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Abstract. One day, you suddenly find that a private key corresponding
to your Identity is up for sale at e-Bay. Since you do not suspect a key
compromise, perhaps it must be the PKG who is acting dishonestly and
trying to make money by selling your key. How do you find out for sure
and even prove it in a court of law?

This paper introduces the concept of Traceable Identity based Encryp-
tion which is a new approach to mitigate the (inherent) key escrow prob-
lem in identity based encryption schemes. Our main goal is to restrict the
ways in which the PKG can misbehave. In our system, if the PKG ever
maliciously generates and distributes a decryption key for an Identity, it
runs the risk of being caught and prosecuted.

In contrast to other mitigation approaches, our approach does not require
multiple key generation authorities.

1 Introduction

The notion of identity based encryption (IBE) was introduced by Shamir [Sha84]
as an approach to simplify public key and certificate management in a public
key infrastructure (PKI). Although the concept was proposed in 1984 [Sha84], it
was only in 2001 that a practical and fully functional IBE scheme was proposed
by Boneh and Franklin [BF01]. Their construction used bilinear maps and could
be proven secure in the random oracle model. Following that work, a rapid
development of identity based PKI has taken place. A series of papers [CHK03,
BB04a, BB04b, Wat05, Gen06] striving to achieve stronger notions of security
led to efficient IBE schemes in the standard model. There now exist hierarchical
IBE schemes [GS02, HL02, BBG05], identity based signatures and authentication
schemes [CC03, FS86, FFS88] and a host of other identity based primitive.

In an IBE system, the public key of a user may be an arbitrary string like
an e-mail address or other identifier. This eliminates certificates altogether; the
sender could just encrypt the message with the identity of the recipient without
having to first obtain his public key (and make sure that the obtained public
key is the right one). Of course, users are not capable of generating a private key
for an identity themselves. For this reason, there is a trusted party called the
private key generator (PKG) who does the system setup. To obtain a private key
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for his identity, a user would go to the PKG and prove his identity. The PKG
would then generate the appropriate private key and pass it on to the user.

Since the PKG is able to compute the private key corresponding to any
identity, it has to be completely trusted. The PKG is free to engage in malicious
activities without any risk of being confronted in a court of law. The malicious
activities could include: decrypting and reading messages meant for any user,
or worse still: generating and distributing private keys for any identity. This, in
fact, has been cited as a reason for the slow adoption of IBE despite its nice
properties in terms of usability. It has been argued that due to the inherent key
escrow problem, the use of IBE is restricted to small and closed groups where a
central trusted authority is available [ARP03, LBD+04, Gen03].

One approach to mitigate the key escrow problem problem is to employ
multiple PKGs [BF01]. In this approach, the master key for the IBE system is
distributed to multiple PKGs; that is, no single PKG has the knowledge of the
master key. The private key generation for an identity is done in a threshold
manner. This is an attractive solution and successfully avoids placing trust in a
single entity by making the system distributed. However, this solution comes at
the cost of introducing extra infrastructure and communication. It is burdensome
for a user to go to several key authorities, prove his identity to each of them and
get a private key component (which has to be done over a secure channel).
Further, maintaining multiple independent entities for managing a single PKI
might be difficult in a commercial setting (e.g., the PKI has to be jointly managed
by several companies).

To the best of our knowledge, without making the PKG distributed, there is
no known solution to mitigate the problem of having to place trust in the PKG.

A New Approach. In this paper, we explore a new approach to mitigate the
above trust problem. Very informally, the simplest form of our approach is as
follows:

– In the IBE scheme, there will be an exponential (or super-polynomial) num-
ber of possible decryption keys corresponding to every identity ID.

– Given one decryption key for an identity, it is intractable to find any other.
– A users gets the decryption key corresponding to his identity from the PKG

using a secure key generation protocol. The protocol allows the user to obtain
a single decryption key dID for his identity without letting the PKG know
which key he obtained.

– Now if the PKG generates a decryption key d′ID for that identity for malicious
usage, with all but negligible probability, it will be different from the key
dID which the user obtained. Hence the key pair (dID, d′ID) is a cryptographic
proof of malicious behavior of the PKG (since in normal circumstances, only
one key per identity should be in circulation).

The PKG can surely decrypt all the user message passively. However, the
PKG is severely restricted as far as the distribution of the private key d′ID is
concerned. The knowledge of the key d′ID enables an entity E to go to the honest
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user U (with identity ID and having key dID) and together with him, sue the PKG
by presenting the pair (d′ID, dID) as a proof of fraud (thus potentially closing down
its business or getting some hefty money as a compensation which can be happily
shared by E and U). This means that if the PKG ever generates a decryption
key for an identity for malicious purposes, it runs the risk that the key could fall
into “right hands” which could be fatal.

