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Abstract. This work describes a mode of operation, TET, that turns
a regular block cipher into a length-preserving enciphering scheme for
messages of (almost) arbitrary length. When using an n-bit block cipher,
the resulting scheme can handle input of any bit-length between n and 2n

and associated data of arbitrary length.
The mode TET is a concrete instantiation of the generic mode of op-
eration that was proposed by Naor and Reingold, extended to handle
tweaks and inputs of arbitrary bit length. The main technical tool is a
construction of invertible “universal hashing” on wide blocks, which is
as efficient to compute and invert as polynomial-evaluation hash.

1 Introductions

Adding secrecy protection to existing (legacy) protocols and applications raises
some unique problems. One of these problems is that existing protocols some-
times require that the encryption be “transparent”, and in particular preclude
length-expansion. One example is encryption of storage data “at the sector level”,
where both the higher-level operating system and the lower-level disk expect the
data to be stored in blocks of 512 bytes, and so any encryption method would
have to accept 512-byte plaintext and produce 512-byte ciphertext.

Clearly, insisting on a length-preserving (and hence deterministic) transfor-
mation has many drawbacks. Indeed, even the weakest common notion of se-
curity for “general purpose encryption” (i.e., semantic security [GM84]) cannot
be achieved by deterministic encryption. Still, there may be cases where length-
preservation is a hard requirement (due to technical, economical or even political
constrains), and in such cases one may want to use some encryption scheme that
gives better protection than no encryption at all. The strongest notion of security
for a length-preserving transformation is “strong pseudo-random permutation”
(SPRP) as defined by Luby and Rackoff [LR88], and its extension to “tweak-
able SPRP” by Liskov et al. [LRW02]. A “tweak” is an additional input to the
enciphering and deciphering procedures that need not be kept secret. This re-
port uses the terms “tweak” and “associated data” pretty much interchangeably,
except that “associated data” hints that it can be of arbitrary length.

Motivated by the application to “sector level encryption”, many modes of
operation that implement tweakable SPRP on wide blocks were described in the



literature in the last few years. Currently there are at least eight such propos-
als, following three different approaches: The “encrypt-mix-encrypt” approach
is used for CMC, EME and EME∗ [HR03,HR04,Hal04], the “hash-ECB-hash”
(due to Naor and Reingold [NR97]) is used in PEP [CS06b], and the “hash-CTR-
hash” approach is used by XCB [FM04], HCTR [WFW05] and HCH [CS06a]
(and some variation of the last approach is used in ABL4 [MV04]). Among these
proposals, the “encrypt-mix-encrypt” modes are the most efficient (at least in
software), the “hash-CTR-hash” modes are close behind, and PEP and ABL4
are considerably less efficient (more on efficiency in Section 3.5).

This work presents a ninth mode called TET (for linear-Transformation;
ECB; linear-Transformation). TET belongs to the “hash-ECB-hash” family, but
in terms of efficiency it is similar to the modes of the “hash-CTR-hash” family,
thus complementing the current lineup of modes. We also mention that TET may
have some practical advantages with respect to intellectual-property concerns,
see further discussion in the appendix.

The main technical contribution of this work is a construction of an efficient
invertible universal hashing for wide blocks, which is needed in the “hash-ECB-
hash” approach. Given the wide range of applications of universal hashing in
general, this invertible universal hashing may find applications beyond the TET
mode itself. Another small contribution is a slight modification of the OMAC
construction for pseudorandom function due to Iwata and Korasawa [IK03]. (In
TET we use that pseudorandom function to handle the message-length and the
tweak). This construction too can find other applications.

The Naor-Reingold construction and TET. Recall that the Naor-Reingold con-
struction from [NR97] involves a layer of ECB encryption, sandwiched between
two layers of universal hashing, as described in Figure 1. The universal hashing
layers must be invertible (since they need to be inverted upon decryption), and
their job is to ensure that different queries of the attacker will almost never
result in “collisions” at the ECB layer. Namely, for any two plaintext (or cipher-
text) vectors p = 〈p1, . . . , pm〉, q = 〈q1, . . . , qm〉 and two indexes i, j (such that
(p, i) 6= (q, j)) it should hold with high probability (over the hashing key) that
the i’th block of hashing p is different from the j’th block of hashing q.

As mentioned above, the main contribution of this note is a construction of
an invertible universal hashing on wide blocks, which is as efficient to compute
and invert as polynomial-evaluation hash. In a nutshell, the hashing family works
on vectors in GF(2n)m, and it is keyed by a single random element τ ∈R GF(2n),
which defines the following m×m matrix:

Aτ
def=




τ τ2 τm

τ τ2 τm

. . .
τ τ2 τm




Set σ
def= 1 + τ + τ2 + . . . + τm, we observe that if σ 6= 0 then the matrix

Mτ = Aτ +I is invertible and its inverse is M−1
τ = I−(Aτ/σ). Thus multiplying
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Fig. 1. The Naor-Reingold generic mode: the universal hashing must be invertible, and
its job is to prevent collisions in the ECB layer.

by Mτ for a random τ (subject to σ 6= 0) is an invertible universal hashing, and
computing and inverting this hash function is about as efficient as computing
polynomial evaluation.

