
Chernoff-type Direct Product Theorems

Russell Impagliazzo1 ?, Ragesh Jaiswal1 ??, and Valentine Kabanets2

1 University of California San Diego, USA.
{russell, rjaiswal}@cs.ucsd.edu
2 Simon Fraser University, Canada.

kabanets@cs.sfu.ca

Abstract. Consider a challenge-response protocol where the probability
of a correct response is at least α for a legitimate user, and at most β < α
for an attacker. One example is a CAPTCHA challenge, where a human
should have a significantly higher chance of answering a single challenge
(e.g., uncovering a distorted letter) than an attacker. Another example
would be an argument system without perfect completeness. A natural
approach to boost the gap between legitimate users and attackers would
be to issue many challenges, and accept if the response is correct for more
than a threshold fraction, for the threshold chosen between α and β. We
give the first proof that parallel repetition with thresholds improves the
security of such protocols. We do this with a very general result about an
attacker’s ability to solve a large fraction of many independent instances
of a hard problem, showing a Chernoff-like convergence of the fraction
solved incorrectly to the probability of failure for a single instance.

1 Introduction

Cryptographic protocols use gaps between the informational and computational
abilities of legitimate users and attackers to distinguish the two. Thus, the greater
the gap between the ability of legitimate users to solve a type of problem and
that of attackers, the more useful the problem is. Ideally, a problem should be
reliably easy for legitimate users (in that the chance of failure for legitimate
users should be negligible) but reliably hard for attackers (in that the chance of
the attacker’s success is negligible).

Direct product theorems point out ways to make problems reliably hard for
attackers. The idea is that if an attacker has some chance of failing on a single
challenge, the chance of solving multiple independent challenges should drop
exponentially. Examples of such theorems in cryptography include Yao’s theorem
that weak one-way functions imply strong one-way functions ([23]) and results
of [4, 6], showing similar drops even when an attacker cannot know for certain

? Research partially supported by NSF Awards CCR-0313241 and CCR-0515332.
Views expressed are not endorsed by the NSF.

?? Research partially supported by NSF Awards CCR-0313241, CCR-0515332, CCF-
0634909 and CNS-0524765. Views expressed are not endorsed by the NSF.

whether a response to a challenge is correct. Direct product theorems are also
important in average-case complexity, circuit complexity, and derandomization.

While intuitive, such results are frequently non-trivial. One reason for this
is that there are other circumstances where the intuition is incorrect, and many
instances are not proportionally harder. Examples of circumstances where direct
products fail are parallel repetition for multiple round protocols and for non-
verifiable puzzles ([4, 6, 19]).

While standard direct product theorems are powerful, they can only be used
to amplify the gap between legitimate users and attackers if legitimate users
are successful with high probability. The legitimate user’s chance of solving k
independent challenges also drops exponentially, so unless the probability of
failure isn’t much more than 1/k to start, both legitimate users and attackers
will almost certainly fail to solve all of the problems.

For example, a CAPTCHA protocol is meant to distinguish between humans
and programs, usually using a visual challenge based on distorted text with ex-
traneous lines ([2]). While there seems to be a large gap between the abilities of
typical humans and the best current vision algorithms to solve these challenges,
algorithms can solve a non-negligible fraction of the puzzles, and many humans
(including us) fail a non-negligible fraction of the puzzles. [2] prove that sequen-
tial repetition of the protocol increases this gap, and refer to [4] for the “more
complicated” case of parallel repetition. Indeed, the results of [4] (and improved
by [6]) do apply to parallel repetition of CAPTCHA protocols. However, for the
reason above, these results only show that the probability of algorithmic success
decreases with repetitions, not that the gap improves.

An obvious, intuitive solution to this problem is to make many independent
challenges, but accept if the solver is successful on a larger fraction than ex-
pected for an attacker. Here, we prove that, for a large variety of problems,
this approach indeed amplifies the gap between legitimate users and attackers.
The kind of problems we consider are the weakly verifiable puzzles of [6], which
include challenge-response protocols such as CAPTCHA as a special case. The
puzzles are weakly verifiable in the sense that, while the generator of the puzzle
can verify a solution, the attacker (who is just given the puzzle, not the way it
was generated) cannot necessarily verify whether a proposed solution is accept-
able. For P a weakly verifiable puzzle, we denote by P k,T the puzzle that asks
k independent challenges from P and accepts if at least (k−T) of the responses
are correct solutions to P .

Theorem 1 (Main Theorem). Let P be a weakly verifiable puzzle so that any
solver running in time t(n) has probability at least δ of failure (for sufficiently

large n). Let k, γ > 0, T = (1 − γ)δk, and ε > 2 · e−
γ2δ2k

64 , be given parameters
(as functions of n). Then no solver running in time t′(n) = t(n)poly(ε, 1/n, 1/k)
time can solve P k,T with probability greater than ε, for some polynomial poly,
for sufficiently large n.

We call this a Chernoff-type direct product theorem, since it shows that the
“tail bound” on the number of correctly solved puzzles drops exponentially in
the region beyond its expectation.

Standard Chernoff bounds show that, if the legitimate user can solve the
problem with probability of failure less than say (1−2γ)δ, then they will succeed
in P k,T with all but exponentially small probability. Thus, the above Chernoff-
type direct product theorem indeed shows how to amplify any gap between
legitimate users and attackers.

