
Improved Bounds on Security Reductions for

Discrete Log Based Signatures

Sanjam Garg1⋆, Raghav Bhaskar2 and Satyanarayana V. Lokam2

1 IIT, Delhi, India
sanjamg@yahoo.com

2 Microsoft Research India, Bangalore, India
{rbhaskar,satya}@microsoft.com

Abstract. Despite considerable research efforts, no efficient reduction
from the discrete log problem to forging a discrete log based signature
(e.g. Schnorr) is currently known. In fact, negative results are known.
Paillier and Vergnaud [PV05] show that the forgeability of several dis-
crete log based signatures cannot be equivalent to solving the discrete
log problem in the standard model, assuming the so-called one-more
discrete log assumption and algebraic reductions. They also show, un-
der the same assumptions, that, any security reduction in the Random
Oracle Model (ROM) from discrete log to forging a Schnorr signature
must lose a factor of at least

√
qh in the success probability. Here qh is

the number of queries the forger makes to the random oracle. The best
known positive result, due to Pointcheval and Stern [PS00], also in the
ROM, gives a reduction that loses a factor of qh. In this paper, we im-
prove the negative result from [PV05]. In particular, we show that any
algebraic reduction in the ROM from discrete log to forging a Schnorr
signature must lose a factor of at least q

2/3

h , assuming the one-more dis-
crete log assumption. We also hint at certain circumstances (by way of
restrictions on the forger) under which this lower bound may be tight.
These negative results indicate that huge loss factors may be inevitable
in reductions from discrete log to discrete log based signatures.

Keywords: Provable Security, Random Oracle Model, Schnorr Signature
Scheme

1 Introduction

Discrete Log (DL) based signatures, such as those proposed by Schnorr [Sch90],
are among the simplest and the most efficient signature schemes. The small size
of the produced signatures and the scope for pre-computation to efficiently gen-
erate signatures on-line make them particularly attractive for many applications.
Though they have steadily withstood cryptanalytic attacks over the years, only
recently has something been known about their provable security. Unfortunately,

⋆ Part of the work done while visiting Microsoft Research India.

as we discuss below, this knowledge seems to derive largely from negative results.
The best known positive result, due to Pointcheval and Stern [PS96,PS00], is a
security reduction from the Discrete Log (DL) problem to forging a Schnorr sig-
nature in the Random Oracle Model (ROM) [BR93]. Their reduction rewinds a
forger algorithm and uses a certain Forking Lemma to obtain two distinct forg-
eries on the same message which permits it to solve the discrete log problem.
However, the reduction incurs a loss factor in efficiency in the sense that the
obtained DL solver will lose a factor of qh either in time complexity or success
probability as compared to the forger. Here qh is the number of queries the
forger makes to the random oracle. Despite several efforts, no better reduction
is known in the ROM. Nor is any reduction known at all in the Standard model.
This situation remained until a major result was obtained in 2005 by Paillier
and Vergnaud. In [PV05], they showed that no efficient reduction can exist in
the standard model from DL to forging a Schnorr signature, assuming3 (i) the
so-called n-DL problem is hard (also called the one-more discrete log assump-
tion) and (ii) the reduction is algebraic. (We explain both these notions a bit
more in Section 2.) This indicates that the discrete log problem and forgeabil-
ity of Schnorr signatures are unlikely to be equivalent in the standard model.
A similar situation is known to exist in the case of RSA, by a result due to
Boneh and Venkatesan [BV98] (where they also consider reductions similar to
algebraic reductions). In the ROM, [PV05] also proved that any algebraic re-
duction must lose a factor of at least

√
qh in its success probability if it were to

convert an efficient forger of the Schnorr signature scheme into an efficient DL-
solver, again assuming that n-DL is hard. Thus, there remained a gap between
the lower bound of

√
qh and the upper bound of qh on the loss factor of algebraic

reductions in the ROM from DL to forging Schnorr signatures. This paper is an
attempt to close this gap.

Our Contributions: We improve the lower bound from
√

qh to q
2/3
h . More

precisely, we show that any efficient algebraic reduction from DL to forging (a
universal forger under key-only attack) a Schnorr signature scheme must lose a

factor of q
2/3
h in its success probability, assuming that the n-DL problem is hard.

