
Scalable and Unconditionally Secure Multiparty

Computation

Ivan Damg̊ard and Jesper Buus Nielsen⋆

Dept. of Computer Science, BRICS, Aarhus University

Abstract. We present a multiparty computation protocol that is un-
conditionally secure against adaptive and active adversaries, with com-
munication complexity O(Cn)k + O(Dn2)k + poly(nκ), where C is the
number of gates in the circuit, n is the number of parties, k is the bit-
length of the elements of the field over which the computation is carried
out, D is the multiplicative depth of the circuit, and κ is the security
parameter. The corruption threshold is t < n/3. For passive security
the corruption threshold is t < n/2 and the communication complexity
is O(nC)k. These are the first unconditionally secure protocols where
the part of the communication complexity that depends on the circuit
size is linear in n. We also present a protocol with threshold t < n/2 and
complexity O(Cn)k+poly(nκ) based on a complexity assumption which,
however, only has to hold during the execution of the protocol – that is,
the protocol has so called everlasting security.

1 Introduction

In secure multiparty computation a set of n parties, P = {P1, . . . , Pn}, want to
compute a function of some secret inputs held locally by some of the parties.
The desired functionality is typically specified by a function f : ({0, 1}∗)n →
({0, 1}∗)n. Party Pi has input xi ∈ {0, 1}∗ and output yi ∈ {0, 1}∗, where
(y1, . . . , yn) = f(x1, . . . , xn). During the protocol a subset C ⊂ P of the parties
can be corrupted. Security means that all parties receive correct outputs and
that the messages seen by the corrupted parties Pi ∈ C during the protocol con-
tain no information about the inputs and outputs of the honest parties (P \C),
other than what can be computed efficiently from the inputs and outputs of the
corrupted parties. Passive security means that the above condition holds when
all parties follow the protocol. Active security means that the above condition
holds even when the corrupted parties in C might deviate from the protocol in
an arbitrary coordinated manner. When a protocol is secure against all subsets
of size at most t we say that it is secure against an adversary with corruption

threshold t.
In the cryptographic model each pair of parties is assumed to share an authen-

ticated channel and the corrupted parties are assumed to be poly-time bounded,
to allow the use of cryptography. In the information theoretic model it is assumed

⋆ Funded by the Danish Agency for Science, Technology and Innovation

that each pair of parties share a perfectly secure channel and that the parties
have an authenticated broadcast channel, and it is assumed that the corrupted
parties are computationally unbounded. We talk about cryptographic security

versus unconditional security.

The MPC problem dates back to Yao [Yao82]. The first generic solutions with
cryptographic security were presented in [GMW87,CDG87], and later generic solu-
tions with unconditional security were presented in [BGW88,CCD88,RB89,Bea89].
In both cases, security against an active adversary with threshold t < n/2 is ob-
tained, and t < n/2 is known to be optimal.

Thresh. Adv. Communication Reference

t < n/2 passive O(Cn2)k [BGW88]
t < n/2 active O(Cn5)k + poly(nκ) [CDD+99]
t < n/3 active O(Cn2)k + poly(nκ) [HM01]
t < n/2 active O(Cn2)k + poly(nκ) [BH06]
t < n/2 passive O(Cn)k this paper
t < n/3 active O(Cn)k +O(Dn2)k + poly(nκ) this paper
t < n/2 active, limited O(Cn)k + poly(nκ) this paper

during protocol

Fig. 1. Comparison of some unconditionally secure MPC protocols

The communication complexity of a MPC protocol is taken to be the total
number of bits sent and received by the honest parties in the protocol. Over
the years a lot of research have been focused on bringing down the communica-
tion complexity of active secure MPC [GV87,BB89,BMR90,BFKR90,Bea91,GRR98]

[CDM00,CDD00,HMP00,HM01,HN05,DI06,HN06]. Building on a lot of previous
work, it was recently shown in [DI06,HN06] that there exist cryptographic se-
cure MPC protocols with communication complexity O(Cn)k +poly(nκ), where
C is the size of a Boolean circuit computing f , k is the bit length of elements from
the field (or ring) over which the computation takes place (at least k = log2(n))
and poly(nκ) is some complexity independent of the circuit size, typically cov-
ering the cost of some fixed number of broadcasts or a setup phase. All earlier
protocols had a first term of at least O(Cn2)k, meaning that the communica-
tion complexity depending on C was quadratic in the number of parties. Having
linear communication complexity is interesting as it means that the work done
by a single party is independent of the number of parties participating in the
computation, giving a fully scalable protocol. Until the work presented in this
paper it was, however, not known whether there existed an unconditionally se-

cure protocol with linear communication complexity. In fact, this was an open
problem even for passive secure protocols. We show that indeed it is possible to
construct an unconditional secure protocol where the part of the communication
complexity which depends on the circuit size is linear in n. For active security,
however, we get a quadratic dependency on the multiplicative depth of the cir-
cuit, denoted by D. Our results are compared to some previous unconditionally
secure protocol in Fig. 1.

Note that our active secure protocol is more efficient than even the previous
most efficient passive secure protocol, as clearly D ≤ C. Note also that our active
secure protocol obtains threshold t < n/3. When no broadcast channel is given,
this is optimal. If a broadcast channel is given, however, it is possible to get active
security for t < n/2 [RB89]. By using an unconditionally hiding commitment
scheme to commit parties to their shares, it is possible to obtain a protocol with
resilience t < n/2 and with communication complexity O(Cn)κ+poly(nκ). This
protocol is not unconditional secure, but at least has everlasting security in the
sense that if the computational assumptions are not broken during the run of the

protocol, then the protocol is secure against a later computationally unbounded
adversary.

In comparison to the earlier work achieving linear complexity, we emphasize
that achieving unconditional security is not only of theoretical interest: using “in-
formation theoretic” techniques for multiparty computation is computationally

much more efficient than using homomorphic public-key encryption as in [HN06],
for instance. We can therefore transplant our protocols to the computational
setting, using cryptography only as a transport mechanism to implement the
channels, and obtain a protocol that is computationally more efficient than the
one from [HN06], but incomparable to what can be obtained from [DI06]: we get
a better security threshold but a non-constant number of rounds.

On the technical side, we make use of a technique presented in [HN06] that
was used there to get computational security. It is based on the fact that the
standard method for secure multiplication based on homomorphic encryption
uses only public, broadcasted messages. The idea is now to select a “king”,
to whom everyone sends what they would otherwise broadcast. The king does
whatever computation is required and returns results to the parties. This can
save communication, provided we can verify the king’s work in a way that is
cheap when amortized over many instances.

