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Abstract. Preimage resistance of several hash functions has already
been broken by the meet-in-the-middle attacks and they utilize a prop-
erty that their message schedules consist of only permutations of message
words. It is unclear whether this type of attacks is applicable to a hash
function whose message schedule does not consist of permutations of
message words. This paper proposes new attacks against reduced SHA-0
and SHA-1 hash functions by analyzing a message schedule that does not
consist of permutations but linear combinations of message words. The
newly developed cryptanalytic techniques enable the meet-in-the-middle
attack to be applied to reduced SHA-0 and SHA-1 hash functions. The
attacks find preimages of SHA-0 and SHA-1 in 2156.6 and 2159.3 compres-
sion function computations up to 52 and 48 steps, respectively, compared
to the brute-force attack, which requires 2160 compression function com-
putations. The previous best attacks find preimages up to 49 and 44
steps, respectively.
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1 Introduction

After the breakthrough described in Wang’s study [14], much attention has
been paid to the security of MD4-like hash functions such as MD4 [7], MD5
[8], HAVAL [15], and SHA family [13]. First, attention was focused on colli-
sion resistance, and the more recently, attention has been focused on preimage
resistance. Preimage resistance is more important than collision resistance be-
cause the security of many applications employing hash functions are based on
preimage resistance, and breaking preimage resistance implies breaking collision
resistance of the practical hash functions1, and, therefore, we should focus more
attention on preimage resistance. Saarinen showed a preimage attack on new
FORK-256 [4] in 2007 [9], and in 2008, Leurent showed that a preimage of MD4
can be computed to the complexity of 2100.51 MD4 computations [5]. In these
attack, the meet-in-the-middle technique helps to compute the preimage. Af-
ter this, the meet-in-the-middle attack is directly used to compute a (second)
preimage of hash functions [2, 1, 10, 12, 11], and the meet-in-the-middle technique
seems to be a very powerful tool to compute a preimage.
1 Collision resistance implies preimage resistance for hash functions with uniformly

random output. Note that collision resistance does not always imply preimage resis-
tance. Construction of such artificial hash functions is explained in [6, Note 9.20].



SHA-1 is a widely used hash function, and its security assessment is very im-
portant. Actually, many public key encryption and signature schemes use SHA-1
as a random oracle, and the SSL/TLS protocol uses SHA-1 for many purposes.
In Crypto 2008, [3] showed the first preimage attacks against reduced SHA-0 and
SHA-1. Its authors use “reversing the inversion problem” and attacked SHA-0
and SHA-1 up to 49 and 44 steps, respectively. On the other hand, the resistance
of SHA-0 and SHA-1 against the meet-in-the-middle technique is an interesting
problem to be studied. However, the previous preimage attacks using the meet-
in-the-middle technique are only applied to hash functions whose message sched-
ule consists of permutations of the message words, while the message schedules
of SHA-0 and SHA-1 are in more complicated form, that is, linear transforma-
tion of message words. Moreover, the techniques developed in [3] seems not to
be able to be applied to the framework of the meet-in-the-middle attack.

On conducting the meet-in-the-middle attack, first we partition steps for
SHA-0 (or SHA-1) into two chunks. A chunk comprises consecutive steps of
the corresponding hash function and includes at least one neutral word , which
appears in the chunk and does not appear in the other chunk. So, steps in a chunk
can be executed using the neutral word for the chunk, and does not require the
neutral word for the other chunk. Although finding neutral words is important
in this scenario, the previous meet-in-the-middle attack only are applied to hash
functions such as MD4, which has a simple message schedule, that is, consisting
only of permutations of message words. So, a message word itself can be regarded
as a neutral word, and it is very easy to find chunks of long steps. For example,
[10] can compute a (second) preimage of HAVAL-5 up to 151 steps. To apply the
same strategy to SHA-0 or SHA-1, we face the first difficulty which is that we
cannot find any neutral words for long steps, because SHA-0 and SHA-1 adopt
the linear transformation of a message word as message schedule, and the linear
transformation spreads the effect of a message word to many steps and prevents
finding neutral words. To solve this problem, we seek chunks that the rank of
their matrix representation is not full, and we regard the kernel generators of
linear transformations of each chunk as neutral words. This seems to be a good
idea, in fact, if message words included in the kernel generators of the first and
the second chunks are different, each kernel can be computed independently,
and thus, the meet-in-the-middle attack can be performed. However, we face the
second difficulty that the kernel generators for two chunks may share the same
message word, and how to determine the value of the neutral word in each chunk
is unclear. To overcome the second problem, we convert a message schedule by
multiplying by a regular matrix, so that converting a message schedule using
a matrix results in converted kernel generators for two chunks becoming unit
vectors. That is, we can choose converted message words as neutral words, and
this enables us to apply the existing meet-in-the-middle attack to SHA-0 and
SHA-1.

This paper presents a new analysis method for a linear message schedule,
which enables us to utilize the meet-in-the-middle technique to compute a preim-
age effectively. We then apply this technique to SHA-0 and SHA-1. The newly



Table 1. Preimage Attacks Against SHA-0 and SHA-1

[3] Current Results
# of Complexity # of Complexity

Attack Type Steps Time Memory Steps Time Memory

SHA-0 pseudo-preimage 50 2158 225 52 2151.2 215

52 2152.2 negligible
preimage 49 2159 225 52 2156.6 215

52 2157.1 negligible

SHA-1 pseudo-preimage 45 2157 220 48 2156.7 240

48 2157.7 negligible
preimage 44 2157 220 48 2159.3 240

48 2159.8 negligible

The unit of time complexity is one compression function computation, and the unit of
memory complexity is a few times of the hash length which is 160 bits.

developed analysis is a generalization of the previously reported analysis for MD5
and other hash functions [11, 10, 12]. The technique with the detailed analysis of
step functions can find a preimage of reduced SHA-0 and SHA-1 faster than the
brute-force attack up to 52 and 48 steps, respectively (out of 80 steps), which are
the best results so far. Table 1 summarizes the preimage attacks against SHA-0
and SHA-1. We also note the complexity of memoryless attack in Table 1.