The above approach can be compared to a regular (i.e., not identity based)
PKIs. In a regular PKI, a user will go to a CA and get a certificate binding
his identity with his public key. The CA could surely generate one more cer-
tificate binding a malicious public key to his identity. However, two certificates
corresponding to the same identity constitute a cryptographic proof of fraud.
Similarly in our setting, the PKG is free to generate one more decryption key
for his identity. However, two decryption keys corresponding to the same iden-
tity constitute a proof of fraud. Of course, there are important differences. In a
regular PKI, the CA has to actively send the fraudulent certificate to potential
encrypters (which is risky for the CA) while in our setting, the PKG could just
decrypt the user messages passively. However, we believe that the IBE setting is
more demanding and ours is nonetheless a step in the right direction.

We call an identity based encryption scheme of the type discussed above as
a traceable identity based encryption (T-IBE) scheme. This is to reflect the fact
that if a malicious decryption key is discovered, it can be traced back either
to the corresponding user (if his decryption key is the same as the one found)
or to the PKG (if the user has a different decryption key). We formalize this
notion later on in the paper. We remark that what we discussed above is a slight
simplification of our T-IBE concept. Given a decryption key for an identity, we
allow a user to compute certain other decryption keys for the same identity as
long as all the decryption keys computable belong to the same family (a family
can be seen as a subspace of decryption keys). Thus in this case, two decryption
keys belonging to different families is a cryptographic proof of malicious behavior
of the PKG.

Although the concept of T-IBE is interesting, we do not expect it to be usable
on its own. We see this concept more as a stepping stone to achieving what we
call a black-box traceable identity based encryption discussed later in this section.

Our Constructions. We formalize the notion of traceable identity based encryp-
tion and present two construction for it; one very efficient but based on a strong
assumption, the other somewhat inefficient but based on the standard decisional
BDH assumption.

Our first construction is based on the identity based encryption scheme re-
cently proposed by Gentry [Gen06]. The scheme is the most efficient IBE con-
struction known to date without random oracle. Apart from computational effi-
ciency, it enjoys properties such as short public parameters and a tight security
reduction (albeit at the cost of using a strong assumption). Remarkably, we are
able to convert Gentry’s scheme to a T-IBE scheme without any changes whatso-
ever to the basic cryptosystem. We are able to construct a secure key generation
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protocol as per our requirement for the basic cryptosystem and then present new
proofs of security to show that the resulting system is a T-IBE system.

Our second construction of traceable identity based encryption is based on
the decisional BDH assumption and uses the IBE scheme of Waters [Wat05]
and the Fuzzy IBE scheme of Sahai and Waters [SW05] as building blocks. We
remark that the construction is not very efficient and requires several pairing
operations per decryption.

Black-Box Traceable Identity based Encryption. In traceable identity based en-
cryption, as explained we consider the scenario when a PKG generates and tries
to distribute a decryption key corresponding to an identity. T-IBE specifically
assumes that the key is a well-formed decryption key. However, one can imagine
a scenario where the PKG constructs a malformed decryption key which, when
used in conjunction with some other decryption process, is still able to decrypt
the ciphertexts. In the extreme case, there could a black box (using an unknown
key and algorithm) which is able to decrypt the ciphertexts. Given such a box, a
third party (such as the court of law), possibly with the cooperation of the PKG
and the user, should be able to trace the box back to its source. That is, it should
be able to determine whether it was the PKG or the user who was involved in
the creation of this black box. We call such a system as black-box traceable iden-
tity based encryption system. This is a natural extension of the T-IBE concept
and is closely related to the concept of black-box traitor tracing in broadcast
encryption [CFN94, BSW06]. We leave the construction of a black-box T-IBE
scheme as an important open problem.

We stress that black-box T-IBE is really what one would like to use in practice
since in our current T-IBE constructions, it is perfectly plausible that the PKG
could constructs a malformed decryption key and use it in conjunction with
some other decryption process as remarked before. We intend the current work
only to serve as an indication of what might be possible, and as motivation for
further work in this direction.

Related Work. To our knowledge, T-IBE is the first approach for any kind of mit-
igation to the problem of trust in the PKG without using multiple PKGs. On the
multiple PKGs side, Boneh and Franklin [BF01] proposed an efficient approach
to make the PKG distributed in their scheme using techniques from threshold
cryptography. Lee et al [LBD+04] proposed a variant of this approach using
multiple key privacy agents (KPAs). Also relevant are the new cryptosystems
proposed by Gentry [Gen03] and Al-Riyami and Paterson [ARP03]. Although
their main motivation was to overcome the key escrow problem, these works are
somewhat orthogonal to ours since these cryptosystems are not identity based.

Other Remarks. We only consider identity based encryption in this paper.
The analogue of T-IBE for identity based signatures appears straightforward
to achieve. We also note that it may be possible to profitably combine our ap-
proach with the multiple PKG approach and exploit the mutual distrust between
the PKGs. For example if two (or more) PKGs collude together to generate a
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decryption key for an identity, each PKG knows that it has left a cryptographic
proof of its fraud with others. We can have a system where the PKG who presents
this proof of fraud to the court is not penalized. Now since a PKG has the power
to sue another (to close down its business and have one less competitor), this
seems to be an effective fraud prevention idea. We do not explore this approach
in this paper and defer it to future work.