This idea is not immediately applicable to unconditionally secure protocols,
because the standard method for multiplication in this scenario involves pri-
vate communication where players send different messages to different players.
This can of course not all be sent to the king without violating privacy. We
therefore introduce a new multiplication protocol, involving only public com-
munication that is compatible with the “king-paradigm” (the main idea is used
in the Triples protocol in Fig. 4). This, together with adaptation of known
techniques, is sufficient for passive security.

For active security, we further have to solve the problem that each player
frequently has to make a secret shared value public, based on shares he has
received in private. Here, we need to handle errors introduced by corrupt players.
Standard VSS-based techniques would be quadratic in n, but we show how to
use error correction based on Van der Monde matrices to correct the errors, while
keeping the overall complexity linear in n (this idea is used in the OpenRobust

protocol in Fig. 9).

2 Preliminaries

Model. We use P = {P1, . . . , Pn} to denote a set of n parties which are to
do the secure evaluation, and we assume that each pair of parties share a per-
fectly secure channel. Furthermore, we assume that the parties have access to
an authenticated broadcast channel. We allow some subset of corrupted parties

C ⊂ P , of size at most t, to behave in some arbitrary coordinated manner. We
call H = P\C the honest parties. We consider secure circuit evaluation. All input
gates are labeled by a party from P . That party provides a secret input for the
gate, and the goal of the secure circuit evaluation is to make the output of the
circuit public to each party in P . The protocol takes an extra input κ ∈ N, the
security parameter, which is given to all parties. The protocol should run in time
poly(κ) and the ”insecurity” of the protocol should be bounded by poly(κ)2−κ.

The Ground Field and the Extension Field. For the rest of the paper we
fix a finite field F over which most of our computations will be done. We call
F the ground field. We let k = log2(|F|) denote the bit-length of elements from
F. We also fix an extension field G ⊃ F to be the smallest extension for which
|G| ≥ 2κ. Since |G| < 22κ, a field element from G can be written down using
O(κ) bits. We call G the extension field.

Van der Monde Matrices. We write a matrix M ∈ F(r,c) with r rows and c
columns as M = {mi,j}

j=1,...,c
i=1,...,r . For C ⊆ {1, . . . , c} we let MC = {mi,j}

j∈C
i=1,...,r

denote the matrix consisting of the columns from M indexed by j ∈ C. We use
M⊤ to denote the transpose of a matrix, and for R ⊆ {1, . . . , r} we let MR =

((M⊤)R)⊤. For distinct elements α1, . . . , αr ∈ F we use Van(r,c)(α1, . . . , αr) ∈

F(r,c) to denote the Van der Monde matrix {αj
i}

j=0,...,c−1
i=1,...,r , and we use Van(r,c) ∈

F(r,c) to denote some Van der Monde matrix of the form Van(r,c)(α1, . . . , αr)
when the elements α1, . . . , αr are inconsequential. It is a well-known fact that
all Van(c,c) are invertible. Consider then V = Van(r,c) with r > c, and let R ⊂
{1, . . . , r} with |R| = c. Since VR is a Van der Monde matrix Van(c,c) it follows
that VR is invertible. So, any c rows of a Van der Monde matrix form an invertible
matrix. In the following we say that Van der Monde matrices are super-invertible.

Secret Sharing. For the rest of the paper a subset I ⊆ F
∗ of |P| non-zero

elements is chosen. Each party in P is then assigned a unique element i from I,
and we index the parties in P by Pi for i ∈ I. For notational convenience we will
assume that I = {1, . . . , |P|}, which is possible when F has characteristic at least
n. All our techniques apply also to the case where F has smaller characteristic,
as long as |F| > n.

By a d-polynomial we mean a polynomial f(X) ∈ F[X] of degree at most d. To
share a value x ∈ F with degree d, a uniformly random d-polynomial f(X) ∈ F[X]
with f(0) = x is chosen, and Pi is given the share xi = f(i). This is the same
as letting x0 = x, choosing x1, . . . , xd ∈ F uniformly at random and letting
(y1, . . . , yn) = M (d)(x0, x1, . . . , xd), where M (d) = Van(n,d+1)(1, . . . , n).

In the following we call a vector y = (y1, . . . , yn) ∈ Fn a d-sharing (of x) if
there exists (x1, . . . , xd) ∈ Fd such that M (d)(x, x1, . . . , xd) and y agree on the

share of all honest parties; I.e., yH = M
(d)
H (x, x1, . . . , xd). In the following we

typically use [x] to denote a d-sharing of x with d = t, and we always use 〈x〉 to
denote a d-sharing of x with d = 2t.

Whenever we talk about a sharing [x] we implicitly assume that party Pi is
holding xi such that [x] = (x1, . . . , xn). We introduce a shorthand for specifying
computations on these local shares. If sharings [x(1)], . . . , [x(ℓ)] have been dealt,

then each Pi is holding a share x
(l)
i of each [x(l)]. Consider any function f : Fℓ →

F
m. By ([y(1)], . . . , [y(m)]) = f([x(1)], . . . , [x(ℓ)]), we mean that each Pi computes

(y
(1)
i , . . . , y

(m)
i) = f(x

(1)
i , . . . , x

(ℓ)
i), defining sharings [y(k)] = (y

(k)
1 , . . . , y

(k)
n) for

k = 1, . . . , m. It is well-known that if f is an affine function and each [x(l)] is a
consistent d-sharing, then the [y(k)] are consistent d-sharings of (y(1), . . . , y(m)) =
f(x(1), . . . , x(ℓ)). Furthermore, if [x1] and [x2] are consistent d-sharings, then
[y] = [x1][x2] is a consistent 2d-sharing of y = x1x2. When d = t we therefore
use the notation 〈y〉 = [x1][x2].