1.1 Weakly Verifiable Puzzles

Our result holds for the notion of weakly verifiable puzzles defined by [6].
A weakly verifiable puzzle has two components: First, a distribution ensemble

D = D1, ..., Dn, ... on pairs (x, α), where x is called the puzzle and α the check
string. n is called the security parameter. Secondly, a polynomial-time com-
putable relation R((x, α), y) where y is a string of a fixed polynomially-related
length.

The puzzle is thought of as defining a type of challenge x, with y being the
solver’s response. However, the correctness of the response is not easily veri-
fied (and may not be well-defined) given just x. On the other hand, the party
generating the puzzle x also knows α, so can verify correctness.

In [6], the distribution D is restricted to being polynomially-sampleable. In
this case, without loss of generality, we can assume that α is the n bit random
tape used to generate the puzzle and check string (if not, we can redefine R as
R′ which first generate the check string from the random tape, then verifies R.
Thus, to simplify the notation in our proofs, we usually assume α is a uniformly
generated n bit string, and that x is a function of α. A version of our result
also holds when D is not polynomial time sampleable, but only for non-uniform
adversaries (since many samples from D are required as advice.)

Some examples of how weakly verifiable puzzles arise in different settings
include:

1. Consider a challenge-response protocol where a prover is trying to get a
verifier to accept them as legitimate (e.g., a CAPTCHA protocol, where
the prover is trying to convince the verifier to accept them as human.) We
assume that the verifier is polynomial time with no secret inputs, (although
an honest prover may have secret inputs.) Let α be the random bits used by
the verifier. In the first round, the verifier sends a challenge x = g(α), and
the prover sends a response y. The verifier then decides whether to accept by
some polynomial time algorithm, R(α, y). Our results are interesting if there
is some chance that the honest prover will be rejected, such as an honest
human user failing a CAPTCHA challenge based on visual distortion.

2. Consider a secret-agreement protocol with a passive eavesdropper. Let rA be
the random tape used by one party, and rB that by the other party. Then
the conversation C is a function of both rA, rB , as is the message m agreed
upon. The eavesdropper succeeds if she computes m given C. Then consider

α = (rA, rB), x = C, and R(C, (rA, rB), y) if y is the message agreed upon
by the two parties using rA and rB . Note that there may be some tapes
where the parties fail to agree, and thus has no success. Our result shows
that, if the parties agree more probably than the eavesdropper can guess the
secret, then running the protocol several times, they will almost certainly
have more shared secrets than the eavesdropper can guess. Note that, unlike
for challenge-response protocols, here there is no restriction on the amount
of interaction between the legitimate parties (as long as the eavesdropper is
passive).

3. Let f be a (weak) one-way function, and b a (partially-hidden) bit for f , in
the sense that it is sometimes hard to always predict b from x = f(z). Since
f may not be one-to-one, b may be hard to predict for either information-
theoretic or computational reasons. Here, we let α = z, x = f(α), and
R(x, α, b′) if b′ = b(α). Our results say that no adversary given an n tuple
of xi = f(zi) can produce a string closer in relative Hamming distance to
b(x1)...b(xn) than the hardness of prediction.

4. In the non-uniform setting, our results apply to any function. If f is a func-
tion (possibly non-Boolean, or even multi-valued, as long as it takes on at
most a polynomial number of values), we can define α to be (the set of all
elements in) f(x). Then y ∈ f(x) if and only if y ∈ α, so this is testable
in polynomial-time given α. This distribution isn’t necessarily polynomial-
time sampleable, so our results would only apply for non-uniform adversaries
(e.g., Boolean circuits.)

Note that in some examples, success may be ill-defined, in that x may not
uniquely determine α, and so it may not be information-theoretically possible
to know whether R((x, α), y) given only x.

1.2 Related Work

The notion of a Direct Product Theorem, in which solving multiple instances of a
problem simultaneously is proven harder than a single instance, was introduced
by Yao in [23]. Due to its wide applicability in cryptography and computational
complexity, a number of different versions and proofs of such theorems can be
found in the literature. [8] contains a good compilation of such results. In this
paper, we use some of the proof techniques (namely the trust halving strategy)
introduced by Impagliazzo and Wigderson in [12]. Such techniques were also
used to show a version of the Direct Product Theorem under a more general
cryptographic setting by Bellare, Impagliazzo and Naor in [4]. The idea was to
show that the soundness error decreases exponentially with parallel repetition in
any 3-round challenge-response protocol. This paper also showed that such error
amplification might not be possible for a general (> 3)-round protocol. Pietrzak
and Wikstrom in [19] extend this negative result. On the positive side, Canetti,
Halevi and Steiner in [6] used ideas from [4] to define a general class of weakly
verifiable puzzles for which they show parallel repetition amplifies hardness, also
giving a quantitative improvement over [4]. More recently, Pass and Venkita-
subramaniam [18] show similar positive results for constant round public coin

protocols. Note that all the results mentioned above, consider parallel repetition
without threshold i.e. they consider the hardness of answering all the instances
of the parallel repetition question simultaneously.

In this paper, we use the Sampling Lemma (Lemma 1) from [11] in an essen-
tial manner. The proof of this Lemma uses ideas from Raz’s parallel repetition
paper [20].

1.3 Techniques

Our main lemma shows how to use a breaking strategy that solves the threshold
puzzle with probability ε as a subroutine in an algorithm that solves a single
puzzle with probability greater than (1 − δ). This algorithm is a version of the
trust-reducing strategies from [12, 4]. In a trust-reducing strategy, the real puzzle
is hidden among (k−1) randomly generated puzzles, and the number of mistakes
the subroutine makes on the random puzzles is used to compute a probability
that the algorithm accepts the answer for the real puzzle.