2 Preliminaries
2.1 Specification of SHA-0 and SHA-1
This paper focuses on SHA-b (b = 0 or 1). This section shows the specifica-
tions of SHA-b used in this paper. For more details, please refer to the original
specifications [13].

SHA-b adopts the Merkle-Damg̊ard structure [6, Algorithm 9.25]. The mes-
sage string is first padded to be a 512-bit multiple, and divided into 512-bit
blocks, (M0,M1, . . . ,Mm−1) (Mi ∈ {0, 1}512). The compression function inputs
a 512-bit message string and 160-bit chaining variable. The message blocks are
input to the iterative use of compression function CF to compute hash value
Hm.

H0 ← IV, Hi+1 ← CF(Hi,Mi) (i = 0, 1, . . . ,m− 1)

where IV is the constant defined in the specification.
The compression function is based on the Davies-Meyer mode [6, Algorithm

9.42]. Let ≪x denote the x-bit left rotation. First, the message block is expanded
using the message schedule algorithm.{

wj ← mj , ( 0 ≤ j < 16)
wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16)≪b, (16 ≤ j < 80) (1)

where (m0,m1, . . . ,m15)←Mi (mj ∈ {0, 1}32). Hereafter, we call a 32-bit string
a word . Then, the step functions are applied.

p0 ← Hi, pj+1 ← Rj(pj , wj) (for j = 0, 1, . . . , 79), Hi+1 ← Hi + p80, (2)



where “+” denotes the wordwise addition. Step function Rj is defined as given
hereafter: {

aj+1 ← a≪5
j + fj(bj , cj , dj) + ej + wj + kj

bj+1 ← aj , cj+1 ← b≪30
j , dj+1 ← cj , ej+1 ← dj

where (aj , bj , cj , dj , ej) = pj , fj is a bitwise function, and kj is a constant spec-
ified by the specification.

Note that the difference between SHA-0 and SHA-1 is only the existence of
the rotation in Eq.(1).

2.2 Converting pseudo-preimage attack to preimage attack

We call (Hi,Mi) a pseudo-preimage of the compression function, where the given
Hi+1 satisfies Hi+1 = CF(Hi, Mi). Hereafter, we use the computational unit as
one computation of the compression function.

[6, Fact 9.99] gives an algorithm for converting a pseudo-preimage attack
to a preimage attack for the Merkle-Damg̊ard construction. A preimage can be
computed in 21+(x+n)/2 with one more block message, where the hash value is
n-bit long, when a pseudo-preimage can be computed in 2x.

Note that the attacks [5, 3] generalize this conversion, tree and graph based
approaches. Their conversions require to fix some part of hash value and pseudo-
preimage in the pseudo-preimage attack, and to generate this combination at
very small cost. Unfortunately, our attack described later cannot satisfy this
condition. So, we cannot use tree and graph based approaches with our attacks.

2.3 Meet-in-the-middle attack

This section describes the basic strategy of the preimage attack using the meet-
in-the-middle attack proposed in [1].

Assume that the message length with padding is equal to one block. The
hash value is computed by H1 = CF(IV,M0). Focusing on Eq.(2) reduced to s
steps, we assume that some t, u, and v exist with the following conditions.{

wj (0 ≤ j < t) is independent of mv

wj (t ≤ j < s) is independent of mu
(3)

We can construct the following algorithm.

0. Choose mj (j ∈ {0, 1, . . . , 15}\{u, v}) arbitrary.
1. For all mu ∈ {0, 1}32, compute pt ← Rt−1(Rt−2(· · ·R0(IV, w0) · · · , wt−2), wt−1)

and store (mu, pt) in a table.
2. For all mv ∈ {0, 1}32, compute pt ← R−1

t (R−1
t+1(· · ·R

−1
s−1(ps, ws−1) · · · , wt+1),

wt), where ps ← H1 − IV and “−” denotes the wordwise subtraction. If one
of the pts has a match in the table generated in 1, M0 (= (m0,m1, . . . ,m15))
is a preimage of the hash function.

The complexity of the above algorithm is about 232, and the success probability
is about 2−160+64. Thus, to iterate the above algorithm 2160−64 times, we expect
to find a preimage with high probability. The time complexity of the attack is
2160−32 and the memory complexity is about 6× 232 words.



Hereafter, we call such mu and mv neutral words, and call consecutive steps
j ∈ [0, t) and j ∈ [t, s) chunks. In this meet-in-the-middle attack, how to find
two chunks with a neutral word is important. Section 3 describes how to find
this that satisfies Condition (3) with given wi (i = 0, 1, . . . , s− 1).

2.4 Auxiliary techniques with the meet-in-the-middle attack

This section describes the techniques proposed in [1, 11] that can be used with
the algorithm described in Section 2.3. These techniques improve the complexity
and increase the number of steps that can be attacked by the attack described
in Section 2.3.

Splice-and-cut. The meet-in-the-middle attack in Section 2.3 starts to com-
pute input p0 in step 0 and output ps in step s−1. Considering the final addition
in the Davies-Meyer mode in Eq.(2), we regard that the final and the first steps
are consecutive. Thus, we can determine that the meet-in-the-middle attack
starts with any step and matches with any step. We call this technique splice-
and-cut [1]. Note that this technique will produce a pseudo-preimage, because IV
cannot be controlled by an attacker, though we can compute a preimage using
Section 2.2.

Partial-matching and partial-fixing. The step function Rj in SHA-b does
not update all words in pj . In fact, all words in pj match pj+1 except one word.
This fact enables us not to fix matching-step t in Section 2.3, and Condition (3)
changes from the chunk partition of [0, t) and [t, s) to that of [0, t) and [t + c, s),
where c ≤ 4. This may increase the number of steps that a preimage can be
computed because we may be able to include the neutral words mu and mv in
the steps [t, t+ c). This loosens the conditions based on which the neutral words
are selected and how the chunks are selected. We call this technique partial-
matching [1].