Error Correction. It is well-known that Van der Monde matrices can be used
for error correction. Let M = Van(r,c) be any Van der Monde matrix with r > c.
Let x ∈ Fc and let y = Mx. Consider any R ⊂ {1, . . . , r} with |R| = c. By
Van der Monde matrices being super-invertible it follows that MR is invertible.
Since yR = MRx it follows that x = M−1

R yR, so that x can be computed
from any r entries of y. It follows that if x(1) 6= x(2) and y(1) = Mx(1) and
y(2) = Mx(2), then ham(y(1), y(2)) ≥ r−c+1, where ham denotes the Hamming
distance. Assume now that r ≥ c + 2t for some positive integer t, such that
ham(y(1), y(2)) ≥ 2t + 1. This allows to correct up to t errors, as described now.
Let y = Mx and let y′ be any vector with ham(y, y′) ≤ t. It follows that
ham(y′, Mx′) ≥ t + 1 for all x′ 6= x. Therefore y can be computed uniquely
from y′ as the vector y with ham(y, y′) ≤ t. Then x can be compute from y as
x = M−1

R yR with e.g. R = {1, . . . , c}. The Berlekamp-Welch algorithm allows
to compute y from y′ at a price in the order of performing Gaussian elimination
on a matrix from F(r,r).

Randomness Extraction. We also use Van der Monde matrices for random-

ness extraction. Let M = Van(r,c)⊤ be the transpose of any Van der Monde
matrix with r > c. We use the computation (y1, . . . , yc) = M(x1, . . . , xr) to
extract randomness from (x1, . . . , xr). Assume that (x1, . . . , xr) is generated as
follows: First R ⊂ {1, . . . , r} with |R| = c is picked and a uniformly random
xi ∈R F is generated for i ∈ R. Then for j ∈ T , with T = {1, . . . , r} \ R, the
values xj are generated with an arbitrary distribution independent of {xi}i∈R.
For any such distribution of (x1, . . . , xr) the vector (y1, . . . , yc) is uniformly ran-
dom in F

c. To see this, note that (y1, . . . , yc) = M(x1, . . . , xr) can be written as

(y1, . . . , yc) = MR(x1, . . . , xr)R + MT (x1, . . . , xr)T . Since MR = Van
(r,c)
R

⊤

we
have that MR is invertible. By definition of the input distribution, the vector
(x1, . . . , xr)R is uniformly random in Fc. Therefore MR(x1, . . . , xr)R is uniformly
random in Fc. Since (x1, . . . , xr)T was sampled independent of (x1, . . . , xr)R, it
follows that MR(x1, . . . , xr)R + MT (x1, . . . , xr)T is uniformly random in Fc, as
desired.

3 Private, t < n/2

We first present a passive secure circuit-evaluation protocol. Later we show how
to add robustness. Throughout this section we assume that there are at most
t = ⌊(n− 1)/2⌋ corrupted parties. To prepare for adding robustness, some parts
of the passive protocol are slightly more involved than necessary. The extra com-
plications come from the fact that we want to place all dealings of sharings in
a preprocessing phase, where the inputs have not been used yet. This will later
allow a particularly efficient way of detecting cheating parties, and will further-
more give a circuit-evaluation phase which consists of only opening sharings,
limiting the types of errors that can be encountered after the parties entered
their inputs into the computation.

3.1 Random Double Sharings

We first present a protocol, Double-Random(ℓ), which allows the parties to
generate sharings [r1], . . . , [rℓ] and 〈R1〉, . . . , 〈Rℓ〉, where each [rl] is a uniformly
random t-sharing of a uniformly random value rl ∈ F and each 〈Rl〉 is a uniformly
random 2t-sharing of Rl = rl. We consider the case ℓ = n − t. For larger ℓ, the
protocol is simply run in parallel a number of times. As part of the protocol the

parties use a fixed matrix M = Van(n,n−t)⊤ for randomness extraction.

1. Each Pi ∈ P : Pick a uniformly random value s(i) ∈R F and deal a t-sharing
[s(i)] and a 2t-sharing 〈s(i)〉.

2. Compute
([r1], . . . , [rn−t]) = M([s(1)], . . . , [s(n)])

(〈R1〉, . . . , 〈Rn−t〉) = M(〈s(1)〉, . . . , 〈s(n)〉) ,

and output (([r1], 〈R1〉), . . . , ([rn−t], 〈Rn−t〉)).

Fig. 2. Double-Random(n− t)

The protocol is given in Fig. 2. Assume that t parties are corrupted, leaving
exactly m = n − t honest parties. The m sharings [s(i)] dealt by the honest
parties are independent uniformly random sharings of independent, uniformly
random values unknown by the corrupted parties. The matrix M being a super-
invertible matrix with m rows then implies that the sharings ([r1], . . . , [rm]) are
independent uniformly random t-sharings of uniformly random values unknown
by the corrupted parties. In the same way (〈R1〉, . . . , 〈Rm〉) are seen to be inde-
pendent, uniformly random 2t-sharings of uniformly random elements unknown
by the corrupted parties, and Rl = rl. We also use a protocol Random(ℓ) which
runs as Double-Random(ℓ) except that the 2t-sharings 〈R〉 are not generated.

Each of the 2n dealings communicate O(n) field elements from F, giving
a total communication complexity of O(n2k). Since n − t = Θ(n) pairs are
generated, the communication complexity per generated pair is O(nk). A general

number ℓ of pairs can thus be generated with communication complexityO(nℓk+
n2k).

3.2 Opening Sharings

The next protocol, Open(d, [x]), is used for reconstructing a d-sharing efficiently.
For this purpose a designated party Pking ∈ P will do the reconstruction and
send the result to the rest of the parties.

1. Each Pi ∈ P : Let Pking ∈ P be some agreed-upon party and send the share xi

of [x] to Pking.
2. Pking: Compute a d-polynomial f(X) ∈ F[X] with f(i) = xi for all Pi ∈ P , and

send x = f(0) to all parties.
3. Each Pi ∈ P : Output x.

Fig. 3. Open(d, [x])

It is clear that if [x] is a d-sharing of x and there are no active corruptions,
then all honest parties output x. The communication complexity is 2(n− 1) =
O(n) field elements from F.

3.3 Multiplication Triples

We then present a protocol, Triples(ℓ) which allows the parties to generate
ℓ multiplication triples, which are just triples ([a], [b], [c]) of uniformly random
t-sharings with c = ab.

1. All parties: Run Random(2ℓ) and Double-Random(ℓ) and group the outputs
in ℓ triples ([a], [b], ([r], 〈R〉)). For each triple in parallel, proceed a follows:

(a) All parties: Compute 〈D〉 = [a][b] + 〈R〉.
(b) All parties: Run D ← Open(2t, 〈D〉).
(c) All parties: Compute [c] = D − [r], and output ([a], [b], [c]).