However, we need to deviate substantially from the analysis in the previous
papers. The previous work considered the performance of the strategy on a set
H of “hard” instances, and showed that if |H| ≥ δ2n, then the strategy worked
almost certainly on random elements of H. (Thus the fraction of puzzles where
the strategy fails with reasonable probability would be at most δ.) In contrast,
in the threshold scheme, it suffices for the adversary to answer correctly only
on the instances outside a “really hard” set H ′ of size (1 − γ)δ, and make an
error on the instances in H ′. Since H ′ could be a large (1−γ) fraction of H, the
conditional probability of success on H of any strategy is at most γ.

In order to get around this obstacle, we need a more global way of analyzing
the trust-reducing strategy. Our main tool for doing this is a sampling lemma
(from [11]) that can be used to show that the strategy has approximately the
same success probability on almost all instances. This allows us us to analyze the
strategy on random instances, and infer similar success for almost all instances.

2 Preliminaries

Definition 1. For any distribution D, x← D denotes sampling an element from
the distribution D, and D(x) denotes the probability of sampling the element x.

Definition 2. Given two distributions D1 and D2 over {0, 1}n, the statistical
distance Dist(D1,D2) between them is defined as

Dist(D1,D2) =
1
2

∑
x∈{0,1}n

|Pr[D1(x)]−Pr[D2(x)]|

Let U be the uniform distribution on {0, 1}n. Consider the following distri-
bution over {0, 1}n. Pick an m tuple of n-bit string (x1, . . . , xm) uniformly at
random and output xi for a randomly chosen i ∈ [m]. The distribution is equiv-
alent to U if the tuple is randomly chosen from {0, 1}nm. The next lemma shows

that the distribution is close to uniform even when the tuple is chosen randomly
from a subset G ⊆ {0, 1}nm of size ε2nm.

Lemma 1 (Sampling Lemma). Let G ⊆ {0, 1}mn be any subset of size ε2mn.
Let U be a uniform distribution on the set {0, 1}n, and let D be the distribution
defined as follows: pick a tuple (x1, . . . , xm) of n-bit strings uniformly from the
set G, pick an index i uniformly from [m], and output xi. Then the statistical

distance between the distributions U and D is less than 0.6
√

log 1/ε
m .

See [11] for the proof of this lemma. The following corollary will be used in
the proof of our main result.

Corollary 1. Let G be a distribution over {0, 1}nm (which can be viewed as m-
tuples of n-bit strings) such that for any x̄ ∈ {0, 1}nm, G(x̄) ≤ 1

ε 2nm . Let U
be a uniform distribution over {0, 1}n, and let D be the distribution defined as
follows: pick a tuple (x1, . . . , xm)← G, pick an index i uniformly from [m], and
output xi. Then the statistical distance between the distributions U and D is less

than 0.6
√

log 1/ε
m .

Proof. We can represent the distribution G as a convex combination of uniform
distributions on subsets of size at least ε2nm. We can then apply the Sampling
Lemma to each term in the combination to obtain the corollary. ut

3 Proof of the Main Theorem

The proof is by contradiction. Given a solver C̄ that solves the weakly verifiable
puzzle P k,T with probability at least ε, we give a solver C which solves the puzzle
P with probability at least (1−δ). The probability of success is over the internal
randomness of the solver and uniformly chosen α ∈ {0, 1}n.

Let G be the subset of ᾱ = (α1, . . . , αk) ∈ ({0, 1}n)k where3

|{i : ¬R((xi, αi), C̄(x1, . . . , xk)i)}| ≤ (1− γ)δk

So G denotes the “good” subset of ᾱ’s for the solver C̄ where we have mini-
mum guarantee of ε. In order to illustrate the ideas of the proof, we first prove
the Theorem assuming access to an oracle OG deciding the membership of a
given tuple (α1, . . . , αk) in the “good” set G. We then drop this assumption by,
essentially, imitating the behavior of the oracle.

3.1 Assuming Oracle OG Exists

In this subsection, in order to illustrate the ideas of the proof in a simplified
setting, we temporarily assume that there is an oracle OG which tells if a given
tuple (α1, . . . , αk) belongs to the “good” set G. This subsection is to develop

3 For a string αi, we implicitly denote the puzzle by xi.

the reader’s intuition, and is not strictly required for the proof of the real case.
For this reason, we will slur over some calculations. In the rest of the section, we
show how to drop this assumption by approximating oracle OG in a computable
way. The rest of the section is self-contained, so this subsection, while helpful,
may be skipped by the reader. Note that this oracle is unrealistic in many ways,
one of which is that it’s answer depends on α, when in the real case the Solver
will only have x, not α.

Consider the randomized Solver C defined in Figure 1 which is allowed a
special output ⊥ which is considered as an incorrect answer in the analysis.

Input: z = (x, α)
Output: y
Oracle access: Solver C̄ and OG

Parameters: ε ≥ 2 · e−
γ2δ2k

64 , timeout = 4n
ε

.