Our proof, as in [PV05], constructs a meta-reduction that uses the supposed al-
gebraic reduction converting a forger into a DL-solver to solve the n-DL problem.
In this process, the meta-reduction needs to simulate the forger (or adversary)
that is used by the reduction. Our improvement hinges on a more careful con-
struction of this simulation and a more refined analysis of the success probability
of the meta-reduction in this simulation. In this analysis, we make use of known
estimates [Pil90] on the expected length of a longest increasing subsequence of
a random sequence. The adversary (simulated by the meta-reduction) in our
lower bound proof has a certain structure. We observe that a reduction in the
ROM that exploits an adversary adhering to such structure can indeed solve DL

with a loss factor of at most q
2/3
h , i.e., under these restrictions on the forger, our

lower bound is tight. These insights and our concrete lower bound indicate that

3 Obviously, given our state of knowledge on lower bounds, some assumption is needed
for such impossibility results.

huge loss factors may be inevitable, even in the ROM, in security reductions
that convert a Schnorr-forger into a DL-solver. In other words, while forging
Schnorr signatures and extracting discrete logs are known to be equivalent in
the sense of polynomial time reductions in the ROM, the loss factors incurred
in such reductions might be impractically large (under certain assumptions, as
always). We note that proving negative results on security reductions (such as
lower bounds on loss factors) in the Random Oracle Model is a harder task than
in the standard model.

While we state and prove our results for the Schnorr signature scheme, they
are valid for many schemes based on the discrete log problem. This follows from
the same arguments as in [PV05] since we use the same meta-reduction.

The rest of the paper is organized as follows: In Section 2, we review some
definitions and present technical preliminaries. In Section 3, we provide the main
result which shows that any reduction from the Discrete Log problem to forge-

ability of Schnorr signatures must lose a factor of q
2/3
h in its success probability

and comment on the tightness of the result. In Section 4 we state conclusions
and mention some open problems.

2 Preliminaries

Let G = 〈g〉 be a group of prime order q generated by g.

Definition 1 (DL Problem). Given r ∈ G, computing k ∈ Zq such that r = gk

is known as the Discrete Log (DL) problem over the group G.

A probabilistic algorithm A is said to be an (ε, τ)-solver for DL if

Pr
k

$
←Zq

[

A(gk) = k
]

≥ ε,

where the probability is taken over the random tape of A and random choices
of k and A stops after time at most τ .

The (ε, τ)-discrete log assumption (for group G) says that no (ε, τ)-solver
can exist for DL over G. The (asymptotic) DL-assumption says that the (ε, τ)-
discrete log assumption holds whenever τ = poly(log q) and ε is a non-negligible
function of log q.

Definition 2 (n-DL Problem). Given an (n + 1)-tuple (r0, r1, . . . , rn) of dis-
tinct elements in G and up to n queries to a discrete log oracle, computing
the (n + 1)-tuple of elements (k0, k1, . . . , kn) (ki ∈ Zq) such that ri = gki for
0 ≤ i ≤ n is known as the n-DL problem.

A probabilistic algorithm A is said to be an (ε, τ)-solver for n-DL if

Pr
k0,k1,...,kn

$
←Zq

[

ADL-oracle(gk0 , gk1 , . . . , gkn) = k0, k1, . . . , kn

]

≥ ε,

where the probability is taken over the random tape of A and random choices
of the ki and A stops after time at most τ .

The (ε, τ)-n-DL assumption says that no (ε, τ)-solver can exist for n-DL
over G in time τ and with probability greater than ε. The (asymptotic) n-DL
assumption says that the (ε, τ)-n-DL assumption holds whenever τ = poly(log q)
and ε is a non-negligible function of log q.

Note that the DL problem is at least as hard as the n-DL problem. Hence
the n-DL assumption is a stronger assumption than the DL assumption. It is
not known if it is strictly stronger.

Definition 3 (Schnorr Signature Scheme). Let p and q be primes such that
q | (p − 1) Let g be a generator of the cyclic subgroup G of order q in Z∗p. Let
H be a secure hash function with range {1, . . . , q − 1}. The Schnorr signature
scheme consists of the following three algorithms:

1. Key Generation: Choose a random x with 0 < x < q. x is the private key
and y := gx is the public key.

2. Signing: Given the input message m, choose a random k mod q. Let c :=
H(m, r), and s := k + cx. Return (c, s) as the signature.

3. Verification: Given the message m and the signature pair (c, s), calculate
r = gsy−c. Let c′ = H(m, r). If c = c′ then return true else return false.

Attack and Forgery types: An adversary can broadly mount two kinds of at-
tacks against signature schemes: Key-only attack (KOA, also called no-message
attack) and Chosen message attack (CMA). In the first attack, the attacker
knows only the public key of the signer while in the latter, the attacker can also
obtain signatures on messages of his choice adaptively. The result of the attacks
by the adversary are classified as follows:

1. Total Break - The adversary learns the secret key of the signer.
2. Universal Forgery (UF) - The adversary can produce a valid signature for

any message.
3. Existential Forgery(EF) - The adversary can produce a new message signa-

ture pair.

Thus, by combining the attack type and the attack result, one can talk about
various levels of security for digital signatures. For instance, a (ε, τ)-universal
forger under key-only attack is an adversary who, knowing only the public key,
can produce a signature on any given message with probability ε in time at most
τ . An (ε, τ, qh)-universal forger under key-only attack is the same adversary in
the Random Oracle Model who, makes at most qh hash queries to the random
oracle. For details refer to [MvOV96,PV05].

