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Abstract. We put forward a new paradigm for building hybrid encryp-
tion schemes from constrained chosen-ciphertext secure (CCCA) key-
encapsulation mechanisms (KEMs) plus authenticated symmetric en-
cryption. Constrained chosen-ciphertext security is a new security notion
for KEMs that we propose. It has less demanding security requirements
than standard CCCA security (since it requires the adversary to have a
certain plaintext-knowledge when making a decapsulation query) yet we
can prove that it is CCCA su�cient for secure hybrid encryption.
Our notion is not only useful to express the Kurosawa-Desmedt public-
key encryption scheme and its generalizations to hash-proof systems in an
abstract KEM/DEM security framework. It also has a very constructive
appeal, which we demonstrate with a new encryption scheme whose se-
curity relies on a class of intractability assumptions that we show (in the
generic group model) strictly weaker than the Decision Di�e-Hellman
(DDH) assumption. This appears to be the �rst practical public-key en-
cryption scheme in the literature from an algebraic assumption strictly
weaker than DDH.

1 Introduction

One of the main �elds of interest in cryptography is the design and analysis of en-
cryption schemes in the public-key setting (PKE schemes) that are secure against
a very strong type of attacks � indistinguishability against chosen-ciphertext
attacks (IND-CCA) [24]. In this work, we are interested in practical schemes
with proofs of security under reasonable security assumptions (without relying
on heuristics such as the random oracle model) and in general methods for con-
structing such schemes.

The �rst practical IND-CCA secure PKE scheme without random oracles was
proposed in a seminal paper by Cramer and Shoup [11, 13]. Their construction
was later generalized to hash proof systems [12]. In [30, 13] Cramer and Shoup
also give a hybrid variant that encrypts messages of arbitrary length. The idea
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is to conceptually separate the key-encapsulation (KEM) part from the sym-
metric (DEM) part. Generally, this hybrid approach greatly improved practical-
ity of encryption schemes. A folklore composition theorem (formalized in [13])
shows that if both KEM and DEM are CCA-secure then the hybrid encryp-
tion is CCA-secure. Common wisdom was that this su�cient condition was also
necessary. However, at CRYPTO 2004, Kurosawa and Desmedt challenged this
common wisdom by presenting a hybrid encryption scheme that demonstrates
that a weaker security condition on the KEM may su�ce for full CCA-secure
hybrid encryption. Compared to the original Cramer-Shoup scheme, the scheme
by Kurosawa and Desmedt improved e�ciency and ciphertext expansion by re-
placing some of its algebraic components with information theoretically secure
symmetric primitives. More recently, the KEM part of their scheme was indeed
shown to be not CCA secure [15].

One natural open problem from [21] is if there exists a weaker yet natu-
ral security condition on the KEM such that, in combination with su�ciently
strong symmetric encryption, chosen-ciphertext secure hybrid encryption can be
guaranteed.

Extending the work of Cramer and Shoup [12], it was demonstrated in [21,
2, 14] that a variant of hash-proof systems (HPS) can be combined with sym-
metric encryption and a message authentication code (MAC) to obtain hybrid
encryption. If the hash-proof system is universal2, then the encryption scheme is
chosen-ciphertext secure. However, the Kurosawa-Desmedt hybrid scheme could
not be rigorously explained in this general HPS framework since the underlying
hash-proof system is not universal2. (Roughly, this is since universal2 is a statis-
tical property whereas the Kurosawa-Desmedt system contains a computational
component, namely a target collision resistant (TCR) hash function.) In [21]
(and [12]) only less e�cient �hash-free variants� of their schemes could be ex-
plained through hash proof systems; security of all e�cient TCR-based schemes
had to be proved separately.

Surprisingly, almost all practical standard-model encryption schemes [11, 13,
21, 2, 10, 9, 19, 20] are based on the di�culty of Decision Di�e-Hellman (DDH)
or stronger assumptions. This is contrasted by the existence of many natural
groups in which the DDH assumption is known to be wrong; examples include
pairing-groups and certain non prime-order groups like Z∗p. This often overlooked
fact may turn into a serious problem in case DDH turns out to be wrong in all
cryptographically interesting groups. In particular, [16] give evidence that groups
with easy DDH problem, but hard computational Di�e-Hellman problem exist.
[16] interpret this as an argument to rely on weaker assumptions than DDH.

1.1 Our contributions

A new KEM/DEM composition theorem.We put forward the security no-
tion of indistinguishability against constrained chosen-ciphertext attacks (IND-
CCCA) for KEMs which is stronger than IND-CPA (CPA stands for chosen-
plaintext attacks) yet strictly weaker than IND-CCA. Intuitively, CCCA is sep-
arated from CCA security by only allowing an adversary to make a decapsulation



query if it has su�cient �implicit knowledge� about the plaintext key to be de-
capsulated (hence the name �constrained chosen-ciphertext security�).1

As our main technical contribution we formalize the above notion and prove
a composition theorem that shows that any IND-CCCA secure KEM combined
with any authenticated (symmetric) encryption scheme yields IND-CCA secure
hybrid encryption. This gives a positive answer to the open question from [21]
mentioned before. Authenticated encryption is a quite general symmetric prim-
itive and examples include �encrypt-then-mac� schemes (based on computation-
ally secure primitives), and also more e�cient single-pass schemes (see, e.g., [25]).

Constrained chosen-ciphertext secure KEMs formalize a new design paradigm
for e�cient hybrid encryption. To guarantee chosen-ciphertext security for hy-
brid encryption schemes it is su�cient to verify a natural security condition on
the key encapsulation part. We assess the constructive appeal of this framework
by demonstrating that the original Kurosawa-Desmedt scheme [21], along with
its variants [2, 23] and all hash-proof systems based schemes [12, 21], can be thor-
oughly explained through it. We furthermore present a new IND-CCCA secure
KEM from the DDH assumption and show how to build a class of practical
KEMs from progressively weaker assumptions than DDH.

Constrained chosen-ciphertext secure KEM from DDH. We propose
a new KEM which is IND-CCCA secure under the DDH assumption. Although
it relies on di�erent proof techniques (it is not based on hash proof systems),
syntactically it is reminiscent to the one by Kurosawa and Desmedt and can in
fact be viewed as its dual (in the sense that certain parts from the ciphertext
and the symmetric key are swapped in our scheme).