1. Repeat lines 2-6 for at most timeout times:
2. Choose i ∈ [k] uniformly at random.
3. Choose α1, . . . , αk−1 ∈ {0, 1}n uniformly at random.
4. Let ᾱ← (α1, . . . , αi−1, α, αi, . . . , αk−1).
5. If OG(ᾱ) = 1
6. then output y = C̄(x̄)i, //where the elements of x̄ are the puzzles

// generated from check strings ᾱ.
7. output ⊥

Solver 1: Randomized Solver C given C̄ and OG as oracle

We want to analyze the success probability of solver C on a given input
z = (x, α). To this end, we need to argue that (1) the probability of the timeout
(i.e., of outputting ⊥ in line 7) is small, and (2) conditioned on the output being
different from ⊥, it is a correct output with high probability (greater than 1−δ).

We will focus on analyzing the conditional success probability in (2), i.e.,
Pri,α1,...,αk−1 [C(α) is correct | output 6= ⊥], for a given input z = (x, α) to
C. Observing that C outputs something other than ⊥ exactly when the tuple
ᾱ built in line 4 is in the set G, we can rewrite this conditional probability as
Pri∈[k],ᾱ=(α1,...,αk)∈G[C(αi) is correct | αi = α], where i is chosen uniformly from
[k], and ᾱ uniformly from G.

Let D(α) = Pri∈[k],ᾱ∈G[αi = α], and let U be the uniform distribution on αs.
Using our Sampling Lemma, we will argue that the distributions D and U are
statistically close to each other. Using this closeness, we can finish the analysis of
the success probability of solver C as follows. The conditional success probability
of C for a random input α is

∑
α Pri,ᾱ∈G[C(αi) is correct | αi = α]∗U(α), which

is approximately equal to
∑

α Pri,ᾱ∈G[C(αi) is correct | αi = α] ∗ D(α). The
latter expression is exactly Pri,ᾱ∈G[C(αi) is correct], which is at least 1 − (1 −
γ)δ = 1−δ+γδ, by the definition of G. We will show that the statistical distance

between D and U and the probability of the timeout of C are less than γδ, which
would imply that C succeeds on more than 1− δ fraction of inputs.

To demonstrate the structure of the analysis in the general case, we recast
the arguments above as follows. We introduce a certain random experiment E
(see Figure 1), which corresponds to the inner loop of the algorithm C. We then
relate the success probability of C to that of E .

Fig. 1. Experiment E

Experiment E
(α1, . . . , αk)

$← G // Let x1, ..., xk be the corresponding puzzles

i
$← [k]

output (αi, C̄(x1, . . . , xk)i)

We say that experiment E succeeds if it outputs a pair (α, y) such that
R((x, α), y). Since for each k-tuple in G, C̄ outputs a correct answer for at least
1−(1−γ)δ fraction of the elements, the probability of success of this experiment
is clearly ≥ 1− (1− γ)δ.

Let D be the probability distribution on the first elements of outputs of E ,
i.e., D(α) is the probability that E outputs a pair (α, y). Let Rα represent the
probability that it outputs such a pair with R((x, α), y), and Wα the probability
that it outputs such a pair with ¬R((x, α), y). So, D(α) = Rα +Wα. Clearly, we
have that 1− (1− γ)δ ≤ Pr[E succeeds] =

∑
α∈{0,1}n Rα.

Since D is sampled by picking a random element of a set G of tuples of
size at least ε2nk, from the sampling lemma it is within 0.6

√
log(1/ε)/k ≤ γδ/8

statistical distance of the uniform distribution. In particular, for H = {α|D(α) ≤
(1/2)2−n}, |H| ≤ (γδ/4)2n.

Let pα be the probability that a random ᾱ containing α is in G. Then
the expectation of pα for random α is at least ε, and D(α) = pα/

∑
α′ pα′ =

2−n(pα/Exp[pα′]). So all elements not in H have pα ≥ ε/2. For each such ele-
ment, the probability that we get a timeout in C is at most (1−pα)timeout ≤ e−n.

Given that C on α does not time out, the probability of it succeeding is
Rα/D(α). Thus, the overall probability of success is at least (

∑
α U(α)Rα/D(α))−

Pr[C times out]. We get
∑

α U(α)Rα/D(α) =
∑

α(U(α) − D(α))Rα/D(α) +∑
α Rα ≥

∑
α(−1)|U(α)−D(α)|+ (1− (1− γ)δ) ≥ 1− (1− γ)δ−Dist(D,U) ≥

1− (1− 3/4γ)δ.

The probability of time-out can be bounded by the probability that α ∈ H
plus the probability of time-out given that α 6∈ H. As previously mentioned, this
is at most δγ/4+e−n, giving a total success probability at least 1− (1−γ/2)δ−
e−n > 1− δ, as desired.

3.2 Removing the Oracle OG

We will use the same set of ideas as in the previous subsection while removing
the dependency on the simplifying assumptions. The most important assumption
made was the existence of the oracle OG which helped us to determine if a tuple
(α1, . . . , αk) ∈ G. The second assumption that we made was that the randomized
solver C receives as input the pair z = (x, α) which is not a valid assumption
since α is supposed to be hidden from the solver.

We get around these assumptions, in some sense, by imitating the combined
behavior of the randomized solver and the oracle OG of the previous subsection.
Below we define a new randomized solver which is only given x as an input, with
α being hidden from the solver.

Input: x //corresponding to α
Output: y
Oracle access: Solver C̄

Parameters: ε ≥ 2 · e−
γ2δ2k

64 , timeout = 4n
ε

, t0 = (1− γ)δk, ρ = 1− γδ
16

.