Fig. 4. Triples(ℓ)

The sharings [a] and [b] are t-sharings, so [a][b] is a 2t-sharing of ab. Therefore
〈D〉 = [a][b]+〈R〉 is a uniformly random 2t-sharing of D = ab+R. The revealing
of D leaks no information on a or b, as R is uniformly random. Therefore the
protocol is private. Then [c] = D − [r] is computed. Since [r] is a t-sharing, [c]
will be a t-sharing, of D− r = ab + R− r = ab. The communication complexity
of generating ℓ triples is seen to be O(nℓk + n2k).

3.4 Circuit Evaluation

We are then ready to present the circuit-evaluation protocol. The circuit Circ =
{Ggid} consists of gates Ggid of the following forms.

input: Ggid = (gid, inp, Pj), where Pj ∈ P provides a secret input xgid ∈ F.

random input: Ggid = (gid, ran), where xgid ∈R F is chosen as a secret, uni-
formly random element.

affine: Ggid = (gid, aff, a0, gid1, a1, . . . , gidℓ, aℓ), where a0, a1, . . . , aℓ ∈ F and

xgid = a0 +
∑ℓ

l=1 alxgidl
.

multiplication: Ggid = (gid, mul, gid1, gid2), where xgid = xgid1
xgid2

.

output: Ggid = (out, gid1), where all parties are to learn xgid1
.1

What it means to securely evaluate Circ can easily be phrased in the UC
framework[Can01], and our implementation is UC secure. We will however not
prove this with full simulation proofs in the following, as the security of our
protocols follow using standard proof techniques.

Preprocessing Phase. First comes a preprocessing phase, where a number of
sharings are generated for some of the gates in Circ. The details are given in
Fig. 5. The communication complexity is O(nℓk+n2k), where ℓ is the number of
random gates plus the number of input gates plus the number of output gates.

All gates are handled in parallel by all parties running the following:

random: Let r be the number of random gates in Circ, run Random(r) and as-
sociate one t-sharing [xgid] to each (gid,ran) ∈ Circ.

input: Let i be the number of input gates in Circ, run Random(i) and associate
one t-sharing [rgid] to each (gid,inp, Pj) ∈ Circ. Then send all shares of [rgid]
to Pj to let Pj compute rgid.

multiplication: Let m be the number of multiplication gates, run Triples(m)
and associate one multiplication triple ([agid], [bgid], [cgid]) to each
(gid,mul, gid1, gid2) ∈ Circ.

Fig. 5. Preprocess(Circ)

Evaluation Phase. Then comes an evaluation phase. During the evaluation
phase a t-sharing [xgid] is computed for each gate gid, and we say that gid has
been computed when this happens. Note that the random gates are computed
already in the preprocessing. A non-output gate a said to be ready when all its
input gates have been computed. An output gate is said to be ready when in
addition all input gates and random gates in the circuit have been computed.2

The evaluation proceeds in rounds, where in each round all ready gates are com-
puted in parallel. When several sharings are opened in a round, they are opened
in parallel, using one execution of Open. The individual gates are handled as
detailed in Fig. 6. Note that the evaluation phase consists essentially only of
opening sharings and taking affine combinations.

1 Private outputs can be implemented using a standard masking technique.
2 This definition will ensure that all inputs have been provided before any outputs are

revealed.

The evaluation proceeds in rounds, where in each round all ready gates are com-
puted in parallel, as follows:

input: For (gid,inp, Pj) ∈ Circ:
1. Pj : Retrieve the input xgid ∈ F and send δgid = xgid + rgid to all parties.
2. All parties: Compute [xgid] = δgid − [rgid].

affine: For (gid,aff, a0, gid1, a1, . . . , gidℓ, aℓ) ∈ Circ: All parties compute [xgid] =
a0 +

Pℓ

l=1 al[xgidl
].

multiplication: For (gid, mul, gid1, gid2) ∈ Circ all parties proceed as follows:
1. Compute [αgid] = [xgid1

] + [agid] and [βgid] = [xgid2
] + [bgid].

2. Run αgid ← Open([αgid]) and βgid ← Open([βgid]).
3. Let [xgid] = αgidβgid − αgid[bgid]− βgid[agid] + [cgid].

output: For (out, gid) ∈ Circ: Run xgid ← Open([xgid]).

Fig. 6. Eval(Circ)

The correctness of the protocol is straight-forward except for Step 3 in mul-

tiplication. The correctness of that step follows from [BB89] which introduced
this preprocessed multiplication protocol. The privacy of the protocol follows
from the fact that rgid in the input protocol and agid and bgid in the multiplica-
tion protocol are uniformly random elements from F, in the view of the corrupted
parties. Therefore δgid = xgid+rgid and αgid = xgid1

+agid and βgid = xgid2
+bgid

leak no information on xgid respectively xgid1
and xgid2

. Therefore the values
of all gates are hidden, except for the output gates, whose values are allowed
(required) to leak.

The communication complexity, including preprocessing, is seen to beO(nCk+
n2k), where C = |Circ | is the number of gates in the circuit.

4 Robust, t < n/4

By now we have a circuit-evaluation protocol which is private and correct as
long a no party deviates from the protocol. In this section we add mechanisms
to ensure robustness. Throughout this section we assume that there are at most
t = ⌊(n − 1)/4⌋ corrupted parties. In the following section we then extend the
solution to handle t < n/3.

4.1 Error Points

In the passive secure protocol there are several points where a party could deviate
from the protocol to make it give a wrong output. We comment on two of these
here and sketch how they are dealt with. More details follow later. A party
which was asked to perform a d-sharing could distribute values which are not
d-consistent. We are going to detect a cheater by asking the parties to open
a random polynomial combination of all sharings they have dealt. Also, Pking

could fail to send the right value in Open (Fig. 3). We are going to use error
correction to make sure this does not matter, by opening a Van der Monde

code of the sharings to be opened and then correcting the t mistakes that the
corrupted parties might have introduced.

4.2 Coin-Flip

In the protocol opening a polynomial combination of sharings we need a random
value x ∈ G from the extension field. Therefore we need a protocol, Flip(), for
flipping a random value from G. The standard protocol does this using a VSS
protocol as subprotocol: Each Pi ∈ P : Pick uniformly random xi ∈R G and deal
a VSS of xi among the parties in P . All parties: Reconstruct each xi and let
x =

∑
Pi∈P

xi. Any of the known VSS’s will do, e.g., [BGW88], since we only call
Flip a small number of times, and so its precise complexity is not important.