The starting point of this work is an implementation of the generic Naor-
Reingold mode of operation using the above for the universal hashing layers. We
then extend that mode to handle associated data and input of arbitrary length,
thus getting the TET mode. Specifically, TET takes a standard cipher with n-
bit blocks and turns it into a tweakable enciphering scheme with message space
M = {0, 1}n..2n−1 (i.e., any string of at least n and at most 2n − 1 bits) and
tweak space T = {0, 1}∗. The key for TET consists of two keys of the underlying
cipher (roughly one to process the tweak and another to process the data). As we
mentioned, TET offers similar performance characteristics to XCB, HCTR and
HCH (making it significantly more efficient than PEP and ABL4, and almost as
efficient as CMC, and EME/EME∗).

A word on notations. Below we use ⊕ to denote bit-wise exclusive or (which is
the same as addition in GF (2n)), and we use +/− to denote addition/subtraction
in other fields or domains (e.g., integer addition). The sum operator

∑
is always

used to denote finite-field addition.

Organization. Some standard definitions are recalled in Appendix A (which
is taken almost verbatim from [HR04,Hal04]). Section 2 describes the hash-
ing scheme that underlies TET, Section 3 describes the TET mode itself, and



Section 4 examines the security for this mode. In Appendix B we briefly discuss
intellectual-property issues.
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2 The underlying hashing scheme

The universality property that is needed for the Naor-Reingold mode of operation
is defined next.

Definition 1. Let H : K ×D → Rm be a hashing family from some domain D
to m-vectors over the range R, with keys chosen uniformly from K. We denote
by Hk(x) the output of H (which is an m-vector over R) on key k ∈ K and input
x ∈ D. We also denote by Hk(x)i the i’th element of that output vector.

For a real number ε ∈ (0, 1), we say that H is “ε-blockwise-universal” if for
every x, x′ ∈ D and integers i, i′ ≤ m such that (x, i) 6= (x′, i′), it holds that
Prk[Hk(x)i = Hk(x′)i′ ] ≤ ε, where the probability is taken over the uniform
choice of k ∈ K.

We say that H is “ε-xor-blockwise-universal” if in addition for all fixed ∆ ∈
GF(2n) it holds that Prk[Hk(x)i ⊕Hk(x′)i′ = ∆] ≤ ε.

It was proven in [NR99] that the construction from Figure 1 is a strong PRP
on wide blocks provided that the hashing layers are blockwise universal and
invertible, and the underlying cipher E is a strong PRP on narrow blocks.

2.1 BPE: A blockwise universal hashing scheme

To get an invertible blockwise universal hash function, Naor and Reingold pro-
posed in [NR97] to use an unbalanced Feistel network with standard universal
hashing. For example, use polynomial-evaluation hash function applied to the
first m− 1 blocks, xor the result to the last block, and then derive m− 1 “pair-
wise independent” values from the last block and xor them back to the first
m− 1 blocks. This solution, however, is somewhat unsatisfying in that it entails
inherent asymmetry (which is likely to raise problems with implementations).
Below we propose a somewhat more elegant blockwise universal hashing based
on a simple algebraic trick.

Although for TET we only need a hashing scheme over the field GF (2n), we
describe here the scheme over an arbitrary field. Let F be a field (with more
than m + 2 elements) and consider an m×m matrix over F , Mτ

def= Aτ + I for
an element τ ∈ F , where

Aτ
def=




τ τ2 τm

τ τ2 τm

. . .
τ τ2 τm


 (1)



It is easy to check that the determinant of Mτ is σ
def=

∑m
i=0 τ i, and so Mτ is

invertible if and only if σ 6= 0. We observe that when it is invertible, the structure
of M−1

τ is very similar to the structure of Mτ itself.

Observation 1 Let F be a field and let τ ∈ F be such that σ
def=

∑m
i=0 τ i 6= 0,

let Aτ be an m×m matrix with Ai,j = τ j, and let Mτ
def= Aτ + I. Then M−1

τ =
I − (Aτ/σ).

Proof. We first note that A2
τ = Aτ (σ − 1), since for all i, j we have

(A2
τ )i,j =

m∑

k=1

τk+j = τ j

(
m∑

k=1

τk

)
= τ j

(
m∑

k=0

τk − 1

)
= (Aτ )i,j · (σ − 1)

Therefore, assuming σ 6= 0 we get

(Aτ + I) · (I − Aτ

σ
) = Aτ + I − A2

τ

σ
− Aτ

σ
= I +

Aτσ −Aτ (σ − 1)−Aτ

σ
= I

It follows that computing y = Mτx and x = M−1
τ y can be done as efficiently

as computing polynomial-evaluation hash. Namely, to compute y = Mτx we
first compute s =

∑m
i=1 xiτ

i and set yi = xi + s, and to invert x = M−1
τ y we

re-compute s as s =
∑m

i=1 yi(τ i/σ) and set xi = yi − s. Moreover, since τ and σ
depend only the hashing key, one can speed up the multiplication by τ and τ/σ
by pre-computing some tables (cf. [Sho96]).

The blockwise-universal family BPE. Given the observation from above, we de-
fine the hashing family BPE (for Blockwise Polynomial-Evaluation) and its in-
verse BPE−1 as follows: Let F be a finite field with m + 3 or more elements.

Input: An m-vector of elements from F , x = 〈x1, . . . , xm〉 ∈ Fm.
Keys: Two elements τ, β ∈ F , such that

∑m
i=0 τm 6= 0.