Algebraic Reductions: We assume our reductions to be algebraic algorithms.
An algorithm R is said to be algebraic with respect to a group G if the only
operations R performs on group elements are group operations; on objects that
are not group elements, R is allowed to perform any (standard basic) operations.
In particular, given g1, g2 ∈ G, R can only (i) check if g1 and g2 are the same,
(ii) compute g1 · g2 (we represent the group multiplicatively), and (iii) raise g1

to a power (including to −1, thus computing inverse). Other natural variations

on this definition are possible. Algebraic algorithms encompass many natural
algorithms/reductions used in cryptography and impose weaker conditions than
other known models such as the generic group model (GGM). They were orig-
inally and more generally defined by [BV98] in the context of the ring Zpq in
their study of RSA versus factoring.

A formal property characterizing an algebraic algorithm R may be described
as follows. SupposeR takes group elements g1, . . . gk (and possibly other objects)
and produces a group element h after τ steps. Then, there is an associated
function Extract that takes all of inputs to R, the code/program of R (so
Extract could have non-black-box access toR), and produces integers α1, . . . , αk

such that h = gα1

1 · · · gαk

k in time polynomial in τ and |R|, where |R| denotes
the length of the program of R.

In particular, suppose R is algebraic with respect to group G = 〈g〉. Suppose
R produces elements y1, . . . yn during its computation. Then, givenR’s code and
all its inputs, Extract would be able to produce x1, . . . , xn such that yi = gxi

in time polynomial in R’s running time to produce yi and its code length |R|.

3 Improved Lower Bound

Theorem 1. Suppose there exists an algebraic reduction R that converts an
(ε, τ, qh)-universal forger A under a key-only attack in the random oracle model
on the Schnorr signature scheme into an (ε′, τ ′)-solver for the discrete logarithm
problem. Further, assume that R invokes A at most n times.

Then there exists a probabilistic algorithmM that (ε′′, τ ′′)-solves n-DL, where

ε′′ ≥ ε′
(

1− 2n3/2

qh
− 1

q − 1

)

and (1)

τ ′′ ≤ poly(τ ′, |R|, n, qh, log q). (2)

Recall from Section 2 that |R| denotes the length of the code of R.

Corollary 1. Under the n-DL assumption, any efficient algebraic reduction that
converts a UF-KO attack on the Schnorr signature scheme to an algorithm for

the discrete log problem must incur a loss factor of q
2/3
h in its success probability

or its running time.

Proof. If there is such a reduction from a feasible attack, the time complexity τ ′′

of the meta-reductionM is polynomial (in log q). Also, by the n-DL assumption,

ε′′ must be negligibly small. Suppose now that ε′ ≤ ε/q
2/3
h (any non-negligible

ε′ will do). By the assumed feasibility of the attack, ε is non-negligible and
hence so is ε′. Thus, we must have ε′′/ε′ negligibly close to zero. From (1),

we obtain 2n3/2

qh
+ 1

q−1 must be negligibly close to 1. Since q (the size of the

group) is exponentially large, this means that 2n3/2

qh
is negligibly close to 1.

Hence n = Ω(q
2/3
h). Since the reduction makes n calls to the attacker, we must

then have τ ′ ≥ nτ = Ω(q
2/3
h τ). ⊓⊔

Structure of the proof of Theorem 1: Our proof proceeds, as in [PV05], by con-
structing a meta reduction M that solves n-DL using the supposed algebraic
reduction R. Note that R in turn makes n calls to any given adversary (uni-
versal forger) A to solve the discrete log problem. Thus our meta reduction M
will simulate a particular kind of adversary A that responds to R by giving
signatures on R’s chosen (public key, message) pairs. To generate these forgeries
by the simulated adversary,M takes advantage of the fact that it gets to make
n calls to a discrete log oracle. Using the algebraic nature of R and its ability
to solve the discrete log problem (given n calls to the universal forger),M will
be able to extract the discrete logs of all the n + 1 elements given as its own
input. Note that, since the reduction R is in the Random Oracle Model, the
hash function H to which the adversary A may make up to qh calls is under the
control (in the sense of simulation) of R.

In the next two subsections, we will describe the meta-reduction M and
analyze its performance. The bound on M’s running time τ ′′ will follow easily
from the construction ofM. The bound on its success probability ε′′, however,
needs an intricate analysis and differs significantly from that in [PV05].

3.1 The Meta-reduction M

The meta-reduction M gets an n + 1-tuple (r0, . . . , rn) of group elements. It
feeds r0 to the reduction R on an arbitrary random tape. It uses the remaining
n elements r1, . . . , rn to simulate A. At the end of the simulation it gets the
discrete log k0 = logg r0 from R. It extracts ki = logg ri for 1 ≤ i ≤ n from the
transcript of R as described in Section 2.