4.3 Dispute Control

In the following we use the technique of dispute control[BH06]. We keep a dis-

pute set Disputes, initially empty, consisting of sets {Pi, Pj} with Pi, Pj ∈ P . If
{Pi, Pj} ∈ Disputes, then we write Pi = Pj . If during a protocol a dispute arises
between Pi and Pj , then {Pi, Pj} is added to Disputes. This is done in such a
way that: (1) All parties in P agree on the value of Disputes. (2) If Pi = Pj ,
then Pi is corrupted or Pj is corrupted. For a given dispute set Disputes and
Pi ∈ P we let Disputesi be the set of Pj ∈ P for which Pi = Pj , and we let
Agreei = P \Disputesi.

All sub-protocols will use the same dispute set Disputes. We say that a sub-
protocol has dispute control if (1) It can never halt due to a dispute between Pi

and Pj if {Pi, Pj} is already in Disputes. (2) If it does not generate a dispute,
then it terminates with the correct result. (3) If it generates a dispute, then it
is secure to rerun the sub-protocol (with the now larger dispute set).

We also keep a set Corrupt ⊂ P . If during the run of some protocol a party
Pi is detected to deviate from the protocol, then Pi is added to Corrupt. This is
done in such a way that: (1) All parties in P agree on the value of Corrupt. (2)
If Pi ∈ Corrupt, then Pi is corrupted.

We enforce that when it happens for the first time that |Disputesi | > t,
where t is the bound on the number of corrupted parties, then Pi is added to
Corrupt. It is easy to see that if |Disputesi | > t, then indeed Pi is corrupted.

Secret Sharing with Dispute Control. We use a technique from [BH06] to
perform secret sharing with dispute control. When a party Pi is to deal a d-
sharing [x] then Pi uses a random d-polynomial where f(0) = x and f(j) =
0 for Pj ∈ Disputesi. Since all sharings will have d ≥ t and Pi ∈ Corrupt
if |Disputesi | > t, this type of dealing is possible for all Pi 6∈ Corrupt. The
advantage is that all parties will agree on what Pi sent to all Pj ∈ Disputesi.
This can then be exploited to ensure that Pi will never get a new dispute with
some Pj ∈ Disputesi.

4.4 Dealing Consistent Sharings

The robust protocol for sharing values will run the private protocol for dealing
sharings followed by a check that the generated sharings are consistent. In Fig. 7
we consider the case where Pi shares ℓ values (y1, . . . , yℓ).

1. If Pi ∈ Corrupt, then output ([y1], . . . , [yℓ]) = ([0], . . . , [0]), where [0] =
(0, . . . , 0) is the dummy sharing of 0. Otherwise, proceed as below.

2. Pi: Deal d-sharings [y1], . . . , [yℓ] over F among the parties in P along with a
d-sharing [r] over G, where r ∈R G is a uniformly random element from the
extension field. By definition all parties in Disputesi get 0-shares.

3. All parties in P : Run x← Flip(), and compute [y] = [r] +
Pℓ

l=1 xl[yl] in G.
4. All parties in Agreei: Broadcast the share of [y]. All parties in Disputesi are

defined to broadcast 0.
5. Pi: In parallel with the above step, broadcast all shares of [y].
6. All parties in P : If the sharing [y] broadcast by Pi is not a d-sharing with all

parties in Disputesi having a 0-share, then output ([y1], . . . , [yℓ]) = ([0], . . . , [0]).
Otherwise, if the shares broadcast by the other parties are identical to
those broadcast by Pi, then output ([y1], . . . , [yℓ]). Otherwise, let Disputes′ =
Disputes∪{(Pi, Pj)} for each Pj ∈ Agreei broadcasting a share different from
that broadcast by Pi.

Fig. 7. Share(Pi, Disputes)

We first argue that if any of the sharings dealt by Pi are not d-sharings, then
a dispute will be generated, except with probability poly(κ)2−κ. Namely, let
f0(X) ∈ G[X] be the lowest degree polynomial consistent with the honest shares
of [r], and for i = 1, . . . , ℓ let fl(X) ∈ G[X] be the lowest degree polynomial
consistent with the honest shares of [yl]. It can be seen that fl(X) is also the

lowest degree polynomial f
(F)
l (X) ∈ F[X] consistent with the honest shares of

[yl].
3 It follows that if the sharings dealt by Pi are not all d-consistent, then one

of the polynomials fl(X) has degree larger than d. Let m be such that fm(X)
has maximal degree among f0(X), . . . , fℓ(X), let dm be the degree of fm(X) and
write each fl(X) as fl(X) = αlx

dm + f ′
l (X), where f ′

l (X) has degree lower than

dm. By definition αm 6= 0. Therefore g(Y) =
∑ℓ

i=0 αlY
l is a non-zero polynomial

over G with degree at most ℓ, and since x is uniformly random in G, it follows
that g(x) = 0 with probability at most ℓ/|G| = poly(κ)2−κ. So, we can assume

that g(x) 6= 0. This implies that f(X) =
∑ℓ

l=0 xlfl(X) has degree dm > d. Note

that f(X) is consistent with the honest shares of [y] = [r] +
∑ℓ

l=1 xl[yl], and
let g(X) ∈ G[X] be the lowest degree polynomial which is consistent with the
honest shares of [y]. Let h(X) = f(X) − g(X). Clearly h(i) = 0 for all honest
parties Pi. Since h(i) has degree at most dm < |H |, where H is the set of honest

3 The polynomial fl(X) can be computed from the indexes i ∈ F of the honest parties

Pi and the shares x
(i)
l ∈ F of the honest parties Pi using Lagrange interpolation,

which is linear. Therefore the coefficients of fl(X) ends up in F, even when the
interpolation is done over the extension G.

parties, and h(i) = 0 for i ∈ H it follows that h(X) is the zero-polynomial. So,
g(X) = f(X) and [y] thus has degree dm. Therefore the honest shares of [y] are
not on a d-polynomial, and thus some dispute will be generated. It follows that
when no dispute is generated, then all the sharings dealt by Pi are d-consistent,
except with probability poly(κ)2−κ. This in particular applies to the sharings
[y1], . . . , [yℓ].

As for the privacy, note that when Pi is honest,
∑ℓ

l=1 xl[yl] is a d-sharing over
G and [r] is an independent uniformly random d-sharings over G of a uniformly
random r ∈R G. Therefore [y] is a uniformly random d-sharing over G and leaks
no information to the corrupted parties when reconstructed.