Output: Let α be some fixed primitive element of F , and denote by b def=〈
β, αβ, . . . , αm−1β

〉
the m-vector over F whose i’th entry is αi−1β. The two

hash functions BPEτ,β(x) and BPE−1
τ,β(x) are defined as

BPEτ,β(x) def= Mτx + b and BPE−1
τ,β(x) def= M−1

τ (x− b) (2)

By construction if follows that BPE−1
τ,β(BPEτ,β(x)) = x for all x and all τ, β

(provided that
∑m

i=0 τm 6= 0). We now prove that these two families (BPE and
its inverse) are indeed “blockwise universal”.

Claim. Fix a finite field F and an integer m ≤ |F| − 3, and also fix x,x′ ∈ Fm

and indexes i, i′ ≤ m such that (x, i) 6= (x′, i′), and any δ ∈ F .

(i) If i 6= i′ then Prτ,β [[BPEτ,β(x′)]i′ − [BPEτ,β(x′)]i′ = δ] = 1/|F| and simi-

larly Prτ,β

[
[BPE−1

τ,β(x′)]i′ − [BPE−1
τ,β(x′)]i′ = δ

]
= 1/|F|.



(ii) If i = i′ and x 6= x′ then both Prτ,β [[BPEτ,β(x′)]i′ − [BPEτ,β(x′)]i′ = δ]

and Prτ,β

[
[BPE−1

τ,β(x′)]i′ − [BPE−1
τ,β(x′)]i′ = δ

]
are bounded by m

|F|−g , where
g = GCD(m + 1, |F| − 1) if the characteristic of the field F divides m + 1,
and g = GCD(m + 1, |F| − 1)− 1 otherwise.

Proof. Case (i), i 6= i′. In this case we have [BPEτ,β(x)]i − [BPEτ,β(x′)]i′ =
(αi−1 − αi′−1)β + ((Mτx)i − (Mτx′)i′) which is equal to any fixed δ with prob-
ability exactly 1/|F| over the choice of β ∈R F (since α is primitive and so
αi−1 6= αi′−1). Similarly

[BPE−1
τ,β(x)]i − [BPE−1

τ,β(x′)]i′ =
(

(I − Aτ

σ
)(x− b)

)

i

−
(

(I − Aτ

σ
)(x′ − b)

)

i′

= ((
Aτ

σ
b)i − bi)− ((

Aτ

σ
b)i′ − bi′) +

(
(I − Aτ

σ
)x

)

i

−
(

(I − Aτ

σ
)x′

)

i′

= (αi′−1 − αi−1)β +
(

(I − Aτ

σ
)x

)

i

−
(

(I − Aτ

σ
)x′

)

i′

where the last equality follows since (Aτb)i = (Aτb)i′ (because all the rows of
Aτ are the same). Again, this sum equals δ with probability exactly 2−n.
Case (ii), i = i′ and x 6= x′. In this case we have [BPEτ,β(x)]i−[BPEτ,β(x′)]i−
δ = (xi − x′i − δ) +

∑m
j=1(xj − x′j)τ

j , which is zero only when τ is a root of this
specific non-zero degree-m polynomial. Similarly for BPE−1

τ,β we have

[BPE−1
τ,β(x)]i − [BPE−1

τ,β(x′)]i − δ =
(

(I − Aτ

σ
)(x− b)

)

i

−
(

(I − Aτ

σ
)(x′ − b)

)

i

− δ

=
(

(I − Aτ

σ
)x

)

i

−
(

(I − Aτ

σ
)x′

)

i

− δ = (xi − x′i − δ) +
m∑

j=1

τ j

σ
(xj − x′j)

∗=
1
σ


(xi − x′i − δ)(

m∑

j=0

τ j) +
m∑

j=1

τ j(xj − x′j)




=
1
σ


(xi − x′i − δ) +

m∑

j=1

τ j((xj − x′j) + (xi − x′i − δ))




where the equality ∗= holds since σ =
∑m

i=0 τ j . The last expression is zero when τ
is a root of the parenthesized polynomial. That polynomial is non-zero since (a) if
xi−x′i 6= δ then it has non-zero constant term, and (b) if xi−x′i = δ then there is
some index j such that xj 6= x′j , and thus the coefficient ((xj−x′j)+(xi−x′i−δ))
of τ j is non-zero.

We conclude that for both BPEτ,β and BPE−1
τ,β , a collision in this case im-

plies that τ must be a root of some fixed non-zero degree-m polynomial. Such
polynomials have at most m roots, and τ is chosen at random in GF(2n) subject
to the constraint that σ 6= 0. Since σ itself is a non-zero degree-m polynomial,



then there are at least 2n −m elements τ ∈ GF(2n) for which σ 6= 0, and so the
collision probability is at most m/(2n −m).

Moreover, for most values of m we can actually show that there are fewer than
m values of τ for which σ = 0. Specifically, we note that σ = (τm+1−1)/(τ −1),
so σ = 0 implies that also τm+1 − 1 = 0, which means that τ is an m + 1’st
root of unity in F . We know that the number of m + 1’st roots of unity in F
is exactly GCD(m + 1, |F| − 1), and one of them is the trivial root τ = 1. The
trivial root τ = 1 is also a root of σ if and only if the characteristic of F divides
m + 1 (since there are m + 1 terms in the sum that defines σ), and all the other
m + 1’st roots of unity are also root of σ. Hence τ is chosen at random from a
set of size |F| − g, where g = GCD(m + 1, |F| − 1) if the characteristic of F
divides m + 1 and g = GCD(m + 1, 2n − 1)− 1 otherwise.