Simulation of A: The reduction R is allowed to invoke the universal forger
A up to n times with freely chosen public keys yi = gxi , messages mi, and
random tapes ̟i where i = 1, . . . , n. We note that the input of ̟i is necessary
to carry out an oracle replay attack. In fact, we can prove that an algebraic
reduction cannot solve the discrete log problem using independent runs of the
adversary (adversaries which derive their randomness from external sources)
using techniques very similar to those in [PV05] for the standard model. Without
loss of generality, we may assume that these n invocations of A are pairwise
distinct, i.e., that two distinct executions of A differ in the value of the public
key and/or the random tape, and/or at least one value returned by the random
oracle H of R. The adversary A is allowed to make up to qh hash queries to the
random oracle H which is under the control (in the sense of simulation) of the
reduction R. In its simulation of A, the meta-reduction M makes A return a
forgery on a randomly chosen hash query from these qh queries.

We denote the i-th execution of the adversary by Ai. The state of Ai at any
given time is determined by its input (yi, mi, ̟i) and the return values to its
hash queries till that time. Let us define ck(i) to be the response of the k-th
hash query made by the the i-th execution of the adversary. Let us also define

Historyh(i) := 〈(yi, mi, ̟i), c1(i), c2(i), . . . , ch−1(i)〉,

to be the history of computation of Ai up to the h-th query. If the j-th execution
of the adversary and its i-th execution have the same history till before the
h-th query, then the h-th hash query of both executions must be the same
(however, the responses to these queries could differ in these two executions).
This puts constraints on the way meta-reductionM should model the adversary
A. In particular, all random selections made by Ai are in fact pseudo-random
in History(i) when the selection takes place.

During its simulation M can make up to n calls to the discrete log oracle
DLOM . Naturally, its queries to DLOM will depend on the vector of group
elements r = (r1, . . . , rn). To economize on the number of its queries, M will
call DLOM through a discrete-log “stub-routine” DLstub. The stub maintains a
list of already asked queries and makes sure that a query asked multiple times
is not actually queried to the oracle but answered by the stub itself.

The meta-reductionM will simulate the adversary with perfect forgeries (i.e.
that succeed with probability 1). Since the reduction R solves the DL problem
with probability at least ε′ while interacting with an adversary that produces
a forgery with probability at least ε, R will succeed with at least the same
probability with a perfect forger.

Notation: For vectors g = (g1, . . . , gw) ∈ Gw and b = (b1, . . . , bw) ∈ Z, we
define gb as gb :=

∏w
k=1 gbk

k .

We now describe the simulation byM of Ai for 1 ≤ i ≤ n:

1. Receive (yi, mi, ̟i) ∈ G× {0, 1}∗ × {0, 1}∗ from R
2. For h ∈ [1, qh]

(a) Randomly4 select αh ← (Fq)
n

(b) Query H to get ch(i) = H(mi, r
αh)

3. (a) Randomly5 select li ← [1, qh]
i. Set ci ← cli(i) and βi ← αli

ii. Request si ← DLstub(r
βi · yi

ci)
iii. Append (yi, mi, ̟i) 7→ (si, ci) and (li, βi) to Transcript of R

(b) Return σi = (si, ci)

Extraction of Discrete Logs: The reduction R uses the n simulations of
its calls to A as described above and returns the discrete log k0 of r0 (with
probability ε′). As described in Preliminaries, using the transcript of the al-
gebraic reduction R’s computation that produced k0, we can extract the dis-
crete logs x1, . . . , xn of y1, . . . , yn, respectively, i.e., Extract(k0, Trasncript) =
(x1, . . . , xn). Now,M has the following system of linear equations6 over Fq:

β1 · k = s1 − c1 · x1

...

βn · k = sn − cn · xn

(3)

4 In fact, pseudorandomly in Historyh(i).
5 In fact, pseudorandomly in Historyqh

(i).
6 a · b denotes the dot product of the vectors a and b

in the unknowns k = (k1, . . . , kn), where ki = logg ri, 1 ≤ i ≤ n.

Let B =

β1

...
βn

denote the n × n matrix over Fq with rows βi ∈ Fn

q for

1 ≤ i ≤ n.
If B is nonsingular M can directly solve for k. If not, M may not be able

to solve for k, for instance, if the above system is inconsistent. We consider the
following three7 mutually exclusive events:
Event A: All the li are distinct, i.e., for i 6= j, li 6= lj . In this case, M checks
if the matrix B is nonsingular and if so, solves for k from (3). Otherwise M
outputs FAIL.
Event B: For some i < j, li = lj and for every such pair i, j, βi = βj implies
si − cixi = sj − cjxj . In this case, we have m ≤ n distinct equations and matrix
B has m distinct rows.