Moreover, we can choose a larger c than that for partial-matching, by fixing
partial bits in mu and/or mv, since the partial bits in pj depending on mu or
mv (j ∈ [t, t + c)) can be computed. We call this technique partial-fixing [1]. In
the case of SHA-b, with manual attempts, c seems to be chosen up to ≈ 15. An
example of partial-matching with partial-fixing is provided in a later section.

Initial structure. In the partial-matching or partial-fixing technique, we can
ignore several steps regarding neutral words for the matching-part in the meet-
in-the-middle attack to choose the appropriate chunks. Similarly, we can ignore
several steps for the starting-part in the meet-in-the-middle attack. A prelimi-
nary version of the technique is introduced in [2], and it can be considered as a
local collision [10] similar to existing collision attacks. Using the local collision
technique, neutral words should be chosen at the edges of the starting-part. After
computing the matching-part, we should confirm that the values of the neutral
words satisfies the condition of the local collision. This condition is satisfied with
probability 2−32, and we lose the advantage to use the meet-in-the-middle at-
tack. To solve the problem, [2] chooses additional neutral words from a chaining



variable. Anyway, the condition for the neutral words is very restrictive for the
local collision technique.

A variant of the local collision was introduced in [12] and generalized to the
initial structure [11]. As opposed to [2], [11] introduced the efficient consistency
check technique for the initial structure and it can also be used for the local
collision technique. In regard to the technique in [2], the consistency for local
collisions is satisfied randomly after matching the meet-in-the-middle attack,
while the efficient consistency check satisfies the consistency for the initial struc-
ture at the same time as the meet-in-the-middle attack by adding a word for the
table used by the meet-in-the-middle-attack.

Similar to partial-fixing, we can ignore d steps regarding neutral words for
the starting part in the meet-in-the-middle attack. How to construct an initial
structure is still somewhat ambiguous. With several manual attempts, it seems
possible to construct d-step initial structures up to ≈ 4 for the case of SHA-b.
An example of the initial structure is provided in a later section.

Summary. Considering the meet-in-the-middle attack, we can use all of the
techniques described above: splice-and-cut, partial-matching and -fixing, and
initial structure. Figure 1 shows how to partition the steps in SHA-b with these
techniques in an abstract model.

3 Analysis of linear message schedule

The message schedule of SHA-b is different from that for MD4 and MD5, which
were already attacked [5, 11], and is essentially linear for wj (j ≥ 16) from
Eq.(1). Similarly, HAS-160 adopts a linear message schedule, but most part of
the message schedule is only permutations of message words. In fact, only one
fifth of wjs are essentially linear, and this linear wjs are only XOR of 4 message
words. Thus, for example, the case of w16 = m12⊕m13⊕m14⊕m15 is regarded
such that all of m12, m13, m14, m15 are used in this step in the attack [12]. While,
on the message schedule of SHA-b, wj (0 ≤ j < 16) is equal to mj and seems
simple, but wj (j ≥ 20) depends on almost half the number of mjs since wj

(j ≥ 16) is computed using Eq.(1). So, it seems that we can compute a preimage
up to ≈ 39 steps (= 20 + 15 + 4) faster than the brute-force attack under the
same strategy in [12], and it seems difficult to increase the number of steps that
can be attacked. This section presents a way to address this problem, that is,
the following section finds the chunks that satisfy Condition (3) and detect the
neutral words in the chunks.

3.1 Kernel and neutral words

This section describes how to partition steps into chunks and find neutral words
for SHA-0. For SHA-1, the same approach can be applied by considering bits
instead of words.

The expanded message, wj , is computed using Eq.(1), and its matrix rep-
resentation is given hereafter: [w0 w1 · · · w79]T = WMT , where M = [m0 m1

· · · m15] and W is represented in Figure 3. Consider that SHA-0 is reduced to s



Hm−1 ⇒

mv

↓
mu

↓
mv

↓
mu

↓
mu

↓
mu

↓
mv

↓
mu

↓
mv

↓

1st chunk ← Initial
structure

→ 2nd chunk →Partial-
fixing

← 1st chunk

← d-step → ← c-step →

⇒ Hm

Fig. 1. A chunk partition with initial structure and partial-fixing technique

steps and the steps are partitioned into the following two chunks.{
[w0 w1 · · · wt−1]T = W1M

T

[wt wt+1 · · · ws−1]T = W2M
T (4)

We assume that {
rankW1 < 16
rankW2 < 16 (5)

holds. So, there exists the following non-trivial kernels.{
kerW1 = 〈k(0)

1 , k
(1)
1 , . . . , k

(κ1−1)
1 〉

kerW2 = 〈k(0)
2 , k

(1)
2 , . . . , k

(κ2−1)
2 〉

, (6)

where κ1 and κ2 denote the dimension of the corresponding kernel. Let K1 =
[k(0)

1 k
(1)
1 · · · k

(κ1−1)
1 ] and K2 = [k(0)

2 k
(1)
2 · · · k

(κ2−1)
2 ]. We regard the mes-

sage words corresponding to the vectors in K1 and K2 as neutral words for the
opposite chunk. Consider the following as an example. κ1 = κ2 = 1 and{

k1 = [1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]T

k2 = [0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0]T .

Since k1 and k2 are in the kernel of W1 and W2, W1k1 = 0 and W2k2 = 0
holds. That is, m0 can be used as a neutral word for the second chunk with
m0 = m2 = m3 to see ‘1’ in k1, and m1 can be used as a neutral word for the
first chunk with m1 = m4 to see ‘1’ in k2. Similarly, we can choose neutral words
whenever the representation of the generating vectors does not share the same
position of ‘1’s. However, the strategy does not always work in a straightforward
manner. We notice the case that the generating vectors share the ‘1’ at the
same position. In this case, we cannot independently determine the value of
neutral words for each chunk. We can solve this problem using a sophisticated
linear transformation by substituting M with M ′, where MT = RM ′T with
regular matrix R. Once we find M ′, we can easy to recover the preimage M by
multiplying the matrix R.