A variant of BPE. It is easy to see that the same claim can be proven also
for the variant of BPE that subtracts the vector b before multiplying by Mτ ,
namely if we define

B̃PEτ,β(x) def= Mτ (x− b) and B̃PE
−1

τ,β(x) def= M−1
τ x + b (3)

then also the hash families B̃PE and B̃PE
−1

are ε-blockwise universal for the
same ε.

Variable input length. Claim 2.1 refers only to the fixed-input length scenario,
where BPEτ,β is applied always to inputs of the same length. Similar arguments
can be used to show universality of BPE, BPE−1, B̃PE, and B̃PE also in the
variable-input-length scenario, where the same τ and β are used for all the
different input lengths.

Claim 2.1 refers only to the fixed-input length scenario, where BPEτ,β is
applied always to inputs of the same length. Similar arguments can show that
the four variations BPE, BPE−1, B̃PE, and B̃PE are also ε-blockwise universal
in the variable-input-length scenario, where the same τ and β are used for all
the different input lengths.

One complication is that in the variable-input-length scenario, the element
τ ∈ F must be chosen such that for all m it holds that 1+τ + . . .+τm 6= 0. This
can be achieved by choosing τ as a primitive element in F , which means that it
is not an m + 1’ts root of unity for any m < |F| − 2, and therefore also not a
root of 1 + τ + . . . + τm. As the number of primitive elements in F is φ(|F| − 1)
(where φ is Euler’s totient function), it follows that in this case we choose τ from
a set of size exactly φ(|F| − 1). Hence the collision probability for any x,x′ is
bounded by ε = m/φ(|F| − 1) where m is the length of the longer of x,x′.

3 The TET mode of operation

The BPE hashing scheme immediately implies a mode of operation for imple-
menting a fixed-input-length, non-tweakable enciphering scheme for block-sizes



that are a multiple of n bits: namely the Naor-Reingold construction from [NR97]
with BPE for the hashing layers (over the field GF(2n), where n is the block
size of the underlying cipher). In this section I describe how to extend this con-
struction to get a tweakable scheme that supports arbitrary input lengths (and
remains secure also when using the same key for different input lengths).

3.1 Tweaks and variable input length

Incorporating a tweak into the basic mode turns out to be almost trivial: Instead
of having the element β be part of the key, we derive it from the tweak using the
underlying cipher. For example, if we are content with n-bit tweaks then we can
just set β ← EK(T ) where k is the cipher key and T is the tweak. Intuitively,
this is enough since the multiples of β will be used to mask the input values
before they arrive at the ECB layer, so using different pseudo-random values of
β for different tweak values means that the ECB layer will be applied on different
blocks.

To handle longer tweaks we can replace the simple application of the underly-
ing cipher E with a variable-input-length cipher-based pseudo-random function
(e.g., CBC-MAC, PMAC, etc.), using a key which is independent of the cipher
key that is used for the ECB layer. In Section 3.3 I describe a particular CBC-
MAC-like implementation that suits our needs.

The same fix can be applied also to handle variable input length: namely
we derive β from both the tweak and the input length. If we are content with
input length of no more than 2` and tweaks of size n − ` bits, then we can
use β ← EK(L, T ) where T is the tweak value and L is the input length, or
else we can use β ← PRFK(L, T ) for some variable-input-length pseudo-random
function. As noted above, using the same hashing key for different input lengths
implies that the element τ must satisfy σm = 1⊕ τ ⊕ . . . ⊕ τm 6= 0 for every
possible input length m, and this can be ensured by choosing τ as a random
primitive element in GF(2n).

3.2 Partial blocks

It appears harder to extend the mode to handle inputs whose length is not a
multiple of n bits. Ideally, we would have liked an elegant way of extending
BPE to handle such lengths, and then handle partial blocks in the ECB layer
using ciphertext-stealing (cf. [MM82, Fig.2-23]). Unfortunately, I do not know
how to extend BPE to handle input length that is not a multiple of n bits while
maintaining invertability (except going back to the unbalanced Feistel idea).

Instead, I borrowed a technique that was used also in EME∗: When process-
ing an input whose length is not a multiple of n bits, one of the block cipher
applications in the ECB layer is replaced with two consecutive applications of
the cipher, and the middle value (between the two calls to the underlying ci-
pher) is xor-ed to the partial block. (In addition, the partial block is added to
the polynomial-evaluation, so that its value effects all the other blocks.)



In more details, let x = 〈x1, . . . , xm〉 be all the full input blocks and let xm+1

be a partial block, ` = |xm+1|, 0 < ` < n. Instead of just computing y = BPE(x),
we set the i’th full block to yi ← BPE(x)i ⊕ (xm+110..0), while leaving xm+1

itself unchanged. Then we apply the ECB layer, computing zi ← EK(yi) for the
first m − 1 full blocks, and computing u ← EK(ym) and zm ← EK(u) for the
last full block. The first bits of u are then xor-ed into the partial block, setting
wm+1 = xm+1 ⊕ u|1..` . Then we do the final BPE layer (adding (wm+110..0) to
each full block), thus getting wi ← BPE(z)i ⊕ (wm+110..0) and the TET output
is the vector w1, . . . , wm, wm+1.

3.3 The PRF function

It is clear that any secure pseudo-random function can be used to derive the
element β. We describe now a specific PRF, which is a slight adaptation of the
OMAC construction of Iwata and Korasawa [IK03], that seems well suited for our
application. The slight modification to OMAC can be thought of as constructing
a “tweakable PRF”, with an on-line/off-line optimization for the tweak.1 (In our
case, the input-length of TET is the “tweak” for the PRF and the tweak of TET
is the input to the PRF.)