1. Repeat lines 2-10 for at most timeout times:

2.
3.
4.
5.
6.
7.
8.
9.
10.

// Subroutine TRS (Trust Reducing Strategy)
Choose i ∈ [k] uniformly at random.
Choose α1, . . . , αk−1 ∈ {0, 1}n uniformly at random.
Let x̄← (x1, . . . , xi−1, x, xi, . . . , xk−1).
Let l = {j : ¬R((xj , αj), C̄(x1, . . . , xk−1)j), j 6= i}
If |l| > t0

output C̄(x1, . . . , xk−1)i with probability ρ|l|−t0

else
output C̄(x1, . . . , xk−1)i with probability 1

11. output ⊥
Solver 2: Randomized Solver C given C̄ as oracle

To be able to analyze the above solver we abstract out a single execution of
the loop 2 − 10 (the subroutine TRS) and design an experiment E3 which has
similar behavior. To further simplify the analysis we design a simpler experiment
E2 such that (1) analyzing E2 is easy and (2) E2 is not too much different from
E3 so that we can easily draw comparisons between them. The description of
Experiments E2 and E3 is given in Figure 2.

Definition 3. Experiments E2 and E3 are said to succeed if they output a correct
pair (i.e. a pair (α, y) such that R((x, α), y)). The success probability is defined
as the probability that a correct pair is produced conditioned on the experiment
producing a pair.

Fig. 2. Experiments E2 and E3.

Experiment E2 Experiment E3
(α1, . . . , αk)

$← ({0, 1}n)k (α1, . . . , αk)
$← ({0, 1}n)k

i
$← [k] i

$← [k]
J ← {j|¬R((xj , αj), C̄(x1, . . . , xk))j} J ← {j|¬R((xj , αj), C̄(x1, . . . , xk))j}
if |J | > (1− γ)δk if |J | > (1− γ)δk

t = |J | − (1− γ)δk t = |J | − (1− γ)δk
else else

t = 0 output (αi, C̄(x1, . . . , xk)i)
output (αi, C̄(x1, . . . , xk)i) with probability 1

with probability ρt and ⊥ if i ∈ J
with probability (1− ρt) output (αi, C̄(x1, . . . , xk)i)

with probability ρt−1 and ⊥
with probability (1− ρt−1)

else
output (αi, C̄(x1, . . . , xk)i)

with probability ρt and ⊥
with probability (1− ρt)

Proof outline. We observe that the success probability of C on a given input x
corresponding to a hidden string α is exactly the success probability of experi-
ment E3 conditioned on the event that E3 produces a pair (α, ·). For a random
input x corresponding to a uniformly random string α, the success probability
of C is then

∑
α Pr[E3 succeeds | E3 outputs (α, ·)] ∗ U(α), where U denotes the

uniform distribution. On the other hand, the success probability of E3 can be
written as

∑
α Pr[E3 succeeds | E3 outputs (α, ·)] ∗ D3(α), where D3(α) is the

probability that experiment E3 produces a pair (α, ·) conditioned on E3 produc-
ing some pair (i.e., conditioned on the output of E3 being different from ⊥). We
then argue that the distributions U and D3 are statistically close, and hence
the success probability of C can be lowerbounded with that of E3. Finally, we
lowerbound the success probability of E3, getting the result for C.

In reality, the success probability of experiment E2 is easier to analyze than
E3. So we actually show that the conditional success probability of E3 can be
lowerbounded by that of E2, and then argue that U is statistically close to D2,
where D2 is defined for E2 in the same way as D3 was defined for E3 above.

Next we give the details of the proof. We start by analyzing E2.

Analyzing E2 Let us partition the k-tuples ({0, 1}n)k into the following subsets:

G0 = G = {(α1, ..., αk) ∈ {0, 1}nk : |{j : ¬R((xj , αj), C̄(x1, ..., xk)j)}| ≤ (1− γ)δk}
G1 = {(α1, ..., αk) ∈ {0, 1}nk : |{j : ¬R((xj , αj), C̄(x1, ..., xk)j)}| = (1− γ)δk + 1}
...
Gk(1−(1−γ)δ) = {(α1, ..., αk) ∈ {0, 1}nk : |{j : ¬R((xj , αj), C̄(x1, ..., xk)j)}| = k}

Definition 4. We let S 6⊥ denote the general event that the experiment produces
a pair (i.e. does not produce ⊥) and Sc denote the event that the experiment
produces a correct output.

Claim 2 Pr[E2 succeeds] ≥
(
1− t0+γδk/2

k

) (
1− ργδk/2

ε

)
, where t0 = (1− γ)δk.

Proof. Let t0 = (1− γ)δk and ∆ = γδk. Let Ā denote the random tuple chosen
in the first step of experiment E2. Recalling that the success probability of E2 is
defined as the probability of producing a correct pair conditioned on producing
a pair as output, we get

Pr[E2 succeeds] = Pr[Sc|S 6⊥]
= Pr[Sc, S 6⊥]/Pr[S 6⊥]

=
∑

ᾱ∈{0,1}nk

Pr[Sc, S 6⊥, Ā = ᾱ]/Pr[S 6⊥]

=
∑

ᾱ∈{0,1}nk

Pr[Sc|S 6⊥, Ā = ᾱ] ·Pr[S 6⊥, Ā = ᾱ]/Pr[S 6⊥].