Constrained chosen-ciphertext secure KEM from n-Linear. Building
on [8, 18] we introduce a new class of purely algebraic intractability assumptions,
the n-Linear assumptions, where n ≥ 1 is a parameter. They are such that the
DDH assumption equals the 1-Linear assumption, the Linear assumption [8]
equals the 2-Linear assumption, and the n-Linear assumptions become strictly
weaker as the parameter n grows. More precisely, 1-Linear = DDH, and n-Linear
implies n + 1-Linear, but (in the generic group model [29]) n + 1-Linear is still
hard relative to an n-Linear oracle. In fact, for n ≥ 2 the n-Linear assumption
does not seem to be invalid in any obvious sense even in the groups from [16], in
which the DDH problem is easy, and the computational Di�e-Hellman problem
is supposedly hard. We generalize the KD scheme and its dual to a class of
parametrized KEMs and prove their IND-CCCA security assuming n-Linear.
These appear to be the �rst practical encryption schemes in the literature from
a purely algebraic assumption which is strictly weaker than DDH.

Computational Hash-Proof Systems. We propose a purely computational
variant of hash-proof systems. Generalizing [12, 21], we prove that computa-

1 This is reminiscent to the notion of �plaintext awareness� for public-key encryption [5]
where it is infeasible for an adversary to come up with a valid ciphertext without
being aware of the corresponding plaintext. Our de�nition is weaker in the sense
that it only requires the adversary to have implicit knowledge on the plaintext.



tional hash-proof systems directly imply IND-CCCA secure KEMs. Hence, in
combination with authenticated encryption, they yield e�cient IND-CCA se-
cure hybrid encryption. The Kurosawa-Desmedt scheme �ts this framework, i.e.
the underlying HPS is computational. This gives the �rst full explanation of the
Kurosawa-Desmedt scheme in terms of HPS. As a generalization we provide com-
putational hash-proof systems from the n-Linear assumptions hence explaining
IND-CCCA security of our class of KEMs from the n-Linear assumptions.

1.2 Discussion and related work

In [1] (which is the full version of [2]), Abe et al. address the question from [21]
about the existence of a natural weaker security condition for KEMs. They
propose the notion of LCCA secure KEMs with respect to the predicate Pmac and
prove it su�cient to obtain, in combination with a MAC, IND-CCA secure tag-
KEMs (and hence IND-CCA secure hybrid encryption). Though syntactically
similar to ours, their notion mingles security of the KEM with the MAC part of
the symmetric encryption scheme. The conceptual di�erence in our notion is that
we give a general security de�nition for KEMs that is completely independent
of any particular symmetric primitive. We think that this is more natural and
more closely follows the spirit of the KEM/DEM approach [13], where (for good
reason) KEM and DEM are viewed as independent components.

Independent from this work Shacham [28] also proposes a family of hybrid
encryption schemes from the n-Linear assumptions. His schemes can be viewed as
a (slightly less e�cient) Cramer-Shoup variant of our schemes from Section 4.2.

The 2-Linear assumption was introduced by Boneh, Boyen, and Shacham [8]
and was later used in gap-groups to build an IND-CCA secure KEM [19]. For
n > 2, Kiltz [18] introduced the class of gap n-Linear assumptions and (gen-
eralizing [19]) built a class of IND-CCA secure KEMs from it. Compared to
n-Linear, in the latter gap-assumptions an adversary gets access to a DDH or-
acle which makes (for example) the gap 2-Linear assumption incomparable to
DDH. In contrast, our motivation is to build schemes from an assumption weaker
than DDH.

2 Hybrid encryption from constrained CCA secure KEMs

2.1 Key Encapsulation Mechanisms

A key-encapsulation mechanism KEM = (KEM.Kg,KEM.Enc,KEM.Dec) with
key-spaceK(k) consists of three polynomial-time algorithms (PTAs). Via (pk , sk)
$← KEM.Kg(1k ) the randomized key-generation algorithm produces public/secret

keys for security parameter k ∈ N; via (K,C) $← KEM.Enc(pk) the randomized
encapsulation algorithm creates an uniformly distributed symmetric key K ∈
K(k) together with a ciphertext C; via K ← KEM.Dec(sk , C) the possessor of
secret key sk decrypts ciphertext C to get back a key K which is an element
in K or a special rejection symbol ⊥. For consistency, we require that for all



k ∈ N, and all (K,C) $← KEM.Enc(pk) we have Pr [KEM.Dec(sk , C) = K ] = 1,
where the probability is taken over the choice of (pk , sk) $← KEM.Kg(1k ), and
the coins of all the algorithms in the expression above. Here we only consider
only KEMs that produce perfectly uniformly distributed keys (i.e., we require
that for all public keys pk that can be output by KEM.Kg, the �rst component
of KEM.Enc(pk) has uniform distribution).2

Constrained Chosen-Ciphertext Security. The common requirement for
a KEM is indistinguishability against chosen-ciphertext attacks (IND-CCA) [13]
where an adversary is allowed to adaptively query a decapsulation oracle with
ciphertexts to obtain the corresponding session key. We relax this notion to
indistinguishability against constrained chosen-ciphertext attacks (IND-CCCA).
Intuitively, we only allow the adversary to make a decapsulation query if it al-
ready has some �a priori knowledge� about the decapsulated key. This partial
knowledge about the key is modeled implicitly by letting the adversary addi-
tionally provide an e�ciently computable Boolean predicate pred : K → {0, 1}.
If pred(K) = 1 then the decapsulated key K is returned, and ⊥ otherwise.
The amount of uncertainty the adversary has about the session key (denoted
as plaintext uncertainty uncertA) is measured by the fraction of keys the pred-
icate evaluates to 1. We require this fraction to be negligible for every query,
i.e. the adversary has to have a high a priori knowledge about the decapsulated
key when making a decapsulation query. More formally, for an adversary A we
de�ne the advantage function

Advccca
KEM ,A(k) =

∣∣∣Pr[Expccca-1
KEM ,A(k) = 1]− Pr[Expccca-0

KEM ,A(k) = 1]
∣∣∣

where, for b ∈ {0, 1}, Expccca-b
KEM ,A is de�ned by the following experiment.