If the protocol Share(Pi, Disputes) fails, it is rerun using the new larger
Disputes′. Since Disputesi grows by at least 1 in each failed attempt, at most
t failed attempts will occur. So, if ⌈ℓ/t⌉ values are shared in each attempt, the
total number of attempts needed to share ℓ values will be 2t. Since each attempt
has communication complexity O(⌈ℓ/t⌉nk) + poly(nκ) the total complexity is
O(ℓnk) + poly(nκ), where poly(nκ) covers the cost of the n broadcasts and the
run of Flip() in each attempt. The round complexity is O(t).

Dealing Inter-Consistent Sharings. The above procedure allows a party Pi

to deal a number of consistent d-sharings. This can easily be extend to allow a
party Pi to deal consistent t-sharings [y1], . . . , [yℓ] and 2t-sharings 〈Y1〉, . . . , 〈Yℓ〉
with Yl = yl. The check uses a random t-sharing [r] and a random 2t-sharing

〈R〉 with R = r, and then [y] = [r] +
∑ℓ

l=1 xl[yl] and 〈Y 〉 = 〈R〉 +
∑ℓ

l=1 xl[Yl]
are opened as above. In addition to the sharings being t-consistent (respectively
2t-consistent), it is checked that Y = y. Note that if R = r and Xl = xl, then
indeed Y = y. On the other hand, if R 6= r or some Xl 6= xl, then Y − y =
(R−r)+

∑ℓ

l=1 xl(Yl−yl) is different from 0 except with probability ℓ/|G|, giving
a soundness error of poly(κ)2−κ.

4.5 Random Double Sharings

Recall that the purpose of this protocol is to generate a set of random values that
are unknown to all parties and are both t- and 2t-shared. The robust protocol
for this is derived directly from the passive secure protocol, and we also denote it
by Double-Random(ℓ). The only difference between the two is that the above
robust procedure for dealing inter-consistent sharings is used as subprotocol. To
generate ℓ double sharings, first each party deals ⌈ℓ/(n− t)⌉ random pairs using
the procedure for dealing inter-consistent sharings. Then the first pair from each
party is used to compute n−t pairs as in the passive secure Double-Random(ℓ),

using a matrix Van(n,n−t)⊤. At the same time the second pairs from each party is
used to compute n− t more pairs, and so on. This yields a total of (n− t)⌈ℓ/(n−
t)⌉ ≥ ℓ pairs. The communication complexity is O(ℓnk) + poly(nκ).

4.6 Opening Sharings

We describe how sharings are opened. We assume that the sharings to be opened
are consistent d-sharings of the same degree d ≤ 2t. Reconstruction of a single
sharing happens by sending all shares to some king, which then reconstructs.
Since the sharing is d-consistent, the king receives at least n − t > 3t = d + t
correct sharings and at most t incorrect sharings. Therefore the king can always
compute the d-polynomial f(X) of the sharing using Berlekamp-Welch. The
details are given in Fig. 8.

1. The parties agree on a consistent d-sharings [x] with d ≤ 2t.
2. Each Pi ∈ P : Send the share xi of [x] to Pking.
3. Pking: Run Berlekamp-Welch on the received shares to get x, and send x to all

parties.

Fig. 8. Open(Pking, d, [x])

The protocol in Fig. 8 has the obvious flaw that Pking could send an incorrect
value. This is handled by expanding n− (2t + 1) sharings to n sharings using a
linear error correcting code tolerating t errors. Then each Pi opens one sharing,
and the possible t mistakes are removed by error correction. The details are given
in Fig. 9.

1. The parties agree on consistent d-sharings [x1], . . . , [xℓ] with ℓ = n − (2t + 1)
and d ≤ 2t.

2. All parties: Compute ([y(1)], . . . , [y(n)]) = M([x1], . . . , [xℓ]), where M =
Van(n,ℓ).

3. All parties: For each Pi ∈ P in parallel, run y(i) ← Open(Pi, d, [y(i)]).
4. All parties: Run Berlekamp-Welch on the values (y(1), . . . , y(n)) to get

(x1, . . . , xℓ).

Fig. 9. OpenRobust(d, [x1], . . . , [xℓ])

The communication complexity of opening ℓ = n− (2t+1) values is O(n2k),
giving an amortized communication complexity of O(nk) per reconstruction. An
arbitrary ℓ sharings can thus be reconstructed with communication complexity
O(ℓnk + n2k).

4.7 Circuit Evaluation

We now have robust protocols Double-Random (and thus Random) and
OpenRobust. This allows to implement a robust version of Triples exactly as
in Fig. 4. Then a robust preprocessing can be run exactly as in Fig. 5. This in
turn almost allows to run a robust circuit-evaluation as in Fig. 6. Note in par-
ticular that since all sharings computed during the circuit evaluation are linear

combinations of sharings constructed in the preprocessing, all sharings will be
consistent t-sharings. Therefore Berlekamp-Welch can continuously be used to
compute the openings of such sharings. Indeed, the only additional complication
in running Eval(Circ) is in Step 2 in input, where it must be ensured that Pj

sends the same δgid to all parties. This is handled by distributing all δgid using
n parallel broadcasts (each Pj broadcast all its δgid in one message).

Since an ℓ-bit message can be broadcast with communication complexity
O(ℓ) + poly(nκ) (see [FH06]), the communication complexity of handling the
input gates will be O(ℓink) + poly(nκ), where ℓi is the number of input gates.
The communication complexity of handling the remaining gates is seen to be
O(nCk + (D + 1)n2k) + poly(nκ), where C = |Circ | and D is the multiplicative
depth of the circuit. The term (D+1)n2k comes from the fact that OpenRobust

is run for each layer of multiplication gates and run once to handle the output
gates in parallel. If we sum the above with the communication complexity of
the preprocessing phase we get a communication complexity of O(nCk + (D +
1)n2k) + poly(nκ). The round complexity is O(t + D + 1), where t comes from
running the robust sharing protocol.

5 Robust, t < n/3

We sketch how the case t < n/3 is handled. Assume first that a preprocessing
phase has been run where the ”usual” consistent t-sharings have been associated
to each gate. Since t < n/3 it follows that there are at least 2t + 1 honest shares
in each sharing. Therefore Berlekamp-Welch can be used to reconstruct these t-
sharings. Since the circuit-evaluation phase consists only of opening t-sharings,
it can thus be run exactly as in the case t < n/4.