If rank(B) = m, then we claim thatM can obtain all discrete logs k1, . . . , kn.
If m = n, this is obvious. If m < n, then note thatM has not used up all its n
calls to the discrete log oracle DLOM , thanks to the stub DLstub. Indeed, since
si = DLOG(rβi · gcixi), it is easy to see that the i-th and j-th equations are
identical if and only if βi = βj and cixi = cjxj . Hence, this can be detected
by DLstub by keeping track of its input arguments. It follows that M can ask
n−m more queries to DLstub and get n−m ki’s. Using these and the fact that
rank(B) = m, M can compute all the ki, 1 ≤ i ≤ n.

If rank(B) < m, then M outputs FAIL.
Event C: For some i < j, li = lj, βi = βj , but si−cixi 6= sj−cjxj . In this case,
the system (3) is clearly inconsistent and so M cannot solve for k. It outputs
FAIL.

It is clear that M will correctly solve the n-DL problem on (r0, r1, . . . , rn)
except when it outputs FAIL. In the next subsection, we analyze the probability
of failure ofM.

3.2 Analysis of M

The bound onM’s running time is easy. The only extra time it needs, compared
to R, is to compute the elements rβi , for using the pseudorandom generator
in steps (2) and (3), for the extraction procedure on the program of R, and to
solve the linear system in Event A or Event B. We let M use an efficient and
secure pseudorandom generator G in making its random choices from its input
(y, m, ̟). It is clear that all of these can be done in time poly(τ ′, |R|, n, log q, qh)

From now on, we identify all pseudorandom choices ofM with truly random
choices for simplicity of analysis. The difference in the estimates is clearly negli-
gible. Indeed, by standard arguments, if the difference were not negligible, then
M can be used to efficiently distinguish truly random bits and the output of G
contradicting the security of the pseudorandom generator G.

7 Events A and B can actually be combined into one, albeit with a complicated defi-
nition, for the purposes of analysis. We separate them for clarity of presentation.

It is easy to estimate the probability of M’s failure given Event B. The
estimate in case of Event A is the same. In these cases, M fails if the rank of
the m × n matrix B whose rows are the distinct β’s is less than m. Since the
β’s are chosen randomly and independently, this probability is bounded by the
probability that a random m × n matrix over Fq has rank < m. We recall this
well-known estimate and prove it for completeness.

Lemma 1. Let M ∈ Fq
m×n, m ≤ n, be a random matrix (its entries are uni-

formly and independently chosen from Fq. Then

Pr[rank(M) < m] ≤ q−(n−m)(1− q−m)

q − 1
.

Proof. It is easy to see that the probability that the m rows of M are linearly
independent is given by

Pr[rank(M) = m] =
(qn − 1)(qn − q) · · · (qn − qm−1)

qmn

=

(

1− 1

qn

) (

1− 1

qn−1

)

· · ·
(

1− 1

qn−m+1

)

≥ 1−
m−1
∑

i=0

q−n+i

= 1− q−n+m 1− q−m

q − 1
.

⊓⊔

We thus conclude that

Pr[M fails |B] ≤ q−(n−m)(1− q−m)

q − 1
≤ 1

q − 1
. (4)

Estimating the probability of M’s failure given Event C takes more work.
We state the bound as the following lemma and complete the analysis. We prove
the lemma in Section 3.3.

Lemma 2. Pr[C] ≤ 2n3/2

qh
.

Clearly,

Pr[M fails] = Pr[M fails |A] Pr[A] + Pr[M fails |B] Pr[B] + Pr[C].

Note that Event A happens when all the randomly chosen li ∈R [1..qh],
1 ≤ i ≤ n, are distinct and that Event B and Event C are subsumed by the
event that there are collisions among the li, i.e., ∃i 6= j such that li = lj . Hence
their probabilities can be fairly tightly bounded by using well-known estimates
on the Birthday Problem. However, we do not need them here.

Combining the estimates (4) and Lemma 2, we obtain

Pr[M fails] ≤ 1

q − 1
(Pr[A] + Pr[B]) +

2n3/2

qh
≤ 1

q − 1
+

2n3/2

qh
.

Completing the proof of Theorem 1: Meta-reduction M will solve the
n-DL instance (r0, . . . , rn) if M succeeds (i.e. does not fail in the above sense)
given that R succeeds in solving the discrete log instance on r0. We assumed
that R solves the discrete log problem with probability at least ε′ given the
appropriate adversary (that we simulated using M). Hence the probability ε′′

with which M solves n-DL is bounded by

ε′′ ≥ ε′
(

1− 2n3/2

qh
− 1

q − 1

)

.