Experiment Expccca-b
KEM ,A(k)

(pk , sk) $← KEM.Kg(1k)
K∗

0
$← K(k) ; (K∗

1 , C
∗) $← KEM.Enc(pk)

b′
$← ADec(·,·)(pk ,K∗

b , C
∗)

Return b′

Dec(predi, Ci)
K ← KEM.Dec(sk , Ci)
If K = ⊥ or predi(K) = 0 then ⊥
Else return K ∈ K

with the restriction that A is only allowed to query Dec(predi, Ci) on predi-
cates predi that are provided as PTA3 and on ciphertexts Ci di�erent from the
challenge ciphertext C∗.

For an adversary A, let tA denote the number of computational steps A
runs (that includes the maximal time to evaluate each predi once), and let QA
be the number of decapsulation queries A makes to its decapsulation oracle.

2 This requirement is met by all popular KEMs and makes our reduction in Theorem 1
tighter. However, we can show Theorem 1 also without this assumption, and derive
that the keys are computationally close to uniform from our upcoming KEM security
assumption. This comes at the price of a less tight security reduction in Theorem 1.

3 Technically, we charge the time required to evaluate each predi to A's runtime and
require that A be polynomial-time.



For simplicity and without losing on generality, we consider only adversaries
for which tA and QA are independent of the environment that A runs in. To
adversary A in the above experiment we also associate A's (implicit) plaintext
uncertainty uncertA(k) when making decapsulation queries, measured by

uncertA(k) =
1
Q

∑
1≤i≤Q

Pr
K∈K

[predi(K) = 1] ,

where predi : G → {0, 1} is the predicate A submits in the ith decapsulation
query. Let, for integers k, t,Q and 0 ≤ µ ≤ 1,

Advccca
KEM ,t,Q,µ(k) = max

A
Advccca

KEM ,A(k),

where the maximum is over all A with tA ≤ t, QA ≤ Q, and uncertA(k) ≤ µ.
A key encapsulation mechanism KEM is said to be indistinguishable against

constrained chosen ciphertext attacks (IND-CCCA) if for all PTA adversaries A
with negligible uncertA(k) (in any environment), the advantage Advccca

KEM ,A(k)
is a negligible function in k.

It is worth pointing out that by making di�erent restrictions on uncert(k)
our notion of CCCA security leads to an interesting continuum between CPA
and CCA security. With the restriction uncert(k) = 0 then CCCA = CPA;
with the trivial restriction uncert(k) ≤ 1 (which makes is possible to always
use the constant predicate pred(·) := 1) then CCCA = CCA. Here, we require
a negligible uncert(k), which syntactically makes IND-CCCA more similar to
IND-CPA than to IND-CCA security. Yet, since it in principle allows decryption
queries, IND-CCCA is substantially stronger than IND-CPA, and � as we will
show � is a good base for hybrid IND-CCA security.

2.2 Authenticated Encryption

An authenticated symmetric encryption (AE) scheme AE = (AE.Enc,AE.Dec)
is speci�ed by its encryption algorithm AE.Enc (encrypting M ∈ MsgSp(k) with
keys K ∈ K(k)) and decryption algorithm AE.Dec (returning M ∈ MsgSp(k) or
⊥). Here we restrict ourselves to deterministic PTAs AE.Enc and AE.Dec. The
AE scheme needs to provide privacy (indistinguishability against one-time at-
tacks) and authenticity (ciphertext authenticity against one-time attacks). This
is simultaneously captured (similar to the more-time attack case [26]) by de�ning
the ae-ot-advantage of an adversary Bae as Advae-ot

AE ,Bae
(k) =

2
∣∣∣Pr[K $← K(k) ; b $← {0, 1} ; b′ $← BLoRb(·,·),DoRb(·)

ae (1k) : b = b′]− 1
∣∣∣ .

Here, LoRb(M0,M1) returns ψ ← AE.Enc(K,Mb), and Bae is allowed only one
query to this left-or-right encryption oracle (one-time attack), with a pair of
equal-length messages. Furthermore, the decrypt-or-reject oracle DoR1(ψ) re-
turnsM ← AE.Dec(K,ψ) and DoR0(ψ) always returns ⊥ (reject), Bae is allowed



only one query to this decrypt-or-reject oracle which must be di�erent from the
output of the left-or-right oracle.

We say that AE is a one-time secure authenticated encryption scheme (AE-OT
secure) if the advantage function Advae-ot

AE ,Bae
(k) is negligible for all PTA Bae .

Again, for integers k, t, Advae-ot
AE ,t (k) = maxBae

Advae-ot
AE ,Bae

(k), where the maxi-
mum is over all Bae that ful�ll tBae

≤ t.

2.3 Hybrid Encryption

Let KEM = (KEM.Kg,KEM.Enc,KEM.Dec) be a KEM and let AE = (AE.Enc,
AE.Dec) be an authenticated encryption scheme. We assume that the two schemes
are compatible in the sense that for all security parameters k, we have that the
KEM's and the AE's key-space are equal. Then we can consider a hybrid public
key encryption scheme (whose syntax and security de�nition is standard and can
be looked up in the full version) that encrypts arbitrary messages M ∈ MsgSp.
The construction of PKE = (PKE.kg,PKE.Enc,PKE.Dec) is as follows.

PKE.kg(1k )
(pk , sk) $← KEM.Kg(1k )
Return (pk , sk)

PKE.Enc(pk ,M)
(K,C) $← KEM.Enc(pk)
ψ ← AE.Enc(K,M)
Return Cpke = (C,ψ)

PKE.Dec(sk ,Cpke = (C,ψ))
K ← KEM.Dec(sk , C)
M ← AE.Dec(K,ψ)
Return M or ⊥

Here PKE.Dec returns ⊥ if either KEM.Dec or AE.Dec returns ⊥.

Theorem 1. Assume KEM is secure in the sense of IND-CCCA and AE is
secure in the sense of AE-OT. Then PKE is secure in the sense of IND-CCA.
In particular,

Advcca
PKE ,t,Q(k) ≤ Advccca

KEM ,t,Q,Q·Advae-ot
AE,t

(k)
(k) + (Q+ 1)Advae-ot

AE ,t (k) +
Q

|K|
.

Proof. LetA be an adversary on the IND-CCA security of the hybrid scheme. We
will consider a sequence of games, Game 1, Game 2, . . . , each game involving A.
Let Xi be the event that in Game i, it holds that b = b′, i.e., that the adversary
succeeds. We will make use of the following simple �Di�erence Lemma� [13].