We will split the set of ᾱ’s into the following three sets:

G = G0, I = G1 ∪ . . . ∪G∆/2, B = {0, 1}nk −G− I,

which stand for “good”, “intermediate” and “bad”, respectively. We note that
E2 performs well on tuples in the good subset, reasonably well on tuples in the
intermediate subset and poorly on the tuples in the bad subset. The intuitive idea
is that we counter the poor effect of the bad subset of tuples by exponentially
weighing down their contribution in the overall probability of success of E2.

We have

Pr[E2 succeeds] ≥
∑

ᾱ∈G∪I

Pr[Sc|S 6⊥, Ā = ᾱ] ·Pr[S 6⊥, Ā = ᾱ]/Pr[S 6⊥]

≥
∑

ᾱ∈G∪I

(
1− t0 + ∆/2

k

)
·Pr[S 6⊥, Ā = ᾱ]/Pr[S 6⊥]

≥
(

1− t0 + ∆/2
k

) (∑
ᾱ∈G∪I Pr[S 6⊥, Ā = ᾱ]

Pr[S 6⊥]

)
=

(
1− t0 + ∆/2

k

)
· Pr[S 6⊥]−Pr[S 6⊥, Ā ∈ B]

Pr[S 6⊥]

=
(

1− t0 + ∆/2
k

)
·
(

1− Pr[S 6⊥, Ā ∈ B]
Pr[S 6⊥]

)
.

Observe that Pr[S 6⊥, Ā ∈ B] ≤ Pr[S 6⊥|Ā ∈ B] ∗ Pr[Ā ∈ B] ≤ ρ∆/2 · 1 =
ρ∆/2, and Pr[S 6⊥] ≥ Pr[S 6⊥, Ā ∈ G] ≥ ε. Thus, we get that 1 − Pr[S 6⊥, Ā ∈
B]/Pr[S 6⊥] ≥ 1− ρ∆/2/ε, and the claim follows. ut

Let A be the random variable denoting the first element of the pair produced
by E2 conditioned on E2 producing a pair. We now write down the success prob-
ability of E2 in terms of the conditional probability that E2 produces a correct
pair given that it produces a pair (α, .) for a fixed α ∈ {0, 1}n.

Pr[E2 succeeds] = Pr[Sc|S 6⊥]

=
∑

α∈{0,1}n

Pr[E2 succeeds on A|A = α, S6⊥] ·Pr[A = α|S 6⊥]

=
∑

α∈{0,1}n

Pr[E2 succeeds on A|A = α, S6⊥] · D2(α) (1)

where D2 is a distribution defined as D2(α) = Pr[A = α|S 6⊥].
Note the similarity between the distribution D2 and distribution D of the

previous section. D was sampled by producing a randomly chosen element from
a randomly chosen tuple in G. Here we allow tuples to be chosen from any Gi

but we weigh down the contribution of the tuple by a factor of ρi. In other words,
D2 can be sampled in the following manner: Pick a random tuple ᾱ ∈ {0, 1}nk,
let ᾱ ∈ Gi, output a randomly chosen element of the tuple with probability ρi.

Comparing D2 and U We will show thatD2 is statistically close to the uniform
distribution U .

Claim 3 Dist(D2,U) < 0.6
√

log 1/ε
k .

Proof. To sample from D2, pick (α1, . . . , αk) ← G, pick a random i ∈ [k] and
output αi, where G is a distribution on k-tuples such that G(ᾱ) is the conditional
probability that E2 outputs the randomly chosen element from ᾱ given that E2
produces a pair. More specifically, given ᾱ ∈ Gi,

G(ᾱ) =
ρi

|G0|+ ρ |G1|+ . . . + ρk(1−(1−γ)δ) |Gk(1−(1−γ)δ)|
≤ 1
|G0|

≤ 1
ε · 2nk

.

By Corollary 1, we get the conclusion of the Claim. ut

Comparing E3 and E2 To continue, we need the following definitions.

Definition 5. Given α ∈ {0, 1}n and a k-tuple (α1, . . . , αk) ∈ ({0, 1}n)k, let
h(α, (α1, . . . , αk)) = {i : αi = α}. Given a k-tuple (α1, . . . , αk) ∈ ({0, 1}n)k and
solver C̄, let l(α1, . . . , αk) = {i : ¬R((xi, αi), C̄(x1, . . . , xk)i)}

In other words, for a given element and tuple, h denotes the subset of indices
where the element is present, and, for a given tuple, l denotes the subset of
indices where C̄ is incorrect. Consider the following two quantities:

Xα =
∑
ᾱ∈G

|h(α, ᾱ) ∩ l(ᾱ)|︸ ︷︷ ︸
Mα

+
∑

ᾱ∈{0,1}nk−G

|h(α, ᾱ) ∩ l(ᾱ)| · ρ|l(ᾱ)|−t0

︸ ︷︷ ︸
Nα

Yα =
∑
ᾱ∈G

|h(α, ᾱ)− h(α, ᾱ) ∩ l(ᾱ)|+
∑

ᾱ∈{0,1}nk−G

|h(α, ᾱ)− h(α, ᾱ) ∩ l(ᾱ)| · ρ|l(ᾱ)|−t0

It is easy to see that

Pr[E2 succeeds on A | A = α, S6⊥] =
Yα

Xα + Yα
=

Yα

Mα + Nα + Yα
. (2)