Let the unit vector be ei = [0 · · ·
i

1̆ · · · 0]T and j-dimensional identity
matrix be Ej . In the following, we construct regular matrix R such that{

W1Rei = 0 for i = 0, 1, . . . , κ1 − 1
W2Rei+κ1 = 0 for i = 0, 1, . . . , κ2 − 1 . (7)

If such a matrix is constructed, we have

[w0 w1 · · · ws−1]T =
[

W1

W2

]
MT =

([
W1

W2

]
R

)
(R−1MT ).



Let W ′
1 = W1R, W ′

2 = W2R, M ′T = R−1MT , and M ′ = [m′
0 m′

1 · · · m′
15], and

we have

– kerW ′
1 = 〈e0, e1, . . . , eκ1−1〉, and kerW ′

2 = 〈eκ1 , eκ1+1, . . . , eκ1+κ2−1〉.
– m′

0,m
′
1, . . . , m

′
κ1−1 are neutral words for the second chunk, and m′

κ1
,m′

κ1+1,
. . . ,m′

κ1+κ2−1 are neutral words for the first chunk.

Thus, we can perform the meet-in-the-middle attack described in Section 2.3 by
adjusting a recovered preimage M ′ with MT ← RM ′T . The rest of this section
describes how to construct R.

Assume rank[K1 K2] = κ1 + κ2
2. We can choose κ1 + κ2 independent row

vectors in [K1 K2], and there is regular matrix T that collects these independent
row vectors and can be constructed from E16 by swapping corresponding rows,
H, at the top by swapping rows, and regular matrices B and S are defied as
follows.

H

∗

 = T [K1 K2], B =


H−1 0

0
E16−κ1−κ2

 , S =


BT [K1 K2] 0

E16−κ1−κ2

 .

Note that the top κ1 + κ2 rows of BT [K1 K2] is Eκ1+κ2 . Then, R = T−1B−1S

satisfies k
(i)
1 = Rei (for 0 ≤ i < κ1) and k

(i)
2 = Rei+κ1 (for 0 ≤ i < κ2). So,

Eq.(7) holds.

3.2 Notes on auxiliary techniques

Both the splice-and-cut and partial-matching techniques described in Section 2.4
can be used in the same way. Note, we generate pseudo-preimages in the same
way as Section 2.4, because the splice-and-cut technique cannot specify IV.

We can apply the partial-fixing and initial structure techniques described
in Section 2.4 to SHA-b in a similar way. However, careful analysis is required,
since the message schedule of SHA-b sometimes produces XOR of several message
words in one step.

[12] applies the partial-fixing technique to HAS-160. The step function of
HAS-160 is very similar to SHA-b, so these techniques can also be applied to
SHA-b.

3.3 Application to SHA-b

Based on the discussion above, we compute how many steps to satisfy Condition
(5), with partial-matching and -fixing step c ≤ 21 and initial structure step
d ≤ 7. The results are shown in Tables 2, 3, and 4. We do not know why, but
we notice that the numbers of steps are the same when the values of c + d are
the same.
2 Of course, there is a chunk partition such that rank[K1 K2] < κ1 + κ2; however,

we are not so interested in this case. Actually, we do not have an experience with
rank[K1 K2] < κ1 + κ2 with long steps.



Table 2. Number of Steps Such That rank W1, rank W2 < 16 for SHA-0

c + d 0 1–2 3 4–6 7 8–11 12–13 14–15 16–21 22 23 24–25 26–27 28
# of steps 32 33 35 37 39 42 45 47 52 54 55 57 60 61

c: number of partial-fixing step, d : number of initial structure step

Table 3. Number of Steps Such That rank W1, rank W2 < 512 for SHA-1

c + d 0 1–2 3 4–6 7 8–11 12–13 14–15 16–21 22 23 24–25 26–27 28
# of steps 32 33 35 37 39 42 45 47 52 54 55 57 60 61

c: number of partial-fixing step, d : number of initial structure step

For SHA-1, rankW1, rankW2 < 512 is a very hard condition to attack SHA-1,
because we may be able to use only one neutral bit. In this case the partial-fixing
technique cannot work. So, we also compute the case that rankW1, rankW2 <
503 to have the possibility to use the partial-fixing technique. Though we loose
the upper bound of the rank to 503, the derived ranks are 480.

Consider the case for SHA-0. If the number of steps in chunks are 15,
rankW1, rankW2 < 16 always holds. To set d = 0 and c = 4, that is, we do
not use initial structure and partial-fixing, and the attack always works. Thus,
we can trivially compute a preimage of the compression function reduced to 34
(= 15 + 15 + 4) steps in 2128. To see Table 2, we see 37 when c + d = 4. So, we
can improve the attack to 37 steps with the same complexity. Consider to adopt
the partial-fixing technique. To fix lower 16 bits in neutral words, it is easy to
verify that we can increase 3 more steps. Following Table 2 with c + d = 7, we
can compute a preimage of the compression function reduced to 39 steps in 2144.

Note that Condition (5) is the only necessary condition for a successful attack.
To construct a definite attack procedure, we need to see specific procedures for
the initial structure, and for partial-fixing, and for padding. The following section
describes this.

4 Detailed attack against SHA-b

This section describes detailed description of the attack against SHA-0 reduced
to 52 steps. We try to increase the number of steps that can be attacked faster
than the brute-force attack as large as possible. For smaller number of steps, see
the previous section.