Lemma 1. Let X1,X2, B be events, and suppose that X1 ∧ ¬B ⇔ X2 ∧ ¬B.
Then |Pr [X1 ]− Pr [X2 ]| ≤ Pr [B ].

Game 1. The original PKE IND-CCA game, i.e. we have

|Pr[X1]− 1/2| = Advcca
PKE ,A(k) .

Game 2. Let C ∗
pke = (C∗, ψ∗) be the challenge ciphertext in the PKE IND-

CCA game. In this game the decryption oracle in the �rst phase rejects all
ciphertexts of the form Cpke = (C∗, ∗). The view of adversary A is identical
in Games 1 and 2 until a decryption query (C∗, ∗) is made in the �rst phase
of the IND-CCA experiment (so before A gets to see C∗).



Since the keyK encapsulated in C∗ is uniformly distributed and independent
of A's view in the �rst phase, we have

|Pr[X2]− Pr[X1]| ≤
Q

|K|
.

Note that each ciphertext uniquely determines a key.
Game 3. Replace the symmetric key K∗ used to create the PKE challenge
ciphertext with a random key K∗, uniformly independently chosen from K.
The proof of the following lemma is postponed until later.

Lemma 2. |Pr[X3]− Pr[X2]| ≤ Advccca
KEM ,t,Q,Q·Advae-ot

AE,t
(k)

(k).

Game 4. Reject all ciphertexts Cpke of the form (C∗, ∗). Since ψ∗ was gen-
erated using a random key K∗ ∈ K that only leaks to A through ψ∗, au-
thenticity of AE implies

|Pr[X4]− Pr[X3]| ≤ QA ·Advae-ot
AE ,Bae

(k)

for a suitable adversary Bae that simulates Game 3, using the LoRb with
two identical messages to obtain the AE part of the challenge ciphertext.
Bae simply uniformly picks one AE part of a decryption query of the form
(C∗, ψ) to submit to the decrypt-or-reject oracle DoR1(·).
Finally, Game 4 models one-time security of the AE scheme, and we have

|Pr[X4]− 1/2| ≤ Advae-ot
AE ,t (k) .

Collecting the probabilities proves the theorem. It leaves to prove Lemma 2.

Proof (Lemma 2). We show that there exists an adversary Bkem against the
IND-CCCA security of KEM with tBkem

= tA, QBkem
= QA, and an adversary

Bae against AE with tBae
= tA, such that

uncertBkem
(k) ≤ QA ·Advae-ot

AE ,Bae
(k) (1)

Pr[X2] = Pr[Expccca-1
KEM ,Bkem

(k) = 1] (2)

Pr[X3] = Pr[Expccca-0
KEM ,Bkem

(k) = 1] . (3)

The adversary Bkem against the CCCA security of KEM is de�ned as follows.
Bkem inputs (pk ,K∗

b , C
∗) for an unknown bit b. First, Bkem runs A1 on input

pk . For the ith decryption query (Ci, ψi) made by adversary A, adversary Bkem

de�nes the function predi : K → {0, 1} as

predi(K) :=
{

0 : if AE.Dec(K,ψi) returns ⊥
1 : otherwise

Note that the symmetric ciphertext ψi is hard-coded into predi(·) which is clearly
e�ciently computable. Bkem queries (predi, Ci) to its own oracle Dec(·, ·) and
receives the following answer. If KEM.Dec(sk, Ci) returns a key Ki ∈ K with



AE.Dec(Ki, ψi) returns ⊥ then Dec(predi, Ci) returns the key Ki. Otherwise
(if KEM.Dec(sk , Ci) returns ⊥ or if AE.Dec(Ki, ψi) returns ⊥), Dec(predi, Ci)
returns ⊥. Note that by the syntax of AE this perfectly simulates A's decryption
queries.

For A's encryption challenge for two messages M0,M1, Bkem uses its own
input (K∗

b , C
∗) together with a random bit δ to create a challenge ciphertext

C ∗
pke = (C∗, ψ∗ ← AE.Enc(K∗,Mδ)) of message Mδ. Adversary Bkem runs
A2(C ∗

pke ,St1) and inputs a guess bit δ′ for δ. Finally, Bkem concludes its game
with outputting b′ = 1 if δ = δ′ and b′ = 0, otherwise. This completes the
description of Bkem .

Adversary Bkem always perfectly simulates A's decapsulation queries. In case
b = 1, Bkem uses the real key K∗

1 for A's simulation which implies Equation (2).
In case b = 0, Bkem uses a random key K∗

0 for A's simulation which implies
Equation (3). The complexity bounds for Bkem are clear from the construction,
and it is left to show that uncertBkem

(k) ≤ Q ·Advae-ot
AE ,Bae

(k) for a suitable Bae .
To this end we build an adversary Bae against the AE security of AE as fol-

lows. Bae inputs 1k and, using its own pair of KEM keys (pk , sk) $← KEM.Kg(1k),
emulates the same simulation forA as Bkem did above (using sk to answer its own
Dec(·, ·) queries). It additionally picks a random index j∗ ∈ {1, . . . , Q}. On A's
j∗ decryption query (Cj∗ , ψj∗), Bae submits ψj∗ to its own decryption-or-reject
oracle DoRb(·), and outputs b′ = 0 i� DoRb(·) rejects with ⊥.

Now Bae will always output b′ = 0 if b = 0 by de�nition of DoR0. In
case b = 1, Bae will output b′ = 1 i� the ciphertext ψj∗ is valid in the sense
AE.Dec(K ′, ψj∗) 6= ⊥ for an independent, uniformly (by the AE experiment)
chosen key K ′. So adversary Bae 's advantage is as follows.

Advae-ot
AE ,Bae

(k) = Pr[K ′ $← K : AE.Dec(K ′, ψj∗) 6= ⊥]

The above equals Pr[K ′ $← K : predj∗(K ′) = 1], where predj∗(·) = AE.Dec(·, ψj∗)
is the predicate Bkem submits to oracle Dec as the j∗th query. For a uni-
formly chosen j∗ ∈ {1, . . . , Q}, the above equals uncertBae

(k). Consequently,
Advae-ot

AE ,Bae
(k) ≥ 1

Q · uncertBae (k). ut

3 E�cient Key Encapsulation from DDH

3.1 Building blocks

We describe the building blocks used and assumptions made about them.