Experiment E3 is mostly the same as E2, except when, for a randomly chosen
tuple ᾱ ∈ {0, 1}nk − G (line 1), the randomly chosen index i (line 2) lands in
the subset l(ᾱ) of indices on which C̄ is incorrect. Here E2 only outputs the pair
with probability ρ|l(ᾱ)|−t0 (instead of ρ|l(ᾱ)|−t0−1 as in E3). Thus we have

Pr[E3 succeeds on A | A = α, S6⊥] =
Yα

Mα + Nα/ρ + Yα
. (3)

Finally, using (2) and (3), we get:

Pr[E2 succeeds on A | A = α, S6⊥]
Pr[E3 succeeds on A | A = α, S6⊥]

=
Mα + Nα/ρ + Yα

Mα + Nα + Yα

≤ Mα + Nα + Yα

ρ · (Mα + Nα + Yα)
= 1/ρ. (4)

Analyzing C We first note that the subset H of α’s for which the above solver
does not produce an answer (or produces ⊥) is small. Consider the following two
claims:

Claim 4 Let H ⊆ {0, 1}n be such that, for every α ∈ H, TRS produces an
answer with probability < ε/4. Then |H| < γδ

4 · 2
n.

Proof. For the sake of contradiction, assume that |H| ≥ γδ
4 · 2

n. For a randomly
chosen tuple ᾱ = (α1, . . . , αk), the expected number of αi’s from H is γδk/4. By
Chernoff bounds, all but e−

γδk
64 fraction of tuples ᾱ will contain at least γδk/8

elements from H.
For a random α ∈ H, consider the distribution on tuples ᾱ induced by lines

3–5 of Solver 2. That is, ᾱ is sampled by picking independently uniformly at
random α ∈ H, location i ∈ [k], and α1 . . . αk−1 ∈ {0, 1}n, and producing ᾱ =
(α1, . . . , αi−1, α, αi, . . . , αk−1). Observe that every tuple ᾱ′ containing exactly s

elements from H will be assigned by this distribution probability exactly 4s
γδk

times the probability of ᾱ′ under the uniform distribution. So the probability
of sampling tuples in G which have more than γδk

8 elements from H is at least
ε−e−

γδk
64

2 ≥ ε
4 , since ε = 2 · e−

γ2δ2k
64 . This means that for a random α ∈ H, a

single iteration of the subroutine TRS of Solver 2 will produce a definite answer
with probability at least ε/4 (note that TRS always produces an answer when
ᾱ′ ∈ G). By averaging, there exists a particular α0 ∈ H for which TRS succeeds
in producing an answer with probability at least ε/4. ut

Claim 5 For every α ∈ {0, 1}n −H, Pr[C(x) 6= ⊥] > 1− e−n.

Proof. From the previous claim we know that for any α ∈ {0, 1}n − H, the
subroutine TRS produces an answer with probability at least ε/4. So, the prob-
ability that Solver 2 fails to produce a definite answer on this input α within
timeout iterations is at most (1− ε/4)

4n
ε ≤ e−n. ut

The similarity between solver C and Experiment E3 yields the following useful
fact:

Pr[R((x, α), C(x))|C(x) 6= ⊥] = Pr[E3 succeeds on A | A = α, S6⊥]. (5)

We now analyze the success probability of the solver C. The probability is
over uniformly random α ∈ {0, 1}n and its internal randomness.

Pr[C succeeds] =
1
2n

∑
α∈{0,1}n

Pr[R((x, α), C(x)) ∧ C(x) 6= ⊥]

=
∑

α∈{0,1}n

Pr[R((x, α), C(x)) | C(x) 6= ⊥] ∗Pr[C(x) 6= ⊥] ∗ U(α)

=
∑

α∈{0,1}n

Pr[E3 succeeds on A | A = α, S6⊥] ∗Pr[C(x) 6= ⊥] ∗ U(α)

(from (5)) (6)

Let H ⊆ {0, 1}n be the set from Claim 4. Let H̄ be the complement of H in
the set {0, 1}n. By Claim 5 and Eq. (4), we get that for every α ∈ H̄,

Pr[E3 succeeds on A | A = α, S6⊥] ∗Pr[C(x) 6= ⊥] ∗ U(α) ≥
(1− e−n) ρ Pr[E2 succeeds on A | A = α, S6⊥] ∗ U(α). (7)

Comparing C and E2 We can now compare the success probabilities of Ex-
periment E2 and the solver C.

Claim 6 Pr[C succeeds] ≥ Pr[E2 succeeds]−
(
Dist(U ,D2) + (1− ρ) + ρ · e−n + γδ

4

)

Proof. Using the lower bound from (7), we can lower-bound Pr[C succeeds] as
follows:

Pr[C succeeds] ≥ ρ(1− e−n)
∑
α∈H̄

Pr[E2 succeeds on A | A = α, S6⊥] ∗ U(α).

Next, observe that ∑
α∈H̄

Pr[E2 succeeds on A | A = α, S6⊥] ∗ U(α) ≥

∑
α∈{0,1}n

Pr[E2 succeeds on A | A = α, S6⊥] ∗ U(α)− γδ/4,

since
∑

α∈H U(α) < γδ/4. Expressing U(α) as (U(α)−D2(α)) +D2(α), we can
rewrite ∑

α∈{0,1}n

Pr[E2 succeeds on A | A = α, S6⊥] ∗ U(α)

as ∑
α∈{0,1}n

Pr[E2 succeeds on A | A = α, S6⊥] ∗ D2(α) +

∑
α∈{0,1}n

Pr[E2 succeeds on A | A = α, S6⊥] ∗ (U(α)−D2(α)).