4.1 Chunk partition for 52-step SHA-0

The transformed message schedule, WR, described in the previous section is
shown in Table 5. As shown in Table 5, the first chunk (steps 37–23, in total 15

Table 4. Number of Steps Such That rank W1, rank W2 < 503 for SHA-1

c + d 0–1 2 3–5 6 7 8–9 10–11 12–13 14–15 16–17 18 19 20–21 22–24 25 26–27 28
# of steps 31 33 35 36 37 39 41 43 45 47 48 49 51 54 56 57 59

c: number of partial-fixing step, d : number of initial structure step



Table 5. Transformed Message Schedule for 52-step SHA-0

m′
i

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

S
e
c
o
n
d

ch
u
n
k

9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
12 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
13 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0
17 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0
18 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1
19 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0
20 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0
21 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1
22 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0

S
k
ip

m′
i

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
23 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1
24 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1
25 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0
26 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0
27 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1
28 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0
29 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0
30 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1
31 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0
32 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0
33 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1
34 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1
35 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0
36 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1

F
irst

ch
u
n
k

37 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 1 ↑
38 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0
39 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0

IS

40 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 ↓
41 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0
42 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1
43 0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 1
44 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0
45 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0
46 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
47 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1
48 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1
49 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1
50 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0
51 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1

S
e
c
o
n
d

ch
u
n
k

wi consists of XOR of m′
j whose entry in step i is 1, e.g., w10 = m′

1 ⊕m′
10.

IS, which appears in steps 38 and 39, stands for “Initial Structure.”

a39 b39 c39 d39 e39

a38 b38 c38 d38 e38

<<<30

<<<5

w38 (=m0’ Const)
k38

f38

NW �����

<<<30

<<<5
f39

a40 b40 c40 d40 e40

τ38

p38

p39

p40

k39

w39 (=m1’ Const)
NW ���	�

τ39

The bold and dotted lines rep-
resent data lines for which
values are changed depend-
ing on the value of the neu-
tral words for the second and
first chunks, respectively. Nar-
row lines represent data lines
that are always fixed regard-
less of the values of the neutral
words.

Fig. 2. Initial structure for 52-step SHA-0

steps) includes m′
1 but does not include m′

0, and the second chunk (steps 40–51,
0–8 in total 21 steps) includes m′

0 but does not include m′
1. Hence, by fixing m′

2

to m′
15, the meet-in-the-middle attack can be performed.

4.2 Initial structure for 52-step SHA-0

The construction of the initial structure is shown in Fig. 2. The goal of this
construction is making p40 independent of the neutral words for the first chunk
w39 (= m′

1 ⊕ Const), and making p38 independent of the neutral words for the
second chunk w38 (= m′

0 ⊕Const). This is achieved by the following procedure.

Preparation: Change the addition order in step 39, and choose an arbitrary
value for τ38 and τ39, e.g. τ38 = τ39 = 0. Moreover, fix a38, b38, c38 as
arbitrary.



Table 6. Number of Known Bits
in Partial-Fixing Technique for 52-Step
SHA-0

(in wj) #cands
j aj bj cj dj ej m′

1 of aj

9 All All All All All 18–0
10 18–0 All All All All 18–0 1
11 18–5 18–0 All All All 18–0 21

12 18–10 18–5 16–0 All All 18–0 22

F
o
rw

a
rd

12 20–9 20–11 ? ? ? skipped
13 20–9 20–9 18–9 ? ? skipped
14 20–9 20–9 18–7 18–9 ? skipped
15 20–4 20–9 18–7 18–7 18–9 All 29

16 20–2 20–4 18–7 18–7 18–7 18–0 27

17 20–2 20–2 18–2 18–7 18–7 All 25

18 20–2 20–2 18–0 18–2 18–7 18–0 23

19 All 20–2 18–0 18–0 18–2 All 21

20 All All 18–0 18–0 18–0 18–0 1
21 All All All 18–0 18–0 All 1
22 All All All All 18–0 18–0 1
23 All All All All All

B
a
ck

w
a
rd

c
o
m

p
u
ta

tio
n

(in wj) #cands
j aj bj cj dj ej m′

0 of ej

Numbers denote the known bits of each
chaining variable. Underlined variables in
j = 12 are variables where we compare
the results of two chunks.

Table 7. Number of Known Bits
in Partial-Fixing Technique for 48-Step
SHA-1

(in wj) #cands
j aj bj cj dj ej m′

1 of aj

9 All All All All All 17–0
10 17–0 All All All All All 1
11 17–5 17–0 All All All All 21

12 17–10 17–5 15–0 All All 16–0 22

F
o
rw

a
rd

12 27–9 27–11 ? ? ? skipped
13 27–7 27–9 25–9 ? ? skipped
14 27–9 27–7 25–7 25–9 ? skipped
15 27–4 27–9 25–7 25–7 25–9 All 29

16 27–2 27–4 25–7 25–7 25–7 25–0 27

17 27–2 27–2 25–2 25–7 25–7 All 25

18 27–2 27–2 25–0 25–2 25–7 25–0 23

19 All 27–2 25–0 25–0 25–2 All 21

20 All All 25–0 25–0 25–0 25–0 1
21 All All All 25–0 25–0 All 1
22 All All All All 25–0 25–0 1
23 All All All All All

B
a
ck

w
a
rd

c
o
m

p
u
ta

tio
n

(in wj) #cands
j aj bj cj dj ej m′

0 of ej

We compare results of two chunks on a12

and b12, in total 15 bits.

Make p40 independent of w39: c40 (= a38
≪30), d40 (= b38

≪30), and e40 (=
c38) are already fixed. Compute b40 (= a39 = τ38 + w38 + k38) and a40

(= τ39 +a39
≪5 +f39(b39, c39, d39)+k39). Note that b39 = a38, c39 = b38

≪30,
and d39 = c38.

Make p38 independent of w38: Compute d38 (= τ39 − w39) and e38 (= τ38 −
f38(b38, c38, d38)− a38

≪5).

As described above, we can compute the first and second chunks independently
of the neutral words for the second and first chunks, respectively. Hence, the
meet-in-the-middle attack can be performed.