The main problem is therefore to establish the preprocessed t-sharings. The
protocol Share can be run as for t < n/4 as can then Double-Random.
Going over Triples it thus follows that the only problematic step is D ←
Open(2t, 〈D〉), where a sharing of degree 2t is opened. Since there are only
2t + 1 honest parties, Berlekamp-Welch cannot be used to compute D in Step 3
in Fig. 8. An honest party Pking can therefore find itself not being able to con-
tribute correctly to the reconstruction. This is handled by ensuring that when
this happens, then Pking can complain and the parties together identify a new
dispute.

In more detail, when Pking is to reconstruct some 2t-sharing 〈y〉 as part of
the run of Open in Triples (Fig. 4), then Pking collects shares yj from each
Pj ∈ Agreeking.

4 If these shares are on some 2t-polynomial D(X) ∈ F[X], then
Pking sends D(0) to all parties. Otherwise some Pj ∈ Agreeking sent an incorrect
yj . This is used to find a new dispute, as detailed in Fig. 10.

The protocol in Fig. 10 can be greatly optimized, using a more involved
protocol avoiding many of the broadcasts. However, already the simple solu-
tion has communication complexity poly(nκ). Since the protocol always leads

4 Pking can safely ignore Dj from Pj ∈ Disputesking as Pking knows that these Pj are
corrupted.

0. Assume that Pking was reconstructing some 2t-sharing 〈y〉 as part of the opening
in Triples (Fig. 4), and assume that the shares yj for Pj ∈ Agreeking are 2t-
inconsistent.

1. Each Pj ∈ Honest: Broadcast all the shares sent and received during Random

and Double-Random.a At the same time Pking broadcasts the 2t-inconsistent
shares 〈y〉.

2. All parties: If some Pj ∈ Honest claims to have sent sharings which do not have
the correct degree, then add Pj to Corrupt and terminate. Otherwise, if some

Pi and Pj disagree on a share R
(i)
j sent from Pi to Pj , then add the dispute

Pi = Pj .
b Otherwise, proceed as below.

3. All parties: Compute from the broadcast sharings the 2t-sharing 〈y′〉 that Pking

was reconstructing. Since 〈y′〉 is 2t-consistent and 〈y〉 is 2t-inconsistent on
Agreeking, there exists Pi ∈ Agreeking where y′

i 6= yi. For each such Pi, add
the dispute Pking = Pi.

c

a This is secure as the secret inputs did not enter any computation yet in the
preprocessing phase.

b Note that the dispute will be new, as Pi = Pj implies that R
(i)
j is defined to be

0, and thus no dispute can arise.
c The dispute is new as Pi ∈ Agreeking. Note that we cannot add Pi to Corrupt,

as Pking could be lying about yi.

Fig. 10. Detect-Dispute

to a new dispute and at most O(t2) disputes are generated in total, it follows
that the protocol contributes with a term poly(nκ) to the overall communica-
tion complexity. This gives us a robust protocol with communication complexity
O(nCk + (D + 1)n2k) + poly(nκ) for the case t < n/3.

6 Robust, t < n/2

It is yet an open problem to get an unconditionally secure protocol with linear
communication complexity for the case t < n/2. One can however construct a
protocol withstanding a computationally bounded adversary during the protocol
and a computationally unbounded adversary after the protocol execution. Due
to space limitations we can only sketch the involved ideas.

Transferable Secret Sharing. To allow some Pking to reconstruct a sharing
and, verifiably, transfer the result to the other parties, each t-sharing [x] is aug-
mented by a Pedersen commitment C = commit(x; r), known by all parties, and
the randomness r is shared as [r]. We write [[x]] = (C, [x], [r]). In the preprocess-
ing, each Pj generates many random t-sharings [[x]] and corresponding, normal
2t-sharings 〈x〉, where Pi ∈ Disputesj get xi = ri = 0. By committing using a
group of prime order q and secret sharing in GF(q), the sharings [[x]] = (C, [x], [r])
are linear modulo q, and the usual protocols can be used for checking consistency
of sharings and for combining random sharings using a Van der Monde matrix
(Sec. 4.4 and 4.5). When a consistency check fails, a new dispute is identified

using a technique reminiscent of that used when t < n/3, but slightly more in-
volved. Then a new attempt is made at generating random shared values. The
total overhead of identifying disputes is kept down by generating the random
shared values in phases, each containing a limited number of sharings.

Multiplication Triples. After enough pairs ([[xl]], 〈xl〉) have been generated, a
multiplication protocol to be described below is run to generate multiplication
triples. Generation of triples are done in n sequential phases, where for efficiency
checks for correct behavior are done simultaneously for all triples in a phase.

The input to the generation of a multiplication triple is sharings [[a]], [[b]], [[r]],
〈r〉, [[b̃]], [[r̃]], 〈r̃〉. The parties compute their shares in [a][b]+ 〈r〉, [a][b̃]+ 〈r̃〉, send
these to a selected party Pking, who reconstructs values D, respectively D̃, and
sends these values to all players. Players now compute [[c]] = D − [[r]] and [[c̃]] =
D̃−[[r̃]]. For simplicity we assume that 2t+1 = n, in which case the shares received
by Pking will always be 2t-consistent. Hence even an honest Pking might be tricked

into reconstructing wrong D and D̃, this problems is handled below. Also, a
dishonest Pking may distribute inconsistent values for D, D̃. We therefore run the
share consistency check from Sec. 4.4 over all [[c]], [[c̃]] in the current phase and
disqualify Pking if it fails. Now the (supposed) multiplication triples ([[a]], [[b]], [[c]])

and ([[a]], [[b̃]], [[c̃]]) are checked. First a uniformly random value X ∈R GF(q) is
flipped. Then it is checked that ([[a]], [[b̃]] + X [[b]], [[c̃]] + X [[c]]) is a multiplication
triple: Compute b = Open([[b̃]]+X [[b]]), compute d = Open([[a]]b− ([[c̃]]+X [[c]])),
and check that d = 0. If d = 0, then ([[a]], [[b]], [[c]]) is taken to be the generated
triple. Here Open refers to the reconstruction procedure described below, which
either disqualifies Pking or lets at least one honest player compute d plus a proof
that it is correct. He can therefore alert all parties if d 6= 0.

For efficiency the same X is used for all checks done in the same phase. If
d 6= 0, then all messages sent and received during the multiplication and the
generating of the sharings involved in the multiplication are broadcast and some
new dispute is found. Since O(1) sharings are involved in multiplication, each
being a linear combination of at most O(n) sharings, at most O(n) sharings are
broadcast to find a dispute. Since at most t2 disputes are generated, the total
overhead is thus independent of the circuit size.