We assume that the input length of TET is less than 2n bits, and we denote
by L the input length in bits encoded as an n-bit integer. Also denote the
tweak for TET (which is the input to the PRF) by T = 〈T1, . . . , Tm′〉 where
|T1| = · · · = |Tm′−1| = n and 1 ≤ |Tm′ | ≤ n.

To compute β ← PRFK(L, T ) we first compute X ← EK(L), then compute
β as a CBC-MAC of T , but before the last block-cipher application we xor
either the value αX or the value α2X (depending on whether the last block
is a full block or a partial block). In more details, we set V0 = 0 and then
Vi ← EK(Vi−1 ⊕ Ti) for i = 1, . . . , m′ − 1. Then, if the last block is a full block
(|Tm′ | = n) then we set β ← EK(αX ⊕ Vm′−1 ⊕ Tm′), and if the last block is a
partial block (|Tm′ | < n) then we set β ← EK(α2X ⊕ Vm′−1 ⊕ (Tm′10..0)).

Notice that the only difference between this function and the OMAC con-
struction is that OMAC does not have the additional input L and it sets X ←
EK(0). Proving that this is a secure pseudo-random function is similar to the
proof of OMAC [IK03], and is omitted here.

We point out that on one hand, the length L is needed only before processing
the last tweak block, so this pseudo-random function is suited for streaming
applications where the length of messages is not known in advance.2 On the
other hand, if used with a fixed input length (where L is known ahead of time)
then the computation of X can be done off line, in which case we save one
block-cipher application during the on-line phase.
1 Formally there is not much difference between a “tweakable” and “non-tweakable”

PRF, one can always process the tweak by concatenating it to the input. But here
it is convenient to make the distinction since we can offer some tweak-specific per-
formance optimization.

2 As explained in Section 3.5, TET is not a very good fit for such cases, but this PRF
functions can perhaps be used in applications other than TET.



3.4 Some other details

To get a fully-specified mode of operation one needs to set many other small
details. Below I explain my choices for the details that I set, and describe those
that are still left unspecified.

If the input length is then these elements are bad values for τ Bad key probability

512 bytes α(2128−1)/3, α2·(2128−1)/3 2−127

1024 bytes αi·(2128−1)/5 for i = 1, 2, 3, 4 2−126

4096 bytes αi·(2128−1)/257 for i = 1, 2, . . . , 256 2−120

65536 bytes αi·(2128−1)/17 for i = 1, 2, . . . , 16 2−124

Table 1. Bad τ values for various input lengths, assuming n = 128

The element α ∈ GF(2n). Recall that BPE uses a fixed primitive element α ∈
GF(2n). If the field GF(2n) is represented with a primitive polynomial, then
this fixed element should be set as the polynomial x (or 1/x), in which case a
multiplication by α can be implemented with an n-bit shift and a conditional
xor.3

The two hashing layers. I chose to use the same hashing keys τ, β for both
hashing layers. The security of the mode does not seem to be effected by this.
On the other hand, having different keys for the two hashing layers adds a
considerable burden to an implementation, especially it if optimizes the GF
multiplications by preparing some tables off line.

The hashing key τ . I also chose to derive the hashing key τ from the same
cipher key as the hashing key β, rather than being a separate key. (This
decision is rather arbitrary, I made it because I could not see any reason to
keep τ as a separate key.) Specifically, it can be set as τ ← PRFK(0, 0n) =
EK(α · EK(0)). Note that this is not a duplicate of any PRFK(L, T ), since
the input length L is always at least n bits.4

Of course, τ must be chosen so that for any message length m it holds that
σm 6= 0 (where σm =

∑m
i=0 τm). Hence if setting τ ← PRFK(0, 0) results

in a bad value for τ then we can keep trying PRFK(0, 1), PRFK(0, 2), etc.
When using TET with fixed input length (containing m complete blocks),
we can just include a list of all the “bad τ values” for which σm = 0 with the
implementation. This list is fairly easy to construct: Denoting g = GCD(m+
1, 2n−1), when m is even the lists consists of αi·(2n−1)/g for i = 1, 2, . . . , g−1

3 The choice between setting α = x or α = 1/x depends on the endianess of the field
representation, and it should be made so that multiplication by α requires left shift
and not right shift.

4 Setting τ ← EK(0) would work just as well in this context, but the effort in proving
it is too big for the minuscule saving in running time.



(where α is a primitive element). When m is odd it consists of the same
elements and also of the element α0 = 1. In Table 1 we list the “bad τ
values” for various input lengths assuming n = 128.
The approach of having a fixed list of “bad τ values” may not work as well
when using TET with variable-input length. One way to handle this case is to
insist on τ being a primitive element in GF(2n), in which case we know that
σm 6= 0 for all length m. (We can efficiently test is τ is a primitive element
given the prime factorization of 2n−1). But a better way of handling variable
length is to allow different τ ’s for different input lengths. Specifically, when
handling a message of with m full blocks, we try PRFK(0, 0), PRFK(0, 1),
. . . and set τ to the first value for which σm 6= 0. It is not hard to see that
this is just as secure as insisting on the same τ for all lengths (since we only
use τ to argue about collisions between messages of the same length).