⊓⊔

3.3 Proof of Lemma 2

Recall that Event C occurs when, for some i < j, li = lj and βi = βj , but
si−cixi 6= sj−cjxj resulting in an inconsistent system of equations in (3). Since
βi and βj were chosen pseudorandomly in Historyli(i) and Historylj (j), apart
from negligible differences in the probability estimates, we can assume that βi =
βj only if Historyli(i) = Historylj (j). In particular, this implies we can assume

that yi = yj and hence xi = xj . Note further that since si = DLOG(rβi · yci

i),
cixi = cjxj if and only if si = sj . Hence, given βi = βj , we can conclude (for
the purposes of probability estimates) that si − cixi 6= sj − cjxj if and only if
ci 6= cj . Thus, Event C occurs only if two executions Ai and Aj of the adversary
not only output forgeries at the same hash query (li = lj) but also at that query
instance βi = βj and ci 6= cj . In particular, the two histories Historyli(i) and
Historylj (j) are identical till the point li and then they diverge after the hash
responses from the respective random oracles (controlled by R) to the query at
li. We call this point of divergence, the forking point between executions Ai and
Aj .

returns signature for βi , ci

(y, m, ̟) : input to A Forgery point

Fig. 1. A single execution of the adversary.

Pictorially, we can represent an execution of the adversary by a line as in
Fig. 1. The blue points symbolize inputs from R. The first blue point is the

returns signature for βi , ci

Forgery point

Fig. 2. A single execution of the adversary: a simplified view.

input (y, m, ̟) to A and the rest of the blue points are the responses by the
random oracle (in control of R). The red points represent the hash queries made
by the adversary A (simulated by M). On completing its execution, A returns
a forgery for (βi, ci) pair for a random selection of li ∈ [1..qh]. This is denoted
by the red square and we will call this the forgery point. We also abbreviate this
execution of the adversary as in Fig. 2. We will use two lines to represent two
different executions of A. Two lines with overlapping initial segments represent
identical histories over the shared region. At the forking point, the responses
from the respective random oracles are different. This is shown in Fig. 3.

Overlapping Segment

Ai

Aj

Forking point

Fig. 3. Two executions sharing a common history.

Thus, the simulation of an execution Aj fails if its forgery point lj (the red
square) is also a point of forking (a black circle), i.e., clj 6= cli , from a previous
execution Ai that returned a forgery at that point, i.e., li = lj .

Let Fi be the set of points on which if a forgery is returned by Ai, then the
meta-reductionM fails. We call Fi the set of failure causing points ofAi. In other
words, it is the set of points at which Ai forks from some previous executions of
A and at each of these points, the corresponding previous executions of A have
returned a forgery. More formally,

Fi := {lj : j < i such that Historylj (i) = Historylj (j) and clj (i) 6= clj (j)}.

To illustrate, in Fig. 4, we see the execution Ai of the adversary and it can
be seen that there are previous executions Aj1 , Aj2 and Aj3 from which Ai forks
off at the points lj1 , y, and lj3 , respectively. The executions Aj1 , Aj2 and Aj3

Ai

lj1

Aj1

y

Aj2

lj3

Aj3

lj2

Fig. 4. Forging points, forking points, and the set of failure points.

had previously returned forgeries at points lj1 , lj2 , and lj3 , respectively. Now,
if Ai returns a forgery at lj1 or lj3 , then M will fail. Thus the set Fi consists
of points lj1 and lj3 . Note that we can comment on the set Fi only when the
forking of Ai from the previous executions of A is known.

If, for the ith execution of the adversary, Fi is the set of failure causing points,
then we define Fi as

Fi := {x | x ∈ Fi ∧ x < li} ∪ {li}.

Let Mi denote the collection of all Fi’s till the ith execution of the adversary,
i.e., Mi = {φ, F1, F2 . . .Fi}.

The following claim explains why we include Fi instead of Fi ∪ {li} in Mi.
The main idea is to enable a clean description of Fi+1 based on Fj for j < i.

Claim. For the (i + 1)th execution of the adversary, Fi+1 will be one of the sets
in Mi, i.e., Fi+1 ∈Mi.

Proof of Claim: Let Fi+1 = {lj1 < lj2 < · · · < ljt}, where j1, j2, · · · , jt < i+1 are
previous executions that forge and fork (from Ai+1) at the locations lj1 , . . . , ljt

respectively. For simplicity of notation, let k := jt. We claim that Fi+1 = Fk.
First, we prove that Fi+1 ⊆ Fk. Clearly, lk ∈ Fk. Hence, let us assume

lj ∈ Fi+1, where lj < lk. It suffices to show that lj ∈ Fk. Since lj ∈ Fi+1,
j < i + 1, Historylj (j) = Historylj (i + 1), and clj (j) 6= clj (i + 1). On the other
hand, since lk is also in Fi+1, k < i + 1 and Historylk

(k) = Historylk
(i + 1).

But lj < lk. It follows that Historylj (k) = Historylj (i + 1) = Historylj (j) and
clj (k) = clj (i + 1) 6= clj (j). Hence lj ∈ Fk.