2 Preliminaries

2.1 Bilinear Maps

We present a few facts related to groups with efficiently computable bilinear
maps. Let G1 and G2 be two multiplicative cyclic groups of prime order p. Let
g be a generator of G1 and e be a bilinear map, e : G1 ×G1 → G2. The bilinear
map e has the following properties:

1. Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.

We say that G1 is a bilinear group if the group operation in G1 and the
bilinear map e : G1 ×G1 → G2 are both efficiently computable. Notice that the
map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.2 Complexity Assumptions

Decisional Bilinear Diffie-Hellman (BDH) Assumption Let a, b, c, z ∈ Zp be
chosen at random and g be a generator of G1. The decisional BDH assumption
[BB04a, SW05] is that no probabilistic polynomial-time algorithm B can distin-
guish the tuple (A = ga, B = gb, C = gc, e(g, g)abc) from the tuple (A = ga, B =
gb, C = gc, e(g, g)z) with more than a negligible advantage. The advantage of B
is ∣∣Pr[B(A, B,C, e(g, g)abc) = 0]− Pr[B(A,B, C, e(g, g)z) = 0]

∣∣

where the probability is taken over the random choice of the generator g, the
random choice of a, b, c, z in Zp, and the random bits consumed by B.

Decisional Truncated q-ABDHE Assumption The truncated augmented bilinear
Diffie-Hellman exponent assumption (truncated q-ABDHE assumption) was in-
troduced by Gentry [Gen06] and is very closely related to the q-BDHE problem
[BBG05] and the q-BDHI problem [BB04a]. Let g be a generator of G1. The
decisional truncated q-ABDHE assumption is: given a vector of q + 3 elements

(g′, g′(α
q+2), g, gα, g(α2), . . . , g(αq))
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no PPT algorithm B can distinguish e(g, g′)(α
q+1) from a random element Z ∈ G2

with more than a negligible advantage. The advantage of B is defined as
∣∣∣∣ Pr[B(g′, g′(α

q+2), g, gα, g(α2), . . . , g(αq), e(g, g′)(α
q+1)) = 0]

−Pr[B(g′, g′(α
q+2), g, gα, g(α2), . . . , g(αq), Z) = 0]

∣∣∣∣

where the probability is taken over the random choice of generator g, g′ ∈ G1,
the random choice of α ∈ Zp, the random choice of Z ∈ G2, and the random
bits consumed by B.

Computational q-BSDH Assumption The q-Strong Diffie-Hellman assumption
(q-SDH assumption) was introduced by Boneh and Boyen [BB04c] for the con-
struction of short signatures where it was also proven to be secure in the generic
group model. This assumption was also later used in the construction of short
group signatures [BBS04]. Let g be a generator of G1. The q-SDH assumption
is defined in (G,G) as follows. Given a vector of q + 1 elements

(g, gα, g(α2), . . . , g(αq))

no PPT algorithm A can compute a pair (r, g1/(α+r)) where r ∈ Zp with more
than a negligible advantage. The advantage of A is defined as

∣∣∣ Pr[A(g, gα, g(α2), . . . , g(αq)) = (r, g1/(α+r))]
∣∣∣

The q-BSDH assumption is defined identically to q-SDH except that now A
is challenged to compute (r, e(g, g)1/(α+r)). Note that the q-BSDH assumption
is already implied by the q-SDH assumption.

2.3 Miscellaneous Primitives

Zero-knowledge Proof of Knowledge of Discrete Log Informally, a zero-knowledge
proof of knowledge (ZK-POK) of discrete log protocol enables a prover to prove
to a verifier that it possesses the discrete log r of a given group element R in
question. Schnorr [Sch89] constructed an efficient number theoretic protocol to
give a ZK-POK of discrete log.

A ZK-POK protocol has two distinct properties: the zero-knowledge property
and the proof of knowledge properties. The former implies the existence of a
simulator S which is able to simulate the view of a verifier in the protocol
from scratch (i.e., without being given the witness as input). The latter implies
the existence of a knowledge-extractor Ext which interacts with the prover and
extracts the witness using rewinding techniques. For more details on ZK-POK
systems, we refer the reader to [BG92].
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1-out-of-2 Oblivious Transfer Informally speaking, a 1-out-of-2 oblivious transfer
protocol allows a receiver to choose and receive exactly one of the two string from
the sender, such that the other string is computationally hidden from the receiver
and the choice of the receiver is computationally hidden from the sender.

Oblivious transfer was first introduced by [Rab81] while the 1-out-of-2 variant
was introduced by [EGL85]. Various efficient constructions of 1-out-of-2 obliv-
ious transfer are known based on specific assumptions such factoring or Diffie-
Hellman [NP01, Kal05].

3 The Definitions and the Model

A Traceable Identity Based Encryption (T-IBE) scheme consists of five compo-
nents.