Ordering the blocks for polynomial-evaluation. I chose to order the blocks
at the input of BPE in “reverse order”, evaluating the polynomial as

∑m
i=1 xiτ

m−i+1.
The reason is to allow processing to start as soon as possible in the case
where the input arrives one block at a time. We would like to use Horner’s
rule when computing BPE(x), processing the blocks in sequence as

s = (. . . ((x1τ ⊕ x2)τ ⊕ x3)τ . . . ⊕ xm)τ

which means that x1 is multiplied by τm, x2 is multiplied by τm−1, etc.
Similarly when computing BPE−1(y) we would implement the polynomial-
evaluation as

s = (. . . ((y1τ ⊕ y2)τ ⊕ y3)τ . . . ⊕ ym)(τ/σ)

which means that y1 is multiplied by τm/σ, y2 is multiplied by τm−1/σ, etc.
The hashing direction. For each of the two hashing layers, one can use either

of BPE, BPE−1, B̃PE, or B̃PE
−1

. For the encryption direction, I chose to

use B̃PE
−1

for the first hashing layer and BPE−1 for the second layer. This
means that on decryption we use BPE as the first hashing layer and B̃PE
for the second layer.
I chose the inverse hash function on encryption and the functions themselves
on decryption because inverting the functions may be less efficient than
computing them in the forward direction (since one needs to multiply also
by τ/σ). In a typical implementation for storage, one would use encryption
when writing to storage and decryption when reading back from storage. As
most storage is optimized for read (at the expense of the less-frequent write
operations), it makes sense to allocate the faster operations for read in this
case too.
As for the choice between BPE and B̃PE, I chose to add the vector b in the
middle, right before and after the ECB layer. The rationale here is that it
is possible to do the computation β ← PRFK(L, T ) concurrently with the
multiplication by Mτ (or its inverse).



function PRFK(L, T1 · · ·Tm′) // |L| = |T1| = · · · = |Tm′−1| = n, 1 ≤ |Tm′ | ≤ n

001 V0 ← 0, X ← EK(L)
002 for i ← 1 to m′ − 1 do Vi ← EK(Vi−1 ⊕ Ti)
003 if |Tm′ | = n then return EK(Vm′−1 ⊕ Tm′ ⊕ αX)
004 else return EK(Vm′−1 ⊕ Tm′ ⊕ α2X)

Algorithm TETK1,K2(T ; P1 · · ·PmPm+1)

// |P1| = · · · = |Pm| = n, 0 ≤ |Pm+1| < n

101 L ← mn + |Pm+1| // input size (bits)
102 i = 0
103 τ ← PRFK1(0, i), σ ← 1⊕ τ ⊕ . . . ⊕ τm

104 if σ = 0 then i ← i + 1, goto 103
105 β ← PRFK1(L, T ), SP ← 0, SC ← 0

110 for i ← 1 to m do SP ← (SP ⊕ Pi) · τ
111 SP ← SP/σ
112 if |Pm+1| > 0 then
113 SP ← SP ⊕ Pm+1 padded with 10..0

120 for i ← 1 to m do
121 PP i ← Pi ⊕ SP
122 PPP i ← PP i ⊕ αi−1β
123 for i ← 1 to m− 1 do
124 CCC i ← EK2(PPP i)
125 if |Pm+1| > 0 then
126 MM ← EK2(PPPm)
127 CCCm ← EK2(MM )
128 Cm+1 ← Pm+1 ⊕ (MM truncated)
129 else CCCm ← EK2(PPPm)

130 for i ← 1 to m do
131 CC i ← CCC i ⊕ αi−1β
132 SC ← (SC ⊕ CC i) · τ
133 SC ← SC/σ
134 if |Pm+1| > 0 then
135 SC ← SC ⊕ Cm+1 padded with 10..0

140 for i ← 1 to m do
141 Ci ← CC i ⊕ SC

150 return C1 . . . CmCm+1

Algorithm TET−1
K1,K2

(T ; C1 · · ·CmCm+1)

// |C1| = · · · = |Cm| = n, 0 ≤ |Cm+1| < n

201 L ← mn + |Cm+1| // input size (bits)
202 i = 0
203 τ ← PRFK1(0, i), σ ← 1⊕ τ ⊕ . . . ⊕ τm

204 if σ = 0 then i ← i + 1, goto 203
205 β ← PRFK1(L, T ), SP ← 0, SC ← 0

210 for i ← 1 to m do SC ← (SC ⊕ Ci) · τ
212 if |Cm+1| > 0 then
213 SC ← SC ⊕ Cm+1 padded with 10..0

220 for i ← 1 to m do
221 CC i ← Ci ⊕ SC
222 CCC i ← CC i ⊕ αi−1β
223 for i ← 1 to m− 1 do
224 PPP i ← E−1

K2
(CCC i)

225 if |Cm+1| > 0 then
226 MM ← E−1

K2
(CCCm)

227 PPPm ← E−1
K2

(MM )

228 Pm+1 ← Cm+1 ⊕ (MM truncated)
229 else PPPm ← E−1

K2
(CCCm)

230 for i ← 1 to m do
231 PP i ← PPP i ⊕ αi−1β
232 SP ← (SP ⊕ PP i) · τ
234 if |Cm+1| > 0 then
235 SP ← SP ⊕ Pm+1 padded with 10..0

240 for i ← 1 to m do
241 Pi ← PP i ⊕ SP

250 return P1 . . . PmPm+1

Fig. 2. Enciphering and deciphering under TET, with plaintext P = P1 . . . PmPm+1,
ciphertext C = C1 · · ·CmCm+1, and tweak T . The element α ∈ GF(2n) is a fixed
primitive element.



Given the choices above, the specification of the TET mode is given in
Figure 2. Other details that are not specified here are the choice of the un-
derlying cipher and the block-size n, and the representation of the field GF(2n)
(including endianess issues).