Next, we prove that Fk ⊆ Fi+1. By definition, lk ∈ Fk. So, consider an
lk 6= lj ∈ Fk. By construction of Fk, lj < lk for some j < k and lj ∈ Fk. Hence
Historylj (j) = Historylj (k) and clj (j) 6= clj (k). Since lk ∈ Fi+1, Historylk

(k) =
Historylk(i+1) and clk(k) 6= clk(i+1). Since lj < lk, Historylj (k) = Historylj (i+
1) and clj (k) = clj (i + 1). Combining this with the previous relation, we obtain
Historylj (j) = Historylj (i + 1) and clj (j) 6= clj (i + 1). It follows that lj ∈ Fi+1.

This concludes the proof of the claim.

Clearly, the size of Fi can be at most one greater than the maximum of the
sizes of all Fj (1 ≤ j < i) since |Fi| ≤ |Fi|+1 and |Fi| ≤ max{|Fj| : 1 ≤ j ≤ i−1}.

Thus, by construction, Fi are sets comprising of integers in increasing order.
The size of a Fi increases only if it is the set of failure points for the current
execution and the forgery point for this execution is greater than all elements in
the set Fi. As the forgery point is randomly picked byM from the set [1, qh], the
maximum of |Fi| is at most the length of a longest increasing sub-sequence in a
random sequence of n distinct integers from [1, qh] (we may assume n ≪ qh as
otherwise, we are already done). It is easy to see that any permutation of [n] is
equally represented by the ordering on such a random sequence. Let λn denote
the random variable denoting the length of a longest increasing subsequence in
a random permutation of [n]. The following result due to Kerov and Versik (see
Pilpel’s paper [Pil90]) will be useful.

Theorem 2 (Kerov-Versik 1977). For sufficiently large n, E[λn] ≤ 2
√

n.

We can now estimate Pr[C]. Clearly, C occurs if for at least one execution Ai,
the forgery point li falls into the failure causing set of points Fi. Since li is
chosen uniformly at random from [1..qh], we have Pr[C] ≤

∑n
i=1 |Fi|/qh. Now,

|Fi| is at most maxi−1
j=1 |Fj | ≤ maxn

j=1 |Fj |. For every n-sequence (li) from [1..qh]n,
maxn

j=1 |Fj | is upper bounded by the length of the longest subsequence in the
corresponding permutation of [n]. Hence E[maxn

j=1 |Fj |] ≤ E[λn]. Thus,

Pr[C] =

n
∑

t=1

Pr[C| n
max
j=1
|Fj| = t] · Pr[

n
max
j=1
|Fj| = t]

≤
n

∑

t=1

n
∑

i=1

|Fi| given maxn
j=1 |Fj| = t

qh
· Pr[

n
max
j=1
|Fj| = t]

≤ n

qh

n
∑

t=1

t Pr[
n

max
j=1
|Fj | = t]

≤ n

qh
E[

n
max
j=1
|Fj |] ≤

n

qh
E[λn]

≤ 2n3/2

qh
using Theorem 2.

This completes the proof of Lemma 2. ⊓⊔

3.4 Remarks on tightness of the lower bound

The adversary we have simulated in Section 3 behaves randomly in the sense that
the probability of a forgery being returned for any of the hash queries in a given
execution is the same. It also has the property that the probability of success
is uniformly distributed across all executions. For this restricted adversary we

claim that the lower bound of q
2/3
h is indeed tight.

To justify our claim we construct a reduction R that, using the adversary A
(an (ε, τ) UF-KOA ‘uniform’ adversary) breaks the Discrete Log problem. The
reductionR tries to obtain two forgeries on the same message m (under the same
public key y) but for different values of the hash responses. The adversary A
accepts (y, m, ̟) as input and then makes queries to the hash oracle. We repre-
sent the sequence of responses given by the oracle by c = 〈c1(j), c2(j), . . . , cqh

(j)〉
and the subsequence of the first i responses by ci = 〈c1(j), c2(j), . . . , ci(j)〉. The
reduction R calls the adversary A with the same (y, m, ̟) but different c. We
define Ind(c) as the index of the hash query on which the forgery is returned by
an execution of the adversary. We let Ind(c) =∞ in case the forgery is returned
for a hash value never obtained by calling the hash oracle (or if A fails).

Let S = {c | Ind(c) < ∞} and Si = {c | Ind(c) = i}. Then Pr[S] ≥
ε− 1

q−1 = ν, as the probability that the adversary correctly guesses the hash value

(without making the hash query) is 1
q−1 . Assuming that the adversary outputs

its forgeries uniformly across the hash-query indices and its several executions
i.e. Ind(c) is pseudo-random in c, we get Pr[Si] ≥ ν/qh, ∀i ∈ [1, qh].