Setup This is a randomized algorithm that takes no input other than the implicit
security parameter. It outputs the public parameters PK and a master key MK.
Key Generation Protocol This is an interactive protocol between the public
parameter generator PKG and the user U . The common input to PKG and U are:
the public parameters PK and the identity ID (of U) for which the decryption
key has to be generated. The private input to PKG is the master key MK.
Additionally, PKG and U may use a sequence of random coin tosses as private
inputs. At the end of the protocol, U receives a decryption key dID as its private
output.
Encryption This is a randomized algorithm that takes as input: a message m,
an identity ID, and the public parameters PK. It outputs the ciphertext C.
Decryption This algorithm takes as input: the ciphertext C that was encrypted
under the identity ID, the decryption key dID for ID and the public parameters
PK. It outputs the message m.
Trace This algorithm associates each decryption key to a family of decryption
keys. That is, the algorithm takes as input a well-formed decryption key dID and
outputs a decryption key family number nF .

Some additional intuition about the relevance of trace algorithm is as follows.
In a T-IBE system, there are a super-polynomial number of families of decryp-
tion keys. Each decryption key dID for an identity ID will belong to a unique
decryption key family (denoted by the number nF ). Roughly speaking, in the
definitions of security we will require that: given a decryption key belonging to a
family, it should be intractable to find a decryption key belonging to a different
family (although it may be possible to find another decryption key belonging to
the same family).

To define security for a traceable identity based encryption system, we first
define the following games.

The IND-ID-CPA game The IND-ID-CPA game for T-IBE is very similar to the
IND-ID-CPA for standard IBE [BF01].
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Setup The challenger runs the Setup algorithm of T-IBE and gives the public
parameters PK to the adversary.
Phase 1 The adversary runs the Key Generation protocol with the challenger
for several adaptively chosen identities ID1, . . . , IDq and gets the decryption keys
dID1 , . . . , dIDq .
Challenge The adversary submits two equal length messages m0 and m1 and
an identity ID not equal to any of the identities quries in Phase 1. The challenger
flips a random coin b and encrypts mb with ID. The ciphertext C is passed on
to the adversary.
Phase 2 This is identical to Phase 1 except that adversary is not allowed to ask
for a decryption key for ID.
Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b]− 1
2 .

We note that the above game can extended to handle chosen-ciphertext at-
tacks in the natural way by allowing for decryption queries in Phase 1 and Phase
2. We call such a game to be the IND-ID-CCA game.

The FindKey game The FindKey game for T-IBE is defined as follows.
Setup The adversary (acting as an adversarial PKG ) generates and passes the
public parameters PK and an identity ID on to the challenger. The challenger
runs a sanity check on PK and aborts if the check fails.
Key Generation The challenger and the adversary then engage in the key gen-
eration protocol to generate a decryption key for the identity ID. The challenger
gets the decryption dID as output and runs a sanity check on it to ensure that it
is well-formed. It aborts if the check fails.
Find Key The adversary outputs a decryption key d′ID. The challenger runs a
sanity check on d′ID and aborts if the check fails.

Let SF denote the event that trace(d′ID) = trace(dID), i.e., d′ID and dID belong
to the same decryption key family. The advantage of an adversary A in this
game is defined as Pr[SF ].

We note that the above game can be extended to include a decryption phase
where the adversary adaptively queries the challenger with a sequence of cipher-
texts C1, . . . , Cm. The challenger decrypts Ci with its key dID and sends the
resulting message mi. This phase could potentially help the adversary deduce
information about the decryption key family of dID if it is able to present a
maliciously formed ciphertext and get the challenger try to decrypt it.

However, if the adversary was somehow restricted to presenting only well-
formed ciphertexts, the decrypted message is guaranteed to contain no informa-
tion about the decryption key family (since decryption using every well-formed
key would lead to the same message). This can be achieved by adding a cipher-
text sanity check phase during decryption. In both of our constructions, we take
this route instead of adding a decryption phase to the FindKey game.

The ComputeNewKey game The ComputeNewKey game for T-IBE is defined
as follows.
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Setup The challenger runs the Setup algorithm of T-IBE and gives the public
parameters PK to the adversary.
Key Generation The adversary runs the Key Generation protocol with the
challenger for several adaptively chosen identities ID1, . . . , IDq and gets the de-
cryption keys dID1 , . . . , dIDq .
New Key Computation The adversary outputs two decryption keys d1

ID and
d2

ID for an identity ID. The challenger runs a key sanity check on both of them
and aborts if the check fails.

Let DF denote the event that trace(d1
ID) 6= trace(d2

ID), i.e., d1
ID and d2

ID belong
to different decryption key families. The advantage of an adversary A in this
game is defined as Pr[DF ].

We also define a Selective-ID ComputeNewKey game where the adversary
has to declare in advance (i.e., before the setup phase) the identity ID for which
it will do the new key computation. The advantage of the adversary is similarly
defined to be the probability of the event that it is able to output two decryption
keys from different decryption key families for the pre-declared identity ID. This
weakening of the game can be seen as similar to weakening of the IND-ID-CPA
game by some previously published papers [CHK03, BB04a, SW05, GPSW06].

