1 if tr is linked to usk[i], 0 otherwise.

Remark on Trace usage: Algorithm Trace has two uses: First, it can be used by
the group manager to de-escrow the identity of a player involved in any protocol
instance. Second, the intended usage of the above Handshake protocol, in which
player Pi always outputs some (k, tr) pair, is to be followed by a verification that
tr does not open to any revocation tokens included in the revocation list. If it
does, Pi throws away the created key k.
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Remark on privacy of revoked users: The revocation tokens are kept secret
by the group manager, and published only to revoke a given player from a group.
Therefore all past transcripts of a given user can be linked to this user, via the
Trace algorithm, once the user is revoked. Such privacy limitation is a feature
the verifier-local revocation group signatures [BS04]. A stronger privacy model,
where past transcripts of revoked users remain private, can be supported by
group signature schemes using accumulators, e.g. [CL01,BBS04]. It is an open
question whether similar privacy can be efficiently achieved by an unlinkable
SH scheme. (The major difficulty stems from the fact that two communicating
players might assume different revocation epochs, and hence run the SH protocol
on incompatible accumulators.)

Properties of SH Scheme. An SH scheme must meet the following properties:

Completeness: For every par output by Setup and every (gpk,usk,urt) output by
KGen on par, if any two players Pi and Pj honestly execute the Handshake proto-
col with inputs (usk[i], gpk) and (usk[j], gpk) respectively, then their respective
outputs (ki, tri) and (kj , trj) satisfy ki = kj .1 (It will follow from the security
definition below that also Trace(trj ,urt[i]) = 1 and Trace(tri,urt[j]) = 1.)

Security (Traceability): Security of an SH scheme is similar to traceability in
a group signature scheme. Namely, it requires that if some player successfully
authenticates itself to some player Pi then Pi’s transcript of this protocol can
be linked to that player’s identity. Formally, security of an SH scheme is defined
via the following game between an adversary A and a challenger CHsec, on input
any par output by Setup:

– Init. The challenger CHsec, on input par and a bit b, runs KGen(par), which
defines (gpk,usk,urt), sends (gpk,urt) to A, and sets Cor← ∅.

– Queries. A can make the following queries, where each query is serviced by
the challenger sequentially, which disallows man in the middle attacks:
• Handshake(i). CHsec on this query performs the Handshake protocol on

inputs (usk[i], gpk), interacting with A.
• Corruption(i). CHsec sends usk[i] to A and adds i to Cor.
• Challenge(i). (Allowed only once.) CHsec acts as in the Handshake(i)

query, but denotes its outputs as (k, tr). If Trace(tr,urt[j]) = 1 for any
j ∈ Cor, the game stops. Else, CHsec assigns k0 ← k, picks k1 ←R K,
and gives kb to A.

– Guess. A outputs b′ as its guess of b.

Let pb = Pr[ACHsec(b,par)(par) = 1], where the probability goes over the random-
ness of both A and CHsec, and let Adv-Sec(A, par) = |p1 − p0|. We say that
an SH scheme is (t, qsh, N, ε)-secure on parameters par if in a universe with
N users, for any t-time adversary A making at most qsh Handshake queries,
Adv-Sec(A, par) ≤ ε.
1 For notational simplicity, we present the completeness definition in the “symmetric”

setting where two players authenticate each other if they are in the same group.
However, our constructions generalize to the “asymmetric” setting, i.e. if usk[i] is
issued under gpkj and usk[j] is issued under gpki, then ki = kj .
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Upgrade to Authenticated Key Agreement : If the Handshake protocol
meets the above notion then it should be straightforward to convert it to an
Authenticated Key Exchange (AKE) protocol secure against man-in-the-middle
attacks. However, since modeling of AKE protocols requires introduction of an
extended formalism, e.g. [BCK01], such compilation is out of scope of this paper.