Remarks. Construction of the initial structure is dependent on the selected
chunks. Since the chunk partition is different for SHA-1, we construct the initial
structure of SHA-1 differently. See Section 5 for details.

4.3 Partial-fixing technique for 52-step SHA-0

In the meet-in-the-middle attack, results of two chunks must be compared effi-
ciently. Although many steps (14 steps) between two chunks are skipped in the
employed attack as shown in Table 5, a part of the results of two chunks can
be compared by using the partial-fixing and partial-matching techniques. How
the results of two chunks are compared is explained in Table 6. Note we first
assumed that the fixed bit-positions for backward computation is represented by
lower x bits and the forward computation is represented by intermediate y bits.
Then, we identified the best x, y, and fixed positions. Consequently, we chose
x = 19 and y = 19 from the least significant bit.

We explain how the partial computation shown in Table 6 is processed.



Forward computation for a10: As a result of computing the second chunk
in forward direction m′

0, we obtain the value p9. Therefore, when we apply
partial-fixing to the forward computation, we know all bits of a9, b9, c9, d9

and e9. p10 is computed with R9(p9, w9), where w9 can be written as m′
1 ⊕

Const . Since the lower 19 bits of m′
1, which is the neutral word for the other

chunk, are fixed, the lower 19 bits of a10 can be computed uniquely.
Forward computation for a11: p11 is computed with R10(p10, w10), where

w10 can be written as m′
1 ⊕ Const . In particular, the equation for a11 is

as follows:
a11 = a10

≪5 + f10(b10, c10, d10) + e10 + w10 + k10.

Since the lower 19 bits of w10 and all bits of f10, e10, and k10 are known, the
lower 19 bits of f10 + e10 + w10 + k10 can be computed uniquely. We know
the lower 19 bits (bits 0 to 18) of a10, hence we know bits 5 to 23 of a10

≪5.
When we compute a11 = a10

≪5 +(f10 + e10 +w10 + k10), we do not know if
there is a carry from bit-position 4 to 5. Therefore, we consider both possible
carry bits, and obtain two candidates for bits 5 to 18 of a11. Hence, for each
(a9, b9, c9, d9, e9), we obtain 21 candidates for bits 5 to 18 of a11.

Forward computation for a12: By almost the same procedure as above, we
can obtain two candidates for bits 10 to 18 a12 for each candidate of p11.
Hence, for each (a9, b9, c9, d9, e9), we obtain 22 candidates for bits 10 to 18
of a12.

Backward computation for e22: As a result of computing the first chunk in
backward direction m′

1, we obtain the value of p23. p22 is computed with
R−1

22 (p23, w22), where w22 can be written as m′
0 ⊕ Const . Since the lower 19

bits of m′
0 are fixed, the lower 19 bits of e22 can be computed uniquely.

Backward computation for e17: With similar techniques to the forward com-
putation, we can compute 23 candidates for p18 as shown in Table 6 for each
p23. We next explain how to compute p17 with R−1

17 (p18, w17), in particular,

e17 = a18 − k17 − w17 − f17(c18
≫30, d18, e18)− b18

≪5,

w17 = m′
1 ⊕ Const = m′

1 ⊕m′
3 ⊕m′

9 ⊕m′
14.

In order to reduce the number of unknown carries, the number of additions
(or subtractions) should be reduced as much as possible. For this purpose, we
fix the lower 19 bits of w17 to −k17. This can be achieved by first fixing the
lower 19 bits of m′

1⊕m′
3⊕m′

9, and then compute m′
14 = m′

1⊕m′
3⊕m′

9⊕(−k17)
with respect to the lower 19 bits.

Remarks for the rest: In a similar manner, we obtain Table 6. Note, we need
to fix w16 = m′

0 ⊕ m′
1 ⊕ m′

2 ⊕ m′
8 ⊕ m′

13 to −k16 and w15 = m′
15 to −k15

with respect to the lower 19 bits. With adequate message space, this can
be easily achieved. Backward computation is done until p15. Steps 14-11 are
skipped in the partial-matching technique. Finally, we compare the results
from both chunks at bits 10–18 of a12 and bits 11–18 of b12, in total 17 bits.

4.4 Attack procedure for 52-step SHA-0

For a given hash value, Hm, the attack procedure is as follows.



1. Fix m′
i, (i 6∈ {0, 1}) and the lower 19 bits of m′

0 and m′
1 to randomly chosen

values.
2. Fix chaining variables in the initial structures (steps 38-39) as described in

Section 4.2.
3. For all 13 free bits of the neutral words for the second chunk, namely the

higher 13 bits of m′
0,

(a) Compute a40 and b40 from w38 as explained in Section 4.2.

(b) Compute:

pj+1 ← Rj(pj , wj) for j = 40, 41, . . . , 51
p0 ← Hm − p52,
pj+1 ← Rj(pj , wj) for j = 0, 1, . . . , 8

(c) Compute bits 0–18 of a10, 21 candidates for bits 5–18 of a11 and 22

candidates for bits 10–18 of a12 as explained in Section 4.3.
(d) Make a table of (m′

0, p9, a10, a11, a12)s. Since we have 13 free bits in
neutral words, and 22 candidates of partial a12 for each choice of free
bits, we have 215 items in the table.

4. For all 13 free bits of the neutral words for the first chunk, namely the higher
13 bits of m′

1,
(a) Compute e38 and d38 as described in Section 4.2.
(b) Compute: pj ← R−1

j (pj+1, wj) for j = 37, 36, . . . , 23,
(c) Compute the lower 19 bits of e22, e21, and e20, bits 2–18 of e19, bits 7–18

of e18, e17, and e16, and bits 9–18 of e15 as explained in Section 4.3.
(d) For each item in the table, check whether or not bits 10–18 of a12, and

bits 11–18 of b12 computed from both chunks match.
(e) If a match is found, compute p10 to p13 by the corresponding message

word, and check the match of the additionally computed bits, and check
the correctness of the guess for the carry for a11 and a12 step by step.