Definition 1 A traceable identity based encryption scheme is IND-ID-CPA se-
cure if all polynomial time adversaries have at most a negligible advantage in the
IND-ID-CPA game, the FindKey game and the ComputeNewKey game. IND-ID-
CCA security for T-IBE is defined similarly.

4 Construction based on Gentry’s Scheme

Our first construction of traceable identity based encryption is based on the
identity based encryption scheme recently proposed by Gentry [Gen06]. The
scheme is the most efficient IBE construction known to date without random
oracle. Apart from computational efficiency, it enjoys properties such as short
public parameters and a tight security reduction. This comes at the cost of using
a stronger assumption known as the truncated q-ABDHE which is a variant of
an assumption called q-BDHE introduced by Boneh, Boyen and Goh [BBG05].

Remarkably, we are able to convert Gentry’s scheme to a T-IBE scheme with-
out any changes whatsoever to the basic cryptosystem. We are able to construct
a secure key generation protocol as per our requirement for the basic cryptosys-
tem and then present new proofs of security to show the negligible advantage of
the adversary in the three games of our T-IBE model. Our proofs are based on
the truncated q-ABDHE and the q-BSDH assumption (see Section 2). The end
result is a T-IBE scheme which is as efficient as the best known IBE scheme with-
out random oracle. We view this fact as evidence that the additional traceability
property does not necessarily come at the cost of a performance penalty.
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4.1 The Construction

Let G1 be a bilinear group of prime order p, and let g be a generator of G1. In
addition, let e : G1 ×G1 → G2 denote a bilinear map. A security parameter, κ,
will determine the size of the groups.

As discussed before, the basic cryptosystem (i.e., Setup, Encryption and De-
cryption) is identical to Gentry’s [Gen06]. For completeness, we describe the
whole T-IBE scheme. Parts of this section are taken almost verbatim from
[Gen06].

Setup The PKG picks random generators g, h1, h2, h3 ∈ G1 and a random α ∈ Zp.
It sets g1 = gα and then chooses a hash function H from a family of universal
one-way hash function. The published public parameters PK and the master key
MK are given by

PK = g, g1, h1, h2, h3,H MK = α

Key Generation Protocol This is the protocol through which a user U with an
identity ID can securely get a decryption key dID from PKG . As in [Gen06], PKG
aborts if ID = α. The key generation protocol proceeds as follows.

1. The user U selects a random r ∈ Zp and sends R = hr
1 to the PKG .

2. U gives to PKG a zero-knowledge proof of knowledge of the discrete log (as
in Section 2) of R with respect to h1.

3. The PKG now chooses three random numbers r′, rID,2, rID,3 ∈ Zp. It then
computes the following values

(r′, h′ID,1), (rID,2, hID,2), (rID,3, hID,3)

where h′ID,1 = (Rg−r′)1/(α−ID) and hID,i = (hig
−rID,i)1/(α−ID), i ∈ {2, 3}

and sends them to the user U .
4. U computes rID,1 = r′/r and hID,1 = (h′ID,1)

1/r. Note that since h′ID,1 =
(hr

1g
−r′)1/(α−ID), hID,1 = ((hr

1)
1/r(g−r′)1/r)1/(α−ID) = (h1g

−rID,1)1/(α−ID). It
sets the decryption key dID = {(rID,i, hID,i) : i ∈ {1, 2, 3}}.

5. U now runs a key sanity check on dID as follows. It computes gα−ID = g1/gID

and checks if e(hID,i, g
α−ID) ?= e(hig

−rID,i , g) for i ∈ {1, 2, 3}. U aborts if the
check fails for any i.

At the end of this protocol, U has a well-formed decryption key dID for the
identity ID.

Encryption To encrypt a message m ∈ G2 using identity ID ∈ Zp, generate a
random s ∈ Zp and compute the ciphertext C as follows

C = (gs
1g
−s.ID, e(g, g)s, m·e(g, h1)−s, e(g, h2)se(g, h3)sβ)

where for C = (u, v, w, y), we set β = H(u, v, w).
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Decryption To decrypt a ciphertext C = (u, v, w, y) with identity ID, set β =
H(u, v, w) and test whether

y = e(u, hID,2hID,3
β)vrID,2+rID,3β

If the above check fails, output ⊥, else output

m = w·e(u, hID,1)vrID,1

For additional intuition about the system and its correctness, we refer the
reader to [Gen06]. We also note that the ciphertext sanity check in the decryption
algorithm rejects all invalid ciphertexts as shown in [Gen06].

Trace This algorithm takes a well-formed decryption key dID = {(rID,i, hID,i) :
i ∈ {1, 2, 3}} and outputs the decryption key family number nF = rID,1. Hence
if rID,1 = r′ID,1 for two decryption keys dID and d′ID, then trace(d′ID) = trace(dID)
(i.e., the two keys belong to the same decryption key family).

4.2 Security Proofs

Theorem 1 The advantage of an adversary in the IND-ID-CCA game is negligi-
ble for the above traceable identity based encryption scheme under the decisional
truncated q-ABDHE assumption.