The reduction R divides the qh hash query points into λ intervals of equal
width qh/λ as shown in Fig. 5. The circles represent the hash query points
[1, qh] at which an instance of execution of the adversary could return a forgery
and K1,K2, . . . ,Kλ are equal-sized partitions of these points. Then, Pr[Ind(c) ∈
Ki] ≥ ν/λ, ∀i ∈ [1, λ]. R runs the adversary A in λ + 1 phases. In phase 1, R
invokes the adversary at most λ/ν times (changing c each time) with the hope
of getting a forgery in partition K1 and moves to the next phase as soon as
it gets the desired forgery. The probability of obtaining a forgery in the first

interval in λ/ν runs of A is 1− (1− ν/λ)
λ/ν ≥ 1−e−1. Let c(1) denote the set of

hash responses for the successful execution in phase 1 and l1 be the index of the
forgery for this execution. In case of success in phase 1, R calls the adversary

in phase 2 at most λ/ν times with c’s such that cl1 = c
(1)
l1

is satisfied for all.
Otherwise in case of failure in phase 1 (l1 = ∞), R executes the phase 2 in a
similar fashion as phase 1 but hoping this time to get the forgery in the second
partition K2. In general, in phase i (i ∈ [2, λ]), R calls the adversary at most λ/ν

times with c’s such that clj = c
(j)
lj

(lj - index of hash query for the successful

execution in the most recent successful phase (j) and c(j) is the sequence of
hash responses for that execution) with the hope of getting a forgery on some
hash query li ∈ Ki. The probability of getting a forgery in the interval Ki is also

1 − (1− ν/λ)
λ/ν ≥ 1 − e−1. Hence, at the end of phase λ, R expects to have

(1−e−1) ·λ forgeries in λ
ν ·λ executions of the adversary A. Let the set of forgery

points be I. In phase λ+1,R runs the adversaryA with c’s such that clj = c
(j)
lj

,

where j, lj are defined as before. Then, Pr[Ind(c) ∈ I] ≥ νλ(1 − e−1)/qh. The
number of executions required to get a forgery on one of the points in I is
qh/(νλ(1−e−1)), and this happens with a probability 1−e−1. The total number

of required executions of A are λ2

ν + qh

νλ(1−e−1) , which takes the optimal value

for λ = Θ(q
1/3
h) for which the number of executions is Ω(

q
2/3

h

ν). Thus at the end

of phase λ+1, R obtains two forgeries (c1, s1) and (c2, s2) on the same message
m under the same public key y and the same randomness k (see Definition 3)
but different hash responses c1 and c2. If the reduction R uses the discrete-log
challenge gx as the public key in the above interactions, it can obtain x as s1−s2

c1−c2
.

qh
λ

qh
λ

qh
λ

qh
λ

K1 K2 K3 Kλ

1 2 3 4 5 6 7 k qh

Fig. 5. Dividing the hash query points into equal intervals of width qh/λ.

4 Conclusions and Open Problems

In this paper we improved the lower bound from q
1/2
h to q

2/3
h on the loss factor in

a security reduction that converts a forgery attack on Schnorr signature scheme
to an algorithm to the discrete log problems. This means that to achieve the same
level of security as before, one needs to employ larger parameters than before.
We also presented a new attack strategy for solving the discrete log problem
using a restricted class of Schnorr signature forgers more efficiently. This attack

strategy indicates that the lower bound q
2/3
h is tight for the restricted adversary

we simulate. Since the lower bound proof relies on the n-DL assumption and

restricts itself to algebraic reductions, the gap between the lower bound of q
2/3
h

and the upper bound of qh may in some sense be inevitable.
One of the most interesting open problems is to prove that the lower bound

of q
2/3
h is tight for a general adversary. Another major open question is to un-

derstand relationship between the DL problem and the n-DL problem.

References

BR93. M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for

designing efficient protocols, CCS ’93: Proceedings of the 1st ACM Confer-
ence on Computer and Communications Security, ACM Press, 1993, pp. 62–
73.

BV98. D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to fac-

toring, EUROCRYPT ’98, 1998, pp. 59–71.
MvOV96. A. J. Menezes, P. C. van Oorschot, and S. Vanstone, Handbook of Applied

Cryptography, CRC Press, 1996.
Pil90. S. Pilpel, Descending subsequences of random permutations, J. Comb. The-

ory Ser. A 53 (1990), no. 1, 96–116.
PS96. D. Pointcheval and J. Stern, Security proofs for signature schemes, EURO-

CRYPT ’96, vol. 1070, LNCS, 1996, pp. 387+.

PS00. , Security arguments for digital signatures and blind signatures, Jour-
nal of Cryptology 13 (2000), no. 3, 361–396.

PV05. P. Paillier and D. Vergnaud, Discrete-log-based signatures may not be equiv-

alent to discrete log, ASIACRYPT 2005, 2005, pp. 1–20.
Sch90. C. P. Schnorr, Efficient identification and signatures for smart cards, EU-

ROCRYPT ’89 (New York, NY, USA), Springer-Verlag New York, Inc.,
1990, pp. 688–689.

	Improved Bounds on Security Reductions for Discrete Log Based Signatures
	Sanjam Garg, Raghav Bhaskar and Satyanarayana V. Lokam