Group schemes. A group scheme GS [13] speci�es a sequence (GRk)k∈N of
group descriptions. For every value of a security parameter k ∈ N, GRk speci�es
the four tuple GRk = (Ĝk,Gk, pk, gk) (for notational convenience we sometimes
drop the index k). GRk = (Ĝ,G, p, g) speci�es a �nite abelian group Ĝ, along
with a prime-order subgroup G, a generator g of G, and the order p of G. We
denote the identity element of G as 1G ∈ G. We assume the existence of an



e�cient sampling algorithm x
$← G and an e�cient membership algorithm that

test if a given element x ∈ Ĝ is contained in the subgroup G.
We further assume the DDH problem is hard in GS, captured by de�ning

the ddh-advantage of an adversary Bddh as

Advddh
GS,Bddh

(k) = |Pr[Bddh(g, h, ga, ha) = 1]− Pr[Bddh(g, h, ga,K) = 1]| ,

where g, h,K
$← G and a← Z∗p.

Authenticated Encryption.We need an abstract notion of algebraic authen-
ticated encryption where the keyspace consists of G, secure in the sense of OT-
AE. In the full version we recall (following the encrypt-then-mac approach [4,
13]) how to build such algebraic AE satisfying all required functionality and
security from the following basic primitives:
� A (computationally secure) one-time symmetric encryption scheme with bi-
nary k-bit keys (such as AES or padding with a PRNG)

� A (computationally secure) MAC (existentially unforgeable) with k-bit keys
� A (computationally secure) key-derivation function (pseudorandom).

We remark that for our purposes it is also possible to use a more e�cient single-
pass authenticated encryption scheme (see, e.g., [25]). In both cases the cipher-
text expansion (i.e., ciphertext size minus plaintext size) of the AE scheme is
only k (security parameter) bits which is optimal with respect to our security
notion.

Target Collision Resistant Hashing. TCR = (TCRk)k∈N is a family of
keyed hash functions TCRs

k : G → Zp for each k-bit key s. It is assumed to
be target collision resistant (TCR) [13], which is captured by de�ning the tcr-
advantage of an adversary Btcr as Advtcr

TCR,Btcr
(k) =

Pr[TCRs(c∗) = TCRs(c) ∧ c 6= c∗ : s $← {0, 1}k ; c∗ $← G ; c $← Btcr(s, c∗)].

Note TCR is a weaker requirement than collision-resistance, so that, in particular,
any practical collision-resistant function can be used. Also note that our notion
of TCR is related to the stronger notion of universal one-way hashing [22], where
in the security experiment of the latter the target value c∗ is chosen by the
adversary (but before seeing the hash key s).

Commonly [13, 21] this function is implemented using a dedicated crypto-
graphic hash function like MD5 or SHA, which we assume to be target collision
resistant. Since |G| = |Zp| = p we can alternatively also use a �xed (non-keyed)
bijective encoding function INJ : G→ Zp. In that case we have a perfectly colli-
sion resistant hash function, i.e. Advtcr

INJ,Btcr
(k) = 0. In the full version, we show

how to build such bijective encodings for a number of concrete group schemes.

3.2 The key-encapsulation mechanism

Let GS be a group scheme where GRk speci�es (Ĝ,G, g, p) and let TCR :
G → Zp be a target collision resistant hash function (for simplicity we as-
sume TCR to be non-keyed). We build a key encapsulation mechanism KEM =
(KEM.kg,KEM.Enc,KEM.Dec) with K = G as follows.



KEM.Kg(1k)
x, y, ω

$← Z∗p
u← gx ; v ← gy ; h← gω

pk ← (u, v, h) ∈ G3

sk ← (x, y, ω) ∈ (Zp)3

Return (sk , pk)

KEM.Enc(pk)
r

$← Z∗p ; c← gr

t← TCR(c) ; π ← (utv)r

C ← (c, π) ∈ G2

K ← hr ∈ G
Return (C,K)

KEM.Dec(sk , C)
Parse C as (c, π) ∈ Ĝ2

if c 6∈ G return ⊥
t← TCR(c)
if cxt+y 6= π return ⊥
Return K ← cω

We stress that decryption never explicitly checks if π ∈ G; this check happens
implicitly when c ∈ G and cxt+y = π is checked. A correctly generated ciphertext
has the form C = (c, π) ∈ G × G, where c = gr and π = (utv)r = (gxt+y)r =
cxt+y. Hence decapsulation will not reject and compute the key K = cω = hr,
as in encapsulation.

Encryption takes four standard exponentiations plus one application of TCR,
where the generation of π can also be carried out as one single multi-exponen-
tiation [6]. Decryption takes two exponentiations plus one application of TCR,
where the two exponentiations can also be viewed as one sequential exponen-
tiation [6] (which is as e�cient as a multi-exponentiation) to simultaneously
compute cxt+y and cω. The proof of the the following theorem is given in the
full version.

Theorem 2. Let GS be a group scheme where the DDH problem is hard and
assume TCR is target collision resistant. Then KEM is secure in the sense of
IND-CCCA. In particular,

Advccca
KEM ,t,Q,uncert(k)(k) ≤ Advddh

GS,t(k) + Advtcr
TCR ,t(k) + uncert(k) +

Q

p
.

3.3 Comparison with Cramer-Shoup and Kurosawa-Desmedt

The following table summarizes the key-encapsulation part of the Cramer-Shoup
encryption scheme [13], the Kurosawa-Desmedt scheme [21], and ours.

Scheme Ciphertext Encapsulated Key
Cramer-Shoup gr, ĝr, (utv)r hr

Kurosawa-Desmedt gr, ĝr (utv)r

Ours gr, (utv)r hr

Here ĝ is another element from the public-key. Compared to the Cramer-Shoup
scheme, the Kurosawa-Desmedt scheme leaves out the value hr and de�nes (utv)r

as the session key. Our results shows that it is also possible to leave out the
element ĝr from the ciphertext and that π = (utv)r is su�cient to authenticate
c = gr. Hence, our scheme can be viewed as the dual of (the KEM part of) the
Kurosawa-Desmedt scheme [21].