Proof Sketch: The proof in our setting very much falls along the lines of
the proof of IND-ID-CCA security of Gentry’s scheme [Gen06]. Here we just give
a sketch highlighting the only difference from the one in [Gen06].

The only difference between [Gen06] and our setting is how a decryption
key dID is issued for an identity ID. In the proof of [Gen06], PKG was free to
choose a decryption key dID on its own and pass it on to the user. PKG in fact
chose rID,i using a specific technique depending upon the truncated q-ABDHE
problem instance given. In our setting, however, PKG and the user U engage in
a key generation protocol where rID,1 is jointly determined by both of them (via
the choice of numbers r and r′). Hence PKG does not have complete control over
rID,1.

The above problem can be solved as follows. PKG generates a decryption key
dID = {(rID,i, hID,i) : i ∈ {1, 2, 3}} on its own exactly as in [Gen06] and then
“forces” the output of U to be the above key during key generation. Recall that
during the key generation protocol, U first chooses a random r ∈ Zp and sends
R = hr

1 to the PKG . U then gives to PKG a zero-knowledge proof of knowledge
of the discrete log of R. The proof of knowledge property of the proof system
implies the existence of a knowledge extractor Ext (see Section 2). Using Ext on
U during the proof of knowledge protocol, PKG can extract the discrete log r (by
rewinding U during protocol execution) with all but negligible probability. Now
PKG sets r′ = rrID,1. It then sends (r′, h′ID,1 = hr

ID,1), (rID,2, hID,2), (rID,3, hID,3) to
U .
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The user U will compute rID,1 = r′/r, hID,1 = (h′ID,1)
1/r. Hence, PKG has

successfully forced the decryption key dID to be the key chosen by it in advance.
¥

Theorem 2 Assuming that computing discrete log is hard in G1, the advantage
of an adversary in the FindKey game is negligible for the above traceable identity
based encryption scheme.

Proof: Let there be a PPT algorithm A that has an advantage ε in the
FindKey game in the above T-IBE construction. We show how to build a sim-
ulator B that is able to solve discrete log in G1 with the same advantage ε. B
proceeds as follows.

B runs the algorithmA and gets the public parameters PK = (g, g1, h1, h2, h3)
and the identity ID from A. It then invokes the challenger, passes on h1 to it
and gets a challenge R ∈ G1. The goal of B would be to find the discrete log r
of R w.r.t. h1.

B engages in the key generation protocol withA to get a decryption key for ID
as follows. It sends R to A and now has to give a zero-knowledge proof of knowl-
edge of the discrete log of R. The zero-knowledge property of the proof system
implies the existence of a simulator S which is able to successfully simulate the
view of A in the protocol (by rewinding A), with all but negligible probability.
B uses the simulator S to simulate the required proof even without of knowledge
of r. B then receives the string (r′, h′ID,1), (rID,2, hID,2), (rID,3, hID,3) from A. As

before, B runs a key sanity check by testing if e(hID,i, g
α−ID) ?= e(hig

−rID,i , g) for

i ∈ {2, 3}. For i = 1, B tests if e(h′ID,i, g
α−ID) ?= e(Rg−r′ , g). If any of these tests

fail, B aborts as would an honest user in the key generation protocol.
Now with probability at least ε, A outputs a decryption key (passing the

key sanity check and hence well-formed) d′ID such that its decryption key family
number n′F equals the decryption key family number of the key dID, where dID is
defined (but unknown to B) as (r′/r, (h′ID,1)

1/r, (rID,2, hID,2), (rID,3, hID,3)). After
computing n′F from d′ID (by running trace on it), B computes r = r′/n′F . B
outputs r as the discrete log (w.r.t. h1) of the challenge R and halts. ¥

Theorem 3 The advantage of an adversary in the ComputeNewKey game is
negligible for the above traceable identity based encryption scheme under the
computational q-BSDH assumption

Proof: Let there be a PPT algorithm A that has an advantage ε in the
ComputeNewKey game in the above T-IBE construction. We show how to build
a simulator B that is able to solve the computational q-BSDH assumption with
the same advantage ε. B proceeds as follows.

The functioning of B in this proof is very similar to that of the simulator in
the IND-ID-CPA proof of Gentry’s scheme [Gen06]. B invokes the challenger and
gets as input the q-BSDH problem instance (g, g1, g2, . . . , gq), where gi = g(αi).

B generates random polynomials fi(x) ∈ Zp[x] of degree q for i ∈ {1, 2, 3}.
It computes hi = gfi(α) using (g, g1, g2, . . . , gq) and sends the public parameters
PK = (g, g1, h1, h2, h3) to the algorithm A.
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B now runs the key generation protocol with A (possibly multiple times) to
pass on the decryption keys dID1 , . . . , dIDq for the identities ID1, . . . , IDq chosen
adaptively byA. For an identity ID, B runs the key generation protocol as follows.
If ID = α, B uses α to solve the q-BSDH problem immediately. Otherwise, let
FID,i(x) denote the (q − 1) degree polynomial FID,i(x) = (fi(x) − fi(ID))/(x −
ID). B computes the decryption key dID = {(rID,i, hID,i) : i ∈ {1, 2, 3}} where
rID,i = fi(ID) and hID,i = gFID,i(α). Note that this is a valid private key since
hID,i = g(fi(α)−fi(ID))/(α−ID) = (hig

−fi(ID))1/(α−ID). Now B forces the output of
A to be the key dID during the key generation protocol (see proof of Theorem 1).
For more details on why this decryption key appears to be correctly distributed
to A, we refer the reader to [Gen06].