(f) If a match is found, compute p22 to p11 by the corresponding message
word, and check whether all values from both chunks match and check
the correctness of the guess for the carry for e19 to e15.

(g) If all bits match, the pair of the corresponding message and p0 is a
pseudo-preimage.

4.5 Complexity estimation for 52-step SHA-0

Assume the complexity for computing 1 step is 1
52 52-step SHA-0 compression

function, and the memory access cost is negligible compared with the cost of the
computation of the step function.

– The complexity of Steps 1 and 2 are negligible.
– The complexity of Step 3a is approximately 213 · 2

52 .
– The complexity of Step 3b is approximately 213 · 21

52 (= 213 · 12
52 + 213 · 9

52 ).
– The complexity of Step 3c is approximately 213· 7

52 (=213( 1
52+21· 1

52+22· 1
52 )).

– The complexity of Step 4a is approximately 213 · 2
52 .

– The complexity of Step 4b is 213 · 15
52 .

– The complexity of Step 4c is approximately 213 · 685
52 (=213( 1

52 + 1
52 + 1

52 +
21 · 1

52 + 23 · 1
52 + 25 · 1

52 + 27 · 1
52 + 29 · 1

52 )).
– The first chunk produces 222(= 213 · 29) items. Therefore, at Step 4d, 237(=

222 · 215) pairs are compared and 220 (=237 · 2−17) pairs will remain.



– At Step 4e, the complexity of computing p10 and p11 is approximately 220 · 2
52 .

Then, by comparing two additional bits of a11 (bit-positions 19 and 20) and
checking the correctness of the 1 guess for the carry for a11, the number
of remaining pairs becomes 217 (=230 · 2−3). The complexity of computing
p12 is approximately 217 · 1

52 and by comparing three additional bits of a12

(bit-positions 9, 19, and 20) and checking the correctness of the 1 guess of
carry for a12, the number of remaining pairs becomes 213 (=217 · 2−4). The
complexity of computing p13 is approximately 213 · 1

52 and by comparing
twelve additional bits of a13 (bit-positions 9-20), the number of remaining
pairs becomes 21 (=213 · 2−12).

– Complexity for Step 4f is negligible since the number of remaining pairs is
sufficiently reduced compared to the previous part. By checking the correct-
ness of the guesses of carry for e22 to e15, the number of remaining pair
becomes 2−8 (=21 ·2−9). By checking the entire p13 for matches, the number
of remaining pair becomes 2−134 (=2−8 ·2−126). Therefore, by repeating this
attack 2134 times, we can expect to find a pseudo-preimage.
The complexity for Step 3 is 213( 2

52 + 21
52 + 7

52 ) = 213 · 3052 . The complexity for
Step 4 is 213( 2

52 + 15
52 + 685

52 ) + 220 · 2
52 + 217 · 1

52 + 213 · 1
52 = 213( 702

52 + 256
52 +

16
52 + 1

52 ) = 213 · 97552 . Hence, we can find a pseudo-preimage with a complexity
of 213( 30

52 + 975
52 ) · 2134 = 217.20 · 2134 ≈ 2151.2. This can be converted to the

preimage attack with a complexity of 2156.6 by using the algorithm described
in Section 2.2.

In this attack, we use a memory to store 215 (m′
0, p9, a10, a11, a12)s in Step 3d.

Therefore, the memory complexity of this attack is approximately 215×9 words.
To apply the technique [6, Remark 9.93], we can convert our attack into mem-
oryless version. The converted attack requires negligible memory and finds a
pseudo-preimage in 2152.2. The attack is converted to the preimage attack by us-
ing the algorithm described in Section 2.2 with complexity of 2157.1 with 5×23.9

words of memory, which is negligible.

4.6 Padding issue

In the attack described above, we use R in Figure 4. Focusing on the padding
part with MT = RM ′T , we should satisfy the padding rule with

m13 = m′
1 ⊕m′

13, m14 = m′
14, m15 = m′

15. (8)

– m′
14 ← 0. When m′

14 is used in the partial-fixing technique, m′
14 is XORed

with other m′
js. So, there is room to fix m′

14. This means the number of
message strings is less than 232 bits.

– Set the least significant bit of m13 (= m′
1 ⊕m′

13) to ‘1’. Although m′
1 is a

neutral word, the partial-fixing technique fixes the least significant 20 bits.
By appropriately setting the least significant bit of m′

13, this condition is
satisfied.

– m′
15 mod 29 ← 447. This agrees with the padding rule for m13. However, we

specified m′
15 = −k15 in the attack procedure when we perform the partial-

fixing technique for step 15. To observe m′
15 +k15, the least significant three
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6

6

4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
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Fig. 3. SHA-0 Message Schedule in Ma-
trix Form
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1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Fig. 4. Linear Transformation Used in
the Attack of Reduced SHA-0

bits are zero. Additionally, since we know 21-2 bits of a16, we can determine
the carry from the 8th bit to the 9th bit. This is the same effect as setting
m′

15 = −k15.

In conclusion, we can compute a pseudo-preimage following the padding rule at
the same complexity, 2151.2 as describe above, and we can compute a 2-block
preimage with the regular padding in 2156.6.

Note, even if the padding rule cannot be satisfied, the attack is valid as a
second-preimage attack.

5 Attack sketch for 48-step SHA-1

This section describes the sketch of the attack against SHA-1 reduced to 48
steps.

5.1 Chunk partition

Let E be E32. The transformed message schedule, W ′ = WR, is shown in Table 8.
In SHA-1, the size of W ′ is 512. We searched for chunk partition of 48-step SHA-
1, and found the pattern where κ1 and κ2 in Eq.(6) are 32. When we attack
SHA-1, we use the first 64 bits of M ′ as neutral words, and fix the other 448
bits. Hence, we show only the first 64 bits of W ′.