Privacy: The privacy property covers both the anonymity property of group
signatures, i.e. that no one except the group manager can detect if two instances
of the SH protocol are executed by the same user, together with the affiliation-
hiding property of secret handshake protocols (e.g. [BDS+03,CJT04]), i.e. that
no one can detect which group a given player belongs to except of non-revoked
members of the same group. Formally, we define privacy via the following game
between an adversary A and the challenger CHpri, on input any parameters par
output by Setup:

– Init. The challenger CHpri, on input par and a bit b, runs KGen(par) for
every group G, with outputs denoted (gpkG,uskG,urtG), gives gpkG for all
groups G to A, and sets Cor← ∅ and Chosen← ∅.

– Queries. A can make the following types of queries. As in the security game,
the challenger services each query sequentially:
• Handshake(i, G). CHpri runs Handshake on (uskG[i], gpkG), interacting

with A.
• Corruption(i). If i 6∈ Chosen then A gets uskG[i],urtG[i] for every G.

Let Cor← Cor ∪ {i}.
• Challenge(i0, G0, i1, G1). (Allowed only once.) Set Chosen← {i0, i1}. If

Chosen ∩ Cor 6= ∅ then the game stops. Otherwise CHpri runs Handshake
on input (uskGb

[ib], gpkGb
), interacting with A.

– Guess. A outputs b′ as its guess of b.

Let pb = Pr[ACHpri(b,par)(par) = 1], where the probability goes over the random-
ness of both A and CHpri, and let Adv-Pri(A, par) = |p1 − p0|. We say that a
SH scheme is (t, qsh, N, ε)-private on parameters par if in a universe with N
users, for any t-time adversary A making at most qsh Handshake queries,
Adv-Sec(A, par) ≤ ε.

6.2 Verifier-Local Revocable Group Signature (VLR-GS)

A VLR-GS scheme consists of the following algorithms: A setup procedure
SetupGS which creates public parameters par, an unforgeable certificate scheme
Πcert = (KeyGen,Certpar,Verpar), a non-interactive zero-knowledge proof for re-
lation RAUTH which we define below, and two additional procedures Compar and
TraceCompar. The functionality of the certificate scheme Πcert is that if (sk, pk)
is an output by KeyGen(par) then each run of Certpar(sk) generates a new to-
ken/secret pair (tk, scr) s.t. Verpar(pk, tk, scr) = 1. To enable an efficient VLR-GS
scheme, three conditions must be met:
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I. The outputs of Com must be traceable in the sense that (1) TraceCompar(C, tk)
= TraceCompar(C, tk′) = 1 implies tk = tk′, and (2) TraceCompar (C, tk) = 1 if
and only if ∃ r s.t. C = Compar(tk; r), and that .

II. There must exist an efficient non-interactive ZKPK proof system for language

AUTH(par) =
{

(C, pk) s.t. ∃ (tk, scr, r) s.t. C = Compar(tk; r)
and Verpar(pk, tk, scr) = accept

}
III. The certificate scheme Πcert must be existentially unforgeable:

Definition 5. We say that the certificate scheme Πcert is (t, q̂, ε)-unforgeable
on parameters par if for any t-time adversary A, the probability of the following
event is at most ε: First (sk, pk) is generated by KeyGen(par), then Certpar(sk) is
executed q̂ times to generate q̂ token/secret pairs (tki, scri), and then A on input
par, pk, and {tki, scri}i=1,..,q̂, outputs (tk∗, scr∗) s.t. Verpar(pk, tk∗, scr∗) = 1 and
tk∗ 6= tki for all i. The probability in this experiment runs over the randomness
of A and procedures KeyGen and Cert.

Under the above conditions a VLR-GS scheme works as follows. The group
public key is pk output by KeyGen, and each group member’s signature key is
(tk, scr) output by Certpar on the corresponding sk. A signature under group
key pk consists of C = Compar(tk) and a non-interactive ZKPK for (C, pk) ∈
AUTH(par). Any user can be revoked by the group manager adding the token part
tk in his/her key to the CRL. A verifier then checks if TraceCompar(C, tk) = 1 for
each tk in the CRL. However, to enable our SH construction a VLR-GS scheme
must meet two more properties:

IV. Token tk in pair (tk, scr) output by Certpar(sk) must be uniformly distributed
in some set Ut defined by par and independent of key sk.