3.5 Performance of TET

As specified above, the TET mode can be used with variable input length, and
in the long version of this note [Hal07] we prove that it is secure when used in
this manner. However, its efficiency (at least in software) depends crucially on
pre-processing that is only possible when used with fixed input length (or at
least with a small number of possible lengths). The reason is that on encryption
one needs to multiply by τ/σ, which depends on the message length (since σ =∑m

i=0 τ i). When used with fixed input length, the value τ/σ can be computed
off line, and some tables can be derived to speed up the multiplication by τ/σ.
When used with variable input length, however, the value τ/σ must be computed
on-line, which at least for software implies a considerable cost. Hence, TET is
not very appealing as a variable-input-length mode.

We stress, however, that the motivating application for TET, namely “sector-
level encryption”, is indeed a fixed-input-length application. Also, there are some
limited settings where one can use variable input length without suffering much
from the drawback above. For example, a “write once / read many times” appli-
cation, where the data is encrypted once and then decrypted many times, would
only need to worry about computing σ in the initial encryption phase (since σ
is not used during decryption). Also, the same value of σ is used for every bit-
length from mn to (m + 1)n− 1, so length variability within this limited range
in not effected.5

Below we analyze the performance characteristics of TET only for fixed input
length. With this assumption, the computation of the PRF function from above
takes exactly m′ applications of the cipher, where m′ is the number of blocks of
associated data (full or partial). (This is because the computation of the mask
value X ← EK(L) can be done off line.) Then we need either m or m − 1 GF-
multiplies for the polynomial evaluation (depending if we have m or m − 1 full
blocks), followed by m block-cipher applications for the ECB layer, and again m
or m − 1 GF multiplies. Altogether, we need m + m′ block-cipher applications
and either 2m or 2m − 2 GF multiplies. (The shift and xor operations that
are also needed are ignored in this description, since they are insignificant in
comparison.)

Table 2 compares the number of block-cipher calls and GF multiplies in
CMC, EME∗, XCB, HCH, and TET.6 It is expected that software efficiency

5 For example, an implementation can handle both 512-byte blocks and 520-byte
blocks with a single value of σ (assuming block length of n = 128 bits).

6 The other modes are not included since EME is essentially a special case of EME∗,
PEP an ABL4 are significantly less efficient than the others, and HCTR is almost
identical to HCH.



Mode CMC EME∗ XCB HCH TET

Block-cipher calls 2m + 1 2m + 1 + dm/ne m + 1 m + 3 m + 1

GF multiplies – – 2(m + 3) 2(m− 1) 2m or 2(m− 1)

Table 2. Workload for enciphering an m-block input with a 1-block tweak.

will be proportional to these numbers. (As far as I know, the current “com-
mon wisdom” is that computing a GF(2128) multiplication in software using the
approach from [Sho96] with reasonable-size tables, is about as fast as a single
application of AES-128.)

As for hardware implementations, all the modes except CMC are paral-
lelizable and pipelinable, so they can be made to run as fast as needed using
sufficiently large hardware. Table 3 describes a somewhat speculative efficiency
comparison of hypothetical “fully pipelined” implementations of the modes from
above (except CMC). In that table I assume (following [YMK05]) that a one-
cycle GF(2128) multiplication is about three times the size of a module for com-
puting the AES round function, and that AES-128 is implemented as 10 such
modules. A few other relevant characteristics of these modes are discussed next.

Mode EME∗ XCB HCH TET

Latency m + 30 m + 13 m + 31 2m + 11

Time 2m + 10(dm/ne+ 2) 2m + 27 2m + 31 2m + 11

Size 10 13 13 13

Table 3. Hardware efficiency: A speculative comparison of pipelined implementations
for m-block input and 1-block tweak. Latency is number of cycles until first output
block, time is number of cycles until last output block, and size is measured in the
equivalent of number of AES-round modules.

Any input length. All of these modes except CMC support any input length
from n bits and up. CMC supports only input length which is a multiple
of n bits (but it should be relatively straightforward to extended it using
ciphertext-stealing).

Associated data. The modes EME∗, XCB and TET support tweaks of arbi-
trary length. CMC and HCH support only n-bit tweaks (but it is straight-
forward to extended them to support arbitrary-size tweaks).

Security proofs. The security of XCB was not proved formally, only a sketch
was given, and CMC was only proven secure with respect to fixed input-
length. The other modes were proven secure with respect to variable input-
length. Providing the missing proof seems fairly straightforward to me (but
one never knows for sure until the proof is actually written).

Number of keys. Although in principle it is always possible to derive all the
needed key material from just one key, different modes are specified with



different requirements for key material. In fact using two keys as in TET
(one for the ECB layer and one for everything else) offers some unexpected
practical advantages over using just one key.
Specifically, implementations sometimes need to be “certified” by standard
bodies (such as NIST), and one criterion for certification is that the im-
plementation uses an “approved mode of operation” for encryption. Since
standard bodies are slow to approve new modes, it may be beneficial for a
TET implementation to claim that it uses the “approved” ECB mode with
pre-and post-processing, and moreover the pre- and post-processing is inde-
pendent of the ECB key. Also, detaching the ECB key from the key that
is used elsewhere may make it easier to use a hardware accelerator that
supports ECB mode.