5.2 Initial structure and partial-fixing technique

The construction of the initial structure is shown in Fig. 5. To fix the output of f2,
we use the cross absorption property presented by [11]. We manually optimized
the number of n in the initial structure shown in Fig. 5 by considering the
efficiency of the partial-fixing technique together. As a result, we select n = 24.

The partial-fixing technique for 48-step SHA-1 skips 14 steps as shown in
Table 8. How the results of two chunks are compared is explained in Table 7. In



Table 8. Transformed Message Schedule for 48-step SHA-1

Step 1st 32 cols of W ′ 2nd 32 cols of W ′

0 E ⊕ E≪2 0
1 0 E
2 E 0
3 0 E

IS

4 E≪1 0 ↓
5 0 0
6 E 0
7 E 0
8 E≪1 0
9 0 0

10 E 0
11 E 0
12 E≪1 0
13 0 0
14 0 0
15 E 0
16 E ⊕ E≪1 0
17 0 0
18 E 0

S
e
c
o
n
d

ch
u
n
k

Step 1st 32 cols of W ′ 2nd 32 cols of W ′

19 E E≫1

20 0 0
21 0 0
22 E E≫2

23 0 0
24 0 0
25 0 E≫3

26 E 0
27 0 E≫2

28 E E≫4

29 0 0
30 E 0
31 0 E≫5

32 E 0

S
k
ip

33 0 E≫2 ⊕ E≫4

34 0 E≫6

35 0 E≫2 ⊕ E≫3

36 0 0
37 0 E≫7

38 0 E≫4

39 0 E≫4 ⊕ E≫6

40 0 E≫8

41 0 E≫4

42 0 0
43 0 E≫4 ⊕ E≫9

44 0 0
45 0 E≫6 ⊕ E≫8

46 0 E≫10

F
irst

ch
u
n
k

47 0 E≫3 ⊕ E≫6 ⊕ E≫11 ↑

The second and the third columns of the table show the first and second 32 columns
of W ′. In each step, 32 rows of W ′ are related. Hence, each entry of the table denotes
corresponding 32× 32 submatrix of W ′.
Since all ‘j’s of Ej used in this table are 32, we simply write E to denote E32.

forward computation, we fix the lower 18 bits of m′
1, and in backward compu-

tation, we fix the lower 26 bits of m′
0. Finally, bit positions 10 to 17 of a12 and

bit positions 11 to 17 of b12, in total 15 bits, are compared.

5.3 Summary of attack

In this attack, a4 and m′
0 are the neutral words for the second chunk where, m′

0

is the first 32 bits of M ′. Similarly, b0 and m′
1 are the neutral words for the first

chunk, where, m′
1 is the second 32 bits of M ′.

To construct the initial structure appropriately and apply the partial-fixing
technique efficiently, we need to fix a part of neutral words. In the first chunk,
we fix bit positions 26, 27, 28, 29, 30, 31, 0, and 1, in total 8 bits, of b0s. This
results in fixing the upper 8 bits of c1, which is necessary for the initial structure.
We also fix bit positions 1 to 18 of, in total 18 bits, of m′

1. This results in fixing
the lower 18 bits of w19, which is a message word used in the first step in the
partial-fixing technique in forward direction. Note, the number of unfixed bits
in neutral words for the first chunk is 38. In the second chunk, we fix the lower
26 bits of m′

0. This result in fixing the lower 24 bits of w0 (= (E⊕E≪2)×m′
0),

which is required for the initial structure, and fixing the lower 24 bits of wj

(= E), j ∈ {32, 30, 28, 26}, which is required for the partial-fixing technique.
We roughly estimate the complexity of the attack. Considering the unknown

carries in the partial-fixing, the meet-in-the-middle attack examines the match
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Fig. 5. Initial structure for 48-step SHA-1

Note that we perform the efficient consistency check described in the initial structure
part of Section 2.4 in dashed circle in the figure.

of 287 (= 238+2 × 238+9) pairs. Unfortunately, since we can only match 47 bits,
the number of resulting pairs are 240 � 238. So, the attack requires more time
than the brute-force attack. To reduce the time complexity, we analyze the prob-
abilistic behavior of carry propagation in the partial-fixing. Observing Table 7,
we notice that we can estimate the existence of carry with a probability higher
than 1/2 for several additions with unknown carry. In the backward computa-
tion, we can estimate the existence of carry with a probability higher than 3/4
for two cases. Thus, the meet-in-the-middle attack examines the match of 285

(= 238+2 × 238+7) pairs. Since the matching bit is 47 bits, the number of re-
sulting pairs are 238 ≈ 238. So, the time complexity for the dominant part is
computing the chunks, and is approximately 239 and the success probability is
approximately 2−117.7 (= 232+6+6−160× (3/4)2). To iterate the above procedure
2117.7 times, we find a pseudo-preimage with high probability, and the total time
complexity is approximately 2156.7 (= 239× 2117.7). Consider a second preimage
attack whose block is longer than 3. applying the above attack to the second
block, and using the conversion described in Section 2.2, a preimage will be found
in 2159.3.

In this attack, we use a memory to store 240 items. Therefore, the memory
complexity is approximately 240 × 11 words.



6 Conclusion

This paper proposes a method for analyzing the linear message schedule in SHA-
0 and SHA-1 for a preimage attack using the meet-in-the-middle attack. Thanks
to recently developed auxiliary techniques such as splice-and-cut, partial-fixing,
and initial structure, the results of the application of the proposed method can be
used to compute preimages of reduced SHA-0 and SHA-1 up to 52 and 48 steps,
respectively, faster than the brute-force attack. The results shows that the meet-
in-the-middle attack is also effective for a linear message schedule compared to
permutations of the message words. Since SHA-0 and SHA-1 have 80 steps and
the attack described herein does not reach the same number of steps, the preim-
age resistance of SHA-0 and SHA-1 is still sufficient. We should pay attention
to the progress of the techniques related to preimage resistance.
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