V. Values C output by Compar(tk) hide the tk value, not in the sense of semantic
security, because knowledge of tk enables linking C to tk via TraceCom, but in
the following sense:

Definition 6. We say that the algorithm Com is (t, qcom, ε)-private on param-
eters par, if for any t-time adversary A with at most qcom oracle accesses to
procedures Com(tk0) and Com(tk1), we have |p0 − p1| ≤ ε where

pb
4
= Pr[ACompar(tk0),Compar(tk1)(par, Cb) = 1 | tk0, tk1 ←R U, Cb ← Compar(tkb)]

where the probability additionally goes over the randomness of A and Com.

6.3 Construction of SH’s from VLR-GS and Private COT

Assume we have a VLR-GS scheme consisting of procedures SetupGS, KeyGen,
Cert, Ver, Com, and TraceCom which satisfy all the above requirements. Assume
also a private COT protocol for relation RAUTH(par) and message space M cor-
responding to this VLR-GS scheme. An SH scheme (Setup, KGen, Handshake,
Trace) is constructed as follows:
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– Setup is the same as SetupGS, and keyspace K is the message space M.
– KGen, on input par, first computes (sk, pk) ← KeyGen(par), then computes

(tki, scri) ← Certpar(sk) for i = 1, .., N , and outputs (gpk,usk,urt) where
gpk = pk, and for all i we assign usk[i]← (tki, scri) and urt[i]← tki.

– Protocol Handshake, executed between players Pi and Pj : Player Pi runs
the protocol on inputs (uski, gpki) for some group in which Pi is a member.
Similarly Pj runs it on (uskj , gpkj) for some group in which Pj is a member.
The protocol proceeds as in Figure 3.

Pi(uski, gpki) Pj(uskj , gpkj)

Ci ← Com(uski; ri) for random ri
Ci //

Rcot : wi = (uski, ri) Scot : xj = (Ci, gpkj), Mj ←R MCOT for
RAUTH(par)oo

get M ′
j from the COT protocol

Cj ← Com(uskj ; rj) for random rj
Cjoo

Scot : xi = (Cj , gpki), Mi ←R M Rcot : wj = (uskj , rj)COT for
RAUTH(par) //

get M ′
i from the COT protocol

output ki = Mi ·M ′
j output kj = Mj ·M ′

i

Fig. 3. Handshake between Pi and Pj with inputs (uski, gpki) and (uskj , gpkj)

– Trace, on inputs tr and tk, outputs TraceCompar(tr, tk).

For lack of space we omit the proofs of the following theorems:

Theorem 3 (SH Security). For any par outputted by SetupGS, if Compar is
traceable, Πcert is (t1, q1, ε1)-unforgeable on par, and if the COT protocol for
Rauth(par) is (t2, text, qext, d, e)-strongly-secure and sender-private with soundness
error δ, and (t3, ε3)-receiver-private, then the above SH scheme is (t′, qsh, q1, ε

′)-
secure, where t′ = min{t2, (t1− text)/(qext + 1), t3}, ε′ = (q1 + 1)(ε1/d)1/e + δ) +
q1 · qsh · ε3.

Theorem 4 (SH Privacy). For any par outputted by Setup(κ), if the Compar

algorithm is (t1, q1, ε1)-private and is uniquely traceable, if Pcert is (t2, q2, ε2)-
unforgeable and if the COT protocol for Rauth(par) is (t3, text, qext, d, e)-strongly-
secure-and-sender-private with soundness error δ,and (t4, ε4)-receiver-private,
then the above SH scheme is (t′, qsh, q2, ε

′)-private, where t′ = min{t1, (t2 −
text)/(qext + 1), t3, t4}, ε′ = ε1 + ((q2 + 1)(ε2/d)1/e + δ) + (q2 · qsh · ε4) + ε4, and
qsh ≤ q1.

Note that the SH scheme presented above is a generic construction from appro-
priate VLR-GS components and an associated private COT protocol. For lack
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of space we omit from these proceedings a description of a concrete implemen-
tation where all components are instantiated with those used in the VLR-GS
scheme of [BS04]. However, it is easy to see that relation RAUTH defined by these
components can be transformed to a special case of relation RREP(Φ) of Section
5, and therefore an efficient private COT protocol for this relation is implied by
the private COT for RREP(Φ) given in Figure 2.
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