From a technical point of view, our scheme mixes Cramer-Shoup like tech-
niques [12] to obtain a form of �plaintext awareness� for inconsistent cipher-
texts with an �algebraic trick� from the Boneh-Boyen identity-based encryption



scheme [7] to decrypt consistent ciphertexts. Compared to Cramer-Shoup based
proofs [11, 13, 21, 2] the most important technical di�erence, caused by the men-
tioned ability to decrypt consistent ciphertexts without knowing the full secret
key, is that during our simulation the challenge ciphertexts is never made incon-
sistent. Intuitively this is the reason why we manage to maintain a consistent
simulation using less redundancy in the secret key. This demonstrates that IND-
CCCA security can be obtained with constructions that di�er from hash proof
systems.

On the other hand, the security proofs of all known schemes based on IBE
techniques [10, 9, 19, 20, 18] inherently rely on some sort of external consistency
check for the ciphertexts. This can be seen as the main reason why security of
the IBE-based PKE schemes could only be proved in pairing groups (or rela-
tive to a gap-assumption), where the pairing was necessary for helping the proof
identifying inconsistent ciphertexts. In our setting, the consistency check is done
implicitly, using information-theoretic arguments borrowed from hash proof sys-
tems.

3.4 E�ciency

We compare our new DDH-based scheme's e�ciency with the one of Kurosawa
and Desmedt (in its more e�cient �explicit-rejection� variant from [23]). Most
importantly, the number of exponentiations for encryption and decryption are
equal in both schemes. Although our security result is much more general (our
KEM can be combined with any authenticated encryption scheme) this is not an
exclusive advantage of our scheme. In fact we can derive the same result for the
KD scheme from a more general theorem that we will prove in Section 5. (A sim-
ilar result about combining the Kurosawa-Desmedt scheme with authenticated
encryption was already obtained in [3] in the context of statefull encryption.)

However, there is one crucial di�erence in case one needs a scheme that is
provably secure solely on the DDH assumption. Note that security (of the KD
scheme and ours) relies on the DDH assumption and the assumption that TCR
is target collision resistant. So as long as one does not want to sacri�ce provable
security by implementing the TCR function with a dedicated hash function like
SHA-x or MD5 (what potentially renders the whole scheme insecure given the
recent progress in attacking certain hash functions), one must either resort to
ine�cient generic constructions of TCR functions [22, 27], or one can use the
�hash-free technique� described in [13]. With this latter technique, one can get
rid of the TCR function completely; however, this comes at the cost of additional
elements in the public and the secret key, and additional exponentiations during
encryption. This overhead is linear in the number of elements that would have
been hashed with the TCR. In the Kurosawa-Desmedt scheme, TCR acts on two
group elements whereas in our scheme only on one. Hence the hash-free variant
of our scheme is more e�cient.

More importantly, since in our scheme a TCR is employed which maps one
group element to integers modulo the group-order this can also be a bijection.
In many concrete groups, e.g., when using the subgroup of quadratic residues



modulo a safe prime or certain elliptic curves, this bijection can be trivially im-
plemented at zero cost [13, 9], without any additional computational assumption,
and without sacri�cing provable security. See the full version for more details.
In terms of e�ciency we view this as the main bene�t of our scheme.

4 Key Encapsulation from n-Linear

4.1 Linear Assumptions

Let n = n(k) be a polynomial in k. Generalizing [8, 18] we introduce the class of
n-Linear assumptions which can be seen as a natural generalization of the DDH
assumption and the Linear assumption.

Let GS be a group scheme. We de�ne the n-lin-advantage of an adversary
Bn-lin as

Advn-lin
GS,Bn-lin(k) =

∣∣ Pr[Bn-lin(g1, . . . , gn, g
r1
1 , . . . , g

rn
n , h, hr1+...+rn) = 1]

− Pr[Bn-lin(g1, . . . , gn, g
r1
1 , . . . , g

rn
n , h,K) = 1]

∣∣,
where g1, . . . , gn, h,K

$← G and all ri ← Z∗p. We say that the n-Linear Deci-
sional Di�e-Hellman (n-Linear) assumption relative to group scheme GS holds if
Advn-lin

GS,Bn-lin is a negligible function in k for all polynomial-time adversaries Bn-lin.
The n-Linear assumptions form a strict hierarchy of security assumptions

with 1-Linear = DDH, 2-Linear=Linear [8] and, the larger the n, the weaker
the n-Linear assumption. More precisely, for any n ≥ 1 we have that n-Linear
implies n+1-Linear. On the other hand (extending the case of n = 1 [8]) we can
show that in the generic group model [29], the n+1-Linear assumption holds,
even relative to an n-Linear oracle.

Lemma 3. DDH = 1-Linear 6⇐⇒ 2-Linear 6⇐⇒ 3-Linear 6⇐⇒ . . .

4.2 The key-encapsulation mechanism

Let GS be a group scheme where GRk speci�es (Ĝ,G, g, p) and let TCR : Gn+1 →
Zp be a target collision resistant hash function. Generalizing the Kurosawa-
Desmedt KEM, for a parameter n = n(k) ≥ 1, we build KEM = (KEM.Kg,
KEM.Enc,KEM.Dec) as follows.

Key generation KEM.Kg(1k) generates random group elements g1, . . . , gn, h ∈
G. Furthermore, it de�nes uj = g

xj

j hz and vj = g
yj

j h
z′ for random z, z′ ∈

Zp and xj , yj ∈ Zp (j ∈ {1, . . . , n}). The public key contains the elements h,
(gj , uj)1≤i≤n, and the secret key contains all corresponding indices.

KEM.Enc(pk)
∀j ∈ {1, . . . , n}: rj

$← Z∗p ; cj ← g
rj

j

d← hr1+...+rn ; t← TCR(c1, . . . , cn, d)
C ← (c1, . . . , cn, d) ; K =

∏n
i=1(u

t
ivi)ri

Return (C,K)

KEM.Dec(sk , C)
∀j ∈ {1, . . . , n}: check if cj ∈ G
Check if d ∈ G
t← TCR(c1, . . . , cn, d)
Return K ← dzt+z′ ·

∏n
j=1 c

xjt+yj

j



Ciphertexts contain n+1 group elements, public/secret keys 2n+1 elements.
The scheme instantiated with n = 1 precisely reproduces the KEM part of the
Kurosawa-Desmedt encryption scheme [21]. Security of the schemes can be ex-
plained using the more general framework of computational hash-proof systems.
This will be done in Section 5.