Reconstructing. As usual, the evaluation phase proceeds by computing affine
combinations of the t-sharings [[x]] generated in the preprocessing and by opening
such sharings. All that we need is thus a protocol for opening such t-sharings.
From a beginning some fixed reconstructor Pking ∈ Honest is chosen. In a recon-
struction of [[x]] = (C, [x], [r]), each Pi sends (xi, ri) to Pking, who computes (x, r)
and sends (x, r) to all parties. The receivers can check that C = commit(x; r).
If the shares received by Pking are not t-consistent, then Pking complains and
a special protocol Find-Corrupt-Share is run to remove some corrupted
party from Honest. The details of how Find-Corrupt-Share identifies a new
corrupted party from the incorrect shares is rather involved, and the details
will be given in the full version due to space limitations. Most important is
that the communication complexity of Find-Corrupt-Share is bounded by

O(|Circ |k) + poly(nκ). Since each run of Find-Corrupt-Share removes one
new party from Honest, it is run at most t = O(n) times, giving a total over-
head of at most O(|Circ |nk)+poly(nκ). The procedure Find-Corrupt-Share

will be run until Pking sees that the shares (xi, ri) from parties in Honest are
t-consistent. At this point Pking can then interpolate (x, r) and send it to all
parties. The above procedure always allows an honest Pking to compute (x, r)
and send it to all parties, maybe after some runs of Find-Corrupt-Share.
A party Pi not receiving (x, r) such that C = commit(x; r) therefore knows
that Pking is corrupt. If Pi does not receive an opening it therefore signs the
message “Pi disputes Pking” and sends it to all parties. All parties receiving
“Pi disputes Pking” signed by Pi adds the dispute Pi = Pking and sends the
signed “Pi disputes Pking” to all parties. Any party which at some point sees
that Pking has more than t disputes stops the execution. Then Pking is removed
from Honest, and some fresh Pking ∈ Honest is chosen to be responsible for
reconstructing the sharings. Then the computation is restarted. When a new
reconstructor Pking is elected, all gates that the previous reconstructor have
(should have) handled might have to be reopened by the new Pking. To keep the
cost of this down, each reconstructor will handle only O(|Circ |/n) gates before
a new reconstructor is picked.

Distributing Results. At the end of the evaluation, each sharing [[y]] associated
to an output gate has been opened by some Pking which was in Honest at the end
of his reign. This means that Pking was, at the end of his reign, disputed by at
most t parties, which in turn implies that at least one of the t + 1 honest parties
holds the opening of the [[y]] handled by Pking. But it is not guaranteed that all

honest parties hold the opening. Therefore, each Pi ∈ Honest is made responsible
for O/|Honest | of the O output sharings [[y]]. All parties holding an opening of
[[y]] for which Pi is responsible sends the opening to Pi; At least the one honest
party will do so, letting Pi learn all openings. Then each Pi sends the opening of
each [[y]] for which it is responsible to all parties. The total communication for
this is O(Onk). Since there is honest majority in Honest, all parties now hold the
opening of more than half the outputs, and they know which ones are correct.
To ensure that this is enough, a Van der Monde error correction code is applied
to the outputs before distribution. This is incorporated into the circuit, as a
final layer of affine combinations. The only cost of this is doubling the number
of output gates in the circuit. Note that the code only has to correct for erasures
and hence can work for t < n/2.

References

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In PODC’89, pages 201–209.

[Bea89] D. Beaver. Multiparty protocols tolerating half faulty processors. In
Crypto’89, pages 560–572. LNCS 435.

[Bea91] D. Beaver. Efficient multiparty protocols using circuit randomization. In
Crypto’91, pages 420–432. LNCS 576.

[BFKR90] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low
communication overhead (extended abstract). In Crypto’90, pages 62–76.
LNCS 537.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In 20th STOC, pages 1–10, 1988.

[BH06] Z. Beerliova-Trubiniova and M. Hirt. Efficient multi-party computation with
dispute control. In TCC 2006, pages 305–328. LNCS 3876

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd STOC, pages 503–513, 1990.

[Can01] R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145, 2001.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In 20th STOC, pages 11–19, 1988.

[CDD+99] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient
multiparty computations secure against an adaptive adversary. In Euro-

Crypt’99, pages 311–326. LNCS 1592.
[CDD00] R. Cramer, I. Damg̊ard, and S. Dziembowski. On the complexity of verifiable

secret sharing and multiparty computation. In 32nd STOC, pages 325–334,
2000.

[CDG87] D. Chaum, I. Damg̊ard, and J. van de Graaf. Multiparty computations
ensuring privacy of each party’s input and correctness of the result. In
Crypto’87, pages 87–119. LNCS 293.

[CDM00] R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party com-
putation from any linear secret-sharing scheme. In EuroCrypt 2000, pages
316–334. LNCS 1807.

[DI06] I. Damg̊ard and Y. Ishai. Scalable secure multiparty computation. In Crypto

2006, pages 501–520. LNCS 4117.
[FH06] M. Fitzi and M. Hirt. Optimally efficient multi-valued byzantine agreement.

In PODC 2006.
[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or

a completeness theorem for protocols with honest majority. In 19th STOC,
1987.

[GRR98] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and fast-track
multi-party computations with applications to threshold cryptography. In
PODC’98.

[GV87] O. Goldreich and R. Vainish. How to solve any protocol problem - an
efficiency improvement. In Crypto’87, pages 73–86. LNCS 293.

[HM01] M. Hirt and U. Maurer. Robustness for free in unconditional multi-party
computation. In Crypto 2001, pages 101–118. LNCS 2139.

[HMP00] M. Hirt, U. M. Maurer, and B. Przydatek. Efficient secure multi-party
computation. In ASIACRYPT 2000, pages 143–161. LNCS 1976.

[HN05] M. Hirt and J. B. Nielsen. Upper bounds on the communication complex-
ity of optimally resilient cryptographic multiparty computation. In ASI-

ACRYPT 2005, pages 79–99. LNCS 3788.
[HN06] M. Hirt and J. B. Nielsen. Robust multiparty computation with linear

communication complexity. In Crypto 2006, pages 463–482. LNCS 4117.
[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols

with honest majority. In 21th STOC, pages 73–85.
[Yao82] A. Chi-Chih Yao. Protocols for secure computations (extended abstract).

In 23rd FOCS.