Now with probability at least ε, A outputs two decryption keys (passing
the key sanity check and hence well-formed) d1

ID = {(r1
ID,i, h

1
ID,i)} and d2

ID =
{(r2

ID,i, h
2
ID,i)} for i ∈ {1, 2, 3} for an identity ID such that trace(d1

ID) 6= trace(d2
ID).

This means that r1
ID,1 6= r2

ID,1. B then computes

(h1
ID,1/h2

ID,1)
1/(r2

ID,1−r1
ID,1)

= (h1g
−r1

ID,1/h1g
−r2

ID,1)1/(r2
ID,1−r1

ID,1)(α−ID)

= g1/(α−ID)

Finally, B outputs −ID, g1/(α−ID) as a solution to the q-BSDH problem in-
stance given and halts. ¥

5 Construction based on Decisional BDH Assumption

Our second construction of traceable identity based encryption is based on the
decisional BDH assumption which is considered to be relatively standard in the
groups with bilinear maps. However, the construction is not very efficient and
requires several pairing operations per decryption.

We use two cryptosystems as building blocks in this construction: the identity
based encryption scheme proposed by Waters [Wat05] and the fuzzy identity
based encryption (FIBE) scheme proposed by Sahai and Waters [SW05]. Our
first idea is to use an IBE scheme derived from the FIBE construction of Sahai
and Waters [SW05]. In FIBE, the encryption is done with a set of attributes
which will be defined by the identity in our setting. Additionally, we add a set of
dummy attributes in the ciphertext. During the key generation protocol, the user
gets the set of attributes as defined by his identity as well as a certain subset of
the dummy attributes. Very roughly, the subset is such that it can be used to
decrypt the ciphertext part encrypted with dummy attributes.

The main properties we need (to add traceability) are derived from the above
IBE scheme constructed using FIBE [SW05]. However, as is the case with FIBE,
the IBE scheme is only secure in the selective-ID model. To achieve full security,
we use the Waters cryptosystem [Wat05] in parallel with the FIBE scheme. We
remark that Waters cryptosystem is only used to achieve full security and any
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other fully secure IBE scheme (e.g., [BB04b]) based on a standard assumption
could be used. We treat the Waters cryptosystem as a black box as we do not
require any specific properties from it. Although we are able to achieve full
security in the IND-ID-CCA game, we do need to use the selective-ID model for
the ComputeNewKey game.

5.1 The Construction

As before, G1 is a bilinear group of prime order p, and let g be a generator of
G1. In addition, let e : G1 ×G1 → G2 denote a bilinear map.

We represent the identities as strings of a fixed length `ID (since an identity
ID ∈ Zp, `ID is the number of bits required to represent an element in Zp). Let
`sp be a number which is decided by a statistical security parameter κs. Let ` =
`ID +`sp. We define the following sets: S = {1, . . . , `}, SID = {1, . . . , `ID}, Ssp =
{`ID + 1, . . . , `}. We shall denote the ith bit of the identity ID with IDi. Our
construction follows.

Setup Run the setup algorithm of the Waters cryptosystem [Wat05] and get the
public parameters PKw and master key MKw. Now, for each i ∈ S, choose two
numbers ti,0 and ti,1 uniformly at random from Zp such that all 2` numbers are
different. Also choose a number y uniformly at random in Zp.

The published public parameters are PK = (PKw, PKsw), where:

PKsw = ({(Ti,j = gti,j ) : i ∈ S, j ∈ {0, 1}}, Y = e(g, g)y, g)

The master key MK = (MKw,MKsw), where:

MKsw = ({(ti,j) : i ∈ S, j ∈ {0, 1}}, y)

Key Generation Protocol The key generation protocol between PKG and a user
U (with the identity ID) proceeds as follows.

1. U aborts if the published values in the set {Ti,j : i ∈ S, j ∈ {0, 1}} are not
all different.

2. PKG generates a decryption key dw for identity ID using MKw as per the
key generation algorithm of the Waters cryptosystem. It sends dw to U .

3. PKG generates ` random numbers r1, . . . , r` from Zp such that r1 + · · ·+r` =
y. It computes R1 = gr1 , . . . , R` = gr` and sends them to the user.

4. PKG computes the key components dsw,i = gri/ti,IDi for all i ∈ SID and
sends them to U . It also computes key components dsw,i,j = gri/ti,j for all
i ∈ Ssp, j ∈ {0, 1} and stores them.