Theorem 3. Let GS be a group scheme where the n-Linear problem is hard,
assume TCR is target collision resistant. Then KEM is secure in the sense of
IND-CCCA.

We remark that it is also possible to give the scheme in its explicit-rejection
variant [13]. Furthermore, in the full version we also provide a class of alterna-
tive schemes generalizing our dual KD scheme from Section 3 to the n-Linear
assumption.

5 Key encapsulation from Hash Proof Systems

In [12], Cramer and Shoup showed that their original scheme in [13] was a
special instance of a generic framework based on hash proof systems (HPS).
Following [12] we recall the basic ideas of hash proof systems and show (gen-
eralizing [21]) how to build IND-CCCA secure key encapsulation based on a
computational variant of hash proof systems. Here we use a slightly di�erent no-
tation for HPS that better re�ects our primary application of hash-proof systems
to key-encapsulation mechanisms.

5.1 Hash proof systems

Let C,K be sets and V ⊂ C a language. Let Dsk : C → K be a hash function
indexed with sk ∈ S, where S is a set. A hash function Dsk is projective if there
exists a projection µ : S → P such that µ(sk) ∈ P de�nes the action of Dsk

over the subset V. That is, for every C ∈ V, the value K = Dsk (C) is uniquely
determined by µ(sk) and C. In contrast, nothing is guaranteed for C ∈ C \ V,
and it may not be possible to compute Dsk (C) from µ(sk) and C. A strongly
universal2 projective hash function has the additional property that for C ∈ C\V,
the projection key µ(sk) actually says nothing about the value of K = Dsk (C),
even given an instance (C∗,K∗) such that C∗ ∈ C \ V and K∗ = Dsk (C). More
precisely, for all pk ∈ P, C, all C∗ ∈ C \ V with C 6= C∗, all K,K∗ ∈ K,

Pr
sk∈S

Dsk (C
∗)=K∗

µ(sk)=pk

[Dsk (C) = K] = 1/|K|. (4)

A hash proof system HPS = (HPS.param,HPS.pub,HPS.priv) consists of
three algorithms where the randomized algorithm HPS.param(1k) generates in-
stances of params = (group, C,V,P,S,D(·) : C → K, µ : S → P), where group
may contain some additional structural parameters. The deterministic public
evaluation algorithm HPS.pub inputs the projection key pk = µ(sk), C ∈ V and



a witness w of the fact that C ∈ V and returns K = Dsk (C). The deterministic
private evaluation algorithm inputs sk ∈ S and returns Dsk (C), without knowing
a witness. We further assume there are e�cient algorithms given for sampling
sk ∈ S and sampling C ∈ V uniformly together with a witness w.

As computational problem we require that the subset membership problem is
hard in HPS which means that the two elements C and C ′ are computationally
indistinguishable, for random C ∈ V and random C ′ ∈ C \ V. This is captured
by de�ning the advantage function Advsm

HPS ,A(k) of an adversary A as

Advsm
HPS ,A(k) :=

∣∣ Pr[C1
$← C ; b′ $← A(C,V, C1) : b′ = 1 ]

− Pr[C0
$← C \ V ; b′ $← A(C,V, C0) : b′ = 1 ]

∣∣ .
5.2 Key encapsulation from HPS

Using the above notion of a hash proof system, Kurosawa and Desmedt [21]
proposed a hybrid encryption scheme which improved the schemes from [12].
The key-encapsulation part of it is as follows. The system parameters of the
scheme consist of params $← HPS.param(1k).

KEM.Kg(k). Choose random sk $← S and de�ne pk = µ(sk) ∈ P. Return
(pk , sk).

KEM.Enc(pk). Pick C $← V together with its witness ω that C ∈ V. The session
key K = Dsk (C) ∈ K is computed as K

$← HPS.pub(pk , C, ω). Return
(K,C).

KEM.Dec(sk , C). Reconstruct the key K = Dsk (C) as K ← HPS.priv(sk , C) and
return K.

We can prove the following theorem that is a slight generalization of [21].

Theorem 4. If HPS is strongly universal2 and the subset membership problem
is hard in HPS then KEM is secure in the sense of IND-CCCA.

Unfortunately, the original KEM part of the Kurosawa Desmedt DDH-based
hybrid encryption scheme [21] cannot be explained using this framework and
hence needed a separate proof of security. This is since the underlying DDH-
based hash proof system involves a target collision resistant hash function TCR
which is a �computational primitive� whereas the strongly universal2 property
from Equation (4) is a statistical property which is in particularly not ful�lled by
the DDH-based HPS from [12] used in [21]. In fact, the most e�cient HPS-based
schemes that are known involve computation of a TCR function and hence all
need a separate proof of security. We note that this problem is inherited from
the original HPS approach [13].

We overcome this problem we de�ning the weaker notion of computational
hash proof systems.



5.3 Computational hash proof systems

We now de�ne a weaker computational variant of strongly universal2 hash-
ing. For an adversary B we de�ne the advantage function Advcu2

HPS ,B(k) =

|Pr[Expcu2-1
HPS ,B(k) = 1] − Pr[Expcu2-0

HPS ,B(k) = 1]| where, for b ∈ {0, 1}, Expcu2-b
HPS ,B

is de�ned by the following experiment.

Experiment Expcu2-b
HPS ,B(k)

params $← HPS.param(1k) ; sk $← S ; pk ← µ(sk)
C∗ $← C \ V ; K∗ ← Dsk (C∗) ; (C,St) $← BEvalD(·)

1 (pk , C∗,K∗)
K0

$← K ; K1 ← Dsk (C) ; b′ $← B2(St ,Kb)
Return b′

where the evaluation oracle EvalD(C) returns K = Dsk (C) if C ∈ V and ⊥,
otherwise. We also restrict to adversaries that only return ciphertexts C 6= C∗

and that ensure C ∈ C \ V. This is without losing generality, since B1 can
check C ∈ V with its oracle EvalD. A hash proof system HPS is said to be
computationally universal2 (CU2) if for all polynomial-time adversaries B that
satisfy these requirements, the advantage function Advcu2

HPS ,B(k) is a negligible
function in k.

The following theorem strengthens Theorem 4. A proof will be given in the
full version.