The first summand is exactly Pr[E2 succeeds]. The second summand can be
lower-bounded by restricting the summation to those α ∈ {0, 1}n where U(α) <
D2(α), and observing that the resulting expression is at least −Dist(U ,D2).

Putting it all together, we get that

Pr[C succeeds] ≥ ρ(1− e−n)(Pr[E2 succeeds]−Dist(U ,D2)− γδ/4).

Rearranging the terms on the right-hand side yields the claim. ut
The previous claim and Claim 2 yield the following final result.

Claim 7 Pr[C succeeds] ≥ (1− δ) + γδ
32 .

Proof. Indeed, we have

Pr[C succeeds] ≥
(

1− t0 + ∆/2
k

) (
1− ρ∆/2

ε

)
−(

Dist(U ,D2) + (1− ρ) + ρ · e−n +
γδ

4

)
. (8)

For ρ = 1 − γδ
16 , ε = 2e−

γ2δ2k
64 ,∆ = γδk and t0 = (1 − γ)δk, we get 1 − (t0 +

∆/2)/k = 1− δ + γδ/2 and 1− ρ∆/2/ε ≥ 1− e−γ2δ2k/64/2. By Claim 3, we have
that Dist(U ,D2) ≤ γδ/8. So we can lowerbound the right-hand side of Eq. (8)
by

1−δ−(1−δ)e−γ2δ2k/64/2+(1−e−γ2δ2k/64/2)γδ/2−(γδ/8+γδ/16+ε−n+γδ/4),

which is at least 1− δ + γδ/32, for sufficiently large n. ut

4 Open Problems

While the results here are fairly general, there are some obvious possible ex-
tensions. First, can similar results be proved for other domains, such as public-
coin protocols ([18]). Also, our bounds on the adversary’s success probability,
although asymptotically exponentially small, are quite weak when applied to
concrete problems such as actual CAPTCHA protocols with reasonable num-
bers of repetitions. Can the bounds be improved quantitatively, analogously to
how [6] improved the bounds from [4]? Finally, we would like to find more ap-
plications of our results, to such problems as making strong secret agreement
protocols from weak ones ([9]).

References

1. Aaronson, S.: Limitations of quantum advice and one-way communication. In:
Proceedings of the Nineteenth Annual IEEE Conference on Computational Com-
plexity. (2004) 320–332

2. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using hard AI
problems for security. In: EUROCRYPT. (2003) 294–311

3. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity
3 (1993) 307–318

4. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error
in computationally sound protocols? In: Proceedings of the Thirty-Eighth Annual
IEEE Symposium on Foundations of Computer Science. (1997) 374–383

5. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Annals of Mathematical Statistics 23 (1952) 493–509

6. Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable
puzzles. In: TCC. (2005) 17–33

7. Gal, A., Halevi, S., Lipton, R., Petrank, E.: Computing from partial solutions.
In: Proceedings of the Fourteenth Annual IEEE Conference on Computational
Complexity. (1999) 34–45

8. Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR-Lemma. Electronic
Colloquium on Computational Complexity (TR95-050) (1995)

9. Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the
37th ACM Symposium on Theory of Computing. (2005) 664–673

10. Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: Proceed-
ings of the Thirty-Sixth Annual IEEE Symposium on Foundations of Computer
Science. (1995) 538–545

11. Impagliazzo, R., Jaiswal, R., Kabanets, V.: Approximately list-decoding direct
product codes and uniform hardness amplification. In: Proceedings of the Forty-
Seventh Annual IEEE Symposium on Foundations of Computer Science (FOCS06).
(2006) 187–196

12. Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing. (1997) 220–229

13. Klivans, A.R.: On the derandomization of constant depth circuits. In: Proceedings
of the 5th International Workshop on Randomization and Approximation Tech-
niques in Computer Science (RANDOM’01). (2001)

14. Klauck, H., Spalek, R., de Wolf, R.: Quantum and classical strong direct product
theorems and optimal time-space tradeoffs. In: Proceedings of the Forty-Fifth
Annual IEEE Symposium on Foundations of Computer Science. (2004) 12–21

15. Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica
7(4) (1987) 357–363

16. Nisan, N., Rudich, S., Saks, M.: Products and help bits in decision trees. In: Pro-
ceedings of the Thirty-Fifth Annual IEEE Symposium on Foundations of Computer
Science. (1994) 318–329

17. Parnafes, I., Raz, R., Wigderson, A.: Direct product results and the GCD prob-
lem, in old and new communication models. In: Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing. (1997) 363–372

18. Pass, R., Venkitasubramaniam, M.: An efficient parallel repetition theorem for
arthur-merlin games. In: STOC’07 (To appear). (2007)

19. Pietrzak, K., Wikstrom, D.: Parallel repetition of computationally sound protocols
revisited. In: TCC’07 (To appear). (2007)

20. Raz, R.: A parallel repetition theorem. SIAM Journal on Computing 27(3) (1998)
763–803

21. Shaltiel, R.: Towards proving strong direct product theorems. In: Proceedings
of the Sixteenth Annual IEEE Conference on Computational Complexity. (2001)
107–119

22. Trevisan, L.: List-decoding using the XOR lemma. In: Proceedings of the Forty-
Fourth Annual IEEE Symposium on Foundations of Computer Science. (2003)
126–135

23. Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of the
Twenty-Third Annual IEEE Symposium on Foundations of Computer Science.
(1982) 80–91