5. PKG and U then engage in `sp executions of a 1-out-of-2 oblivious transfer
protocol where PKG acts as the sender and U acts as the receiver. In the ith
execution (where i ∈ Ssp), the private input of PKG is the key components
dsw,i,0, dsw,i,1 and the private input of U is a randomly selected bit bi. The
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private output of U is the key component dsw,i,bi
. For each i ∈ Ssp, U now

runs the following check:

e(Ri, g) ?= e(Ti,bi , dsw,i,bi)

U aborts if any of the above checks fails. This check roughly ensures that for
a majority of indices i ∈ Ssp, the correct value ri was used in the creation of
dsw,i,0 and dsw,i,1. Thus for a majority of indices i ∈ Ssp, dsw,i,0 and dsw,i,1

were different from each other.
6. U sets dsw = ({dsw,i}i∈SID

, {bi, dsw,i,bi
}i∈Ssp

) and runs a key sanity check
on dsw by checking if:

Y
?=

∏

i∈SID

e(Ti,IDi
, dsw,i)

∏

i∈Ssp

e(Ti,bi
, dsw,i,bi

)

U aborts if the above check fails. Finally, U sets its decryption key dID =
(dw, dsw).

Encryption To encrypt a message m ∈ G2 under an identity ID, break the
message into two random shares m1 and m2 such that m1 ⊕ m2 = m. Now
choose a random value s ∈ Zp and compute the ciphertext C = (Cw, Csw).
Cw is the encryption of m1 with ID using the public parameters PKw as per
the encryption algorithm of the Waters cryptosystem and Csw is given by the
following tuple.

(C ′ = m2Y
s, C ′′ = gs, {(Ci = Ti,IDi

s) : i ∈ SID}, {(Ci,j = Ti,j
s) : i ∈ Ssp, j ∈ {0, 1}})

Decryption To decrypt the ciphertext C = (Cw, Csw) using the decryption key
dID = (dw, dsw), first run a ciphertext sanity check on Csw by checking if:

e(Ci, g) ?= e(Ti,IDi , C
′′), i ∈ SID, and

e(Ci,j , g) ?= e(Ti,j , C
′′), i ∈ Ssp, j ∈ {0, 1}

If any of the above check fails, output ⊥. It is easy to see that this check en-
sures that {(Ci = Ti,IDi

s) : i ∈ SID}, {(Ci,j = Ti,j
s) : i ∈ Ssp, j ∈ {0, 1}} where

s is the discrete log of C ′′ w.r.t. g. This ensure that all invalid ciphertexts are
rejected. In the appendix, we sketch an alternative technique of doing ciphertext
sanity check which requires only two pairing operations.

If the ciphertext sanity check succeeds, recover the share m1 by running the
decrypt algorithm of Waters cryptosystem on Cw using dw. The share m2 is
recovered by the following computations:

C ′/
∏

i∈SID

e(Ci, dsw,i)
∏

i∈Ssp

e(Ci,bi , dsw,i,bi)

= m2e(g, g)sy/
∏

i∈SID

e(gsti,IDi , gri/ti,IDi )
∏

i∈Ssp

e(gsti,bi , gri/ti,bi )

= m2e(g, g)sy/
∏

i∈S

e(g, g)sri = m2
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Finally, output m = m1 ⊕m2.

Trace This algorithm takes a well-formed decryption key dID = (dw, dsw) where
the component dsw = ({dsw,i}i∈SID

, {bi, dsw,i,bi
}i∈Ssp

) and outputs the decryp-
tion key family number nF = b`ID+1◦b`ID+2◦. . .◦b`, where ◦ denotes concatena-
tion.

Security proofs are omitted for the lack of space. They can be found in the
full version.

6 Future Work

This work motivates several interesting open problems. The most important one
of course is the construction of a black-box traceable identity based encryption
as discussed in Section 1.

Our second construction based on the decisional BDH assumption is not very
efficient and requires several pairing operations per decryption. It is an open
problem to design more efficient T-IBE schemes based on an standard assump-
tion. Further, the second construction used the Selective-ID ComputeNewKey
game to prove security. It would be interesting to see if this restriction can be
removed. Combining the T-IBE approach with the multiple PKG approach also
seems to be a promising direction.

Finally, it remains to be seen if the same approach to mitigate the key es-
crow problem can be profitably used in other related setting like attribute based
encryption [SW05, GPSW06].
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Appendix

A Efficient Ciphertext Sanity Check in the Second
Construction

To decrypt the ciphertext C = (Cw, Csw) using the decryption key dID =
(dw, dsw), the efficient ciphertext sanity check on Csw is run as follows. First
choose `ID + 2`sp random numbers si,IDi , i ∈ SID and si,j , i ∈ Ssp, j ∈ {0, 1}.
Now check if:

e

(
g,

∏

i∈SID

C
si,IDi
i

∏

i∈Ssp,j∈{0,1}
C

si,j

i,j

)
?= e

(
C ′′,

∏

i∈SID

T
si,IDi

i,IDi

∏

i∈Ssp,j∈{0,1}
T

si,j

i,j

)

If the above check fails, output⊥. It can be shown that the above check rejects
an invalid ciphertext with all but negligible probability (while the previous check
was perfect).