Theorem 5. If HPS is computationally universal2 and the subset membership
problem is hard then KEM from Section 5.2 is IND-CCCA secure. In particular,

Advccca
KEM ,t,Q,uncertA(k)(k) ≤ Advsm

HPS ,t(k)+(Q+1) ·(uncertA(k)+Advcu2
HPS ,t

(k)) .

5.4 A computational HPS from n-Linear

Let GS be a group scheme where GRk speci�es (Ĝ,G, g, p). Let group = (GR,
g1, . . . , gn, h), where g1, . . . , gn, h are independent generators of G. De�ne C =
Gn+1 and V = {(gr1

1 , . . . , g
rn
n , hr1+...+rn) ⊂ Gn+1 : r1, . . . , rn ∈ Zp} The values

(r1, . . . , rn) ∈ Zn
p are a witness of C ∈ V. Let TCR : Gn+1 → Zp be a target

collision resistant hash function. Let S = Z2n+2
p , P = G2n, and K = G. For

sk = (x1, y1, . . . , xn, yn, z, z
′) ∈ Z2n+2, de�ne µ(sk) = (u1, . . . , un, v1, . . . , vn),

where, for 1 ≤ i ≤ n, ui = gxi
i h

z and vi = gyi

i h
z′ . This de�nes the output of

HPS.param(1k). For C = (c1, . . . , cn, d) ∈ C de�ne

Dsk (C) := dzt+z′ ·
n∏

i=1

cxit+yi

i , where t = TCR(c1, . . . , cn) . (5)

This de�nes HPS.priv(sk , C). Given pk = µ(sk), C ∈ V and a witness w =
(r1, . . . , rn) ∈ (Zp)n such that C = (c1, . . . , cn, d) = (gr1

1 , . . . , g
rn
n , hr1+...+rn)

public evaluation HPS.pub(pk , C, w) computes K = Dsk (C) as

K =
n∏

i=1

(ut
ivi)ri .



Correctness follows by Equation (5) and the de�nition of µ. This completes the
description of HPS . Clearly, under the n-Linear assumption, the subset mem-
bership problem is hard in HPS .

Obviously, the above de�ned HPS is not strongly universal2 in the sense of
Equation (4). But it is still computationally universal2.

Lemma 4. The n-Linear based HPS is computationally universal2.

Together with Theorem 5 this proves Theorem 3. For the case n = 1 this also
gives an alternative security proof for the Kurosawa-Desmedt scheme [21].

Proof. Consider an adversary B in the CU2 experiment such that B1 outputs a
ciphertext C ∈ C \ V and let K ← Dsk (C). Let col be the event that C 6= C∗

but TCR(C) = TCR(C∗). We claim that for the following adversary Btcr we have
Advtcr

TCR,Btcr
(k) = Pr[col]. Adversary Btcr inputs (s, C∗) and generates a random

instance of params with known indices αi such that h = gαi . Furthermore, Btcr

picks a random sk ∈ S and runs B1 on pk = µ(sk), a random C∗ ∈ C \ V,
and K∗ = Dsk (C∗). To answer a query to the evaluation oracle EvalD(·), Btcr

�st veri�es C = (c1, . . . , cn, d) ∈ V by checking if
∏
cαi
i = d. If not, return ⊥.

Otherwise it returns K = Dsk (C). If for a decapsulation query C event col
happens, Btcr returns C to its TCR experiment and terminates.

Now we claim that conditioned under ¬col, the key K = Dsk (C) is a uni-
form element in K independent of the adversary's view. This implies that not
even a computationally unbounded B2 could succeed in the second stage. Hence,
Advcu2

HPS ,B(k) ≤ Advtcr
TCR,Btcr

(k), which proves the lemma.

Let log(·) = logg(·). Consider the view of B2 consisting of the random

variables (pk , C∗,K∗, C), where sk = (x1, y1, . . . , xn, yn, z, z
′) $← Z2n+2, pk =

µ(sk) = (u1, . . . , un, v1, . . . , vn), C∗ = (c∗1, . . . , c
∗
n, d

∗) = (gr∗1
1 , . . . , g

r∗n
n , hr∗) with∑

r∗i 6= r∗ since C∗ ∈ C \ V, K∗ = Dsk (C∗), and C = (c1, . . . , cn, d) =
(gr1

1 , . . . , g
rn
n , hr) (

∑
ri 6= r since C ∈ C \ V). From the system parameters

g1, . . . , gn, h, adversary B2 learns ω = log h, ωi = log gi, and from pk

for 1 ≤ i ≤ n : log ui = ωixi + ωz, log vi = ωiyi + ωz′ . (6)

From C∗ the adversary learns r∗i = loggi
c∗i , r

∗ = logh d
∗, and from K∗ (by

Equation (5)) the value

logK∗ =
∑

ωir
∗
i (xit

∗ + yi) + ω(zt∗ + z′) , (7)

and t∗ = TCR(c∗1, . . . , c
∗
n, d

∗). Furthermore, from C, B2 learns ri = loggi
ci and

r = logh d. Let K = Dsk (C). Our claim is that

logK =
∑

ωiri(xit+ yi) + ω(zt+ z′) , (8)

with t = TCR(C) 6= t∗, is a uniform and independent element in Zp. Consider the
set of linear equations over the hidden values x1, . . . , xn, y1, . . . , yn, z, z

′ de�ned



by Equations (6), (7), and (8), de�ned by the matrix M ∈ Zn+2×n+2
p ,

M =

x1 . . . xn y1 . . . yn z z′0BBBBBBBBBBBBB@

ω1 ω

. . . 0
... 0

ωn ω
ω1 ω

0
. . . 0

...
ωn ω

ω1r
∗
1t∗ · · · ωnr∗nt∗ ω1r

∗
1 . . . ωnr∗n ωt∗r∗ ωr∗

ω1r1t · · · ωnrnt ω1r1 . . . ωnrn ωtr ωr

1CCCCCCCCCCCCCA
Since det(M) = ω2

∏
ωi(t− t∗)(

∑n
i=1 ri− r)(

∑n
i=1 r

∗
i − r∗) 6= 0, Equation (8) is

linearly independent of (6) and (7).

We note that (generalizing [12]) we can also give a computationally universal2
hash-proof system based on Paillier's decision composite residue (DCR) assump-
tion.
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