4 Security of TET

We relate the security of TET to the security of the underlying primitives from
which it is built as follows:

Theorem 1. [TET security] Fix n, s ∈ N. Consider an adversary attacking
the TET mode with a truly random permutation over {0, 1}n in place of the block
cipher and a truly random function instead of PRF, such that the total length of
all the queries that the attacker makes is at most s blocks altogether.

The advantage of this attacker in distinguishing TET from a truly random
tweakable length-preserving permutation is at most 1.5s2/φ(2n − 1) (where φ is
Euler’s totient function). Using the notations from Appendix A, we have

Adv±p̃rp
TET (s) ≤ 3s2

2φ(2n − 1)

The proof appears in the long version of this note [Hal07]. The intuition
is that as long as there are no block collisions in the hash function, then the
random permutation in the ECB layer will be applied to new blocks, so it will
will output random blocks and the answer that the attacker will see is therefore
random. ut

Corollary 1. With the same setting as in Theorem 1, consider an attacker
against TET with a specific cipher E and a specific PRF F , where the attack
uses at most total of s′ blocks of associated data. Then

Adv±p̃rp
TET[E](t, s, s

′) ≤ 3s2

2φ(2n − 1)
+ 2( Adv±prp

E (t′, s) + Advprf
PRF (t′, s′))

where t′ = t + O(n(s + s′)). 2



5 Conclusions

We presented a new method for invertible “blockwise universal” hashing which
is about as efficient as polynomial-evaluation hash, and used it in a construction
of a tweakable enciphering scheme called TET. This complements the current
lineup of tweakable enciphering schemes by providing a scheme in the family of
“hash-ECB-hash” which is as efficient as the schemes in the “hash-CTR-hash”
family. We also expect that the hashing scheme itself will find other uses beyond
TET.
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A Preliminaries

A tweakable enciphering scheme is a function E : K × T × M → M where
M =

⋃
i∈I{0, 1}i is the message space (for some nonempty index set I ⊆ N)

and K 6= ∅ is the key space and T 6= ∅ is the tweak space. We require that for
every K ∈ K and T ∈ T we have that E(K,T, ·) = ET

K(·) is a length-preserving
permutation on M. The inverse of an enciphering scheme E is the enciphering
scheme D = E−1 where X = DT

K(Y ) if and only if ET
K(X) = Y . A block cipher

is the special case of a tweakable enciphering scheme where the message space is
M = {0, 1}n (for some n ≥ 1) and the tweak space is the singleton set containing
the empty string. The number n is called the blocksize. By Perm(n) we mean
the set of all permutations on {0, 1}n. By PermT (M) we mean the set of all
functions π : T ×M→M where π(T, ·) is a length-preserving permutation.

An adversary A is a (possibly probabilistic) algorithm with access to some
oracles. Oracles are written as superscripts. By convention, the running time of
an algorithm includes its description size. The notation A ⇒ 1 describes the
event that the adversary A outputs the bit one.

Security measure. For a tweakable enciphering scheme E : K × T ×M → M
we consider the advantage that the adversary A has in distinguishing E and its
inverse from a random tweakable permutation and its inverse: Adv±p̃rp

E (A) =

Pr
[
K

$←K : AEK(·,·) E−1
K (·,·) ⇒ 1

]
− Pr

[
π

$← PermT (M) : Aπ(·,·) π−1(·,·) ⇒ 1
]

The notation shows, in the brackets, an experiment to the left of the colon and
an event to the right of the colon. We are looking at the probability of the
indicated event after performing the specified experiment. By X

$←X we mean



to choose X at random from the finite set X . In writing ±p̃rp the tilde serves
as a reminder that the PRP is tweakable and the ± symbol is a reminder that
this is the “strong” (chosen plaintext/ciphertext attack) notion of security. For
a block cipher, we omit the tilde.

Without loss of generality we assume that an adversary never repeats an
encipher query, never repeats a decipher query, never queries its deciphering
oracle with (T, C) if it got C in response to some (T, M) encipher query, and
never queries its enciphering oracle with (T,M) if it earlier got M in response to
some (T, C) decipher query. We call such queries pointless because the adversary
“knows” the answer that it should receive.

When R is a list of resources and Advxxx
Π (A) has been defined, we write

Advxxx
Π (R) for the maximal value of Advxxx

Π (A) over all adversaries A that use
resources at most R. Resources of interest are the running time t, the number
of oracle queries q, and the total number of n-bit blocks in all the queries s. The
name of an argument (e.g., t, q, s) will be enough to make clear what resource
it refers to.

B Intellectual-Property Issues

The original motivation for devising the TET mode was to come up with a
reasonably efficient mode that is “clearly patent-free”. The IEEE security-in-
storage working group (SISWG) was working on a standard for length-preserving
encryption for storage, and some of the participants expressed the wish to have
such a mode. (Disclaimer: Not being a patent lawyer, I can only offer my educated
guesses for the IP status of the various modes. The assessment below reflects only
my opinion about where things stand.)

The modes CMC/EME/EME∗ from the “encrypt-mix-encrypt” family are all
likely to be patent-encumbered, due to US Patent Application 20040131182A1
from the University of California (which as of this writing was not yet issued).
Similarly, the XCB mode – which is the first proposed mode in the “hash-CTR-
hash” family – is likely to be patent-encumbered due to a US patent application
US20070081668A1 from Cisco Systems (also still not issued as of this writing).
The status of the other members of the “hash-CTR-hash” family is unclear: they
may or may not be covered by the claims of the Cisco patent when it is issued.

This state of affairs left the “hash-ECB-hash” approach as the best candidate
for finding patent-free modes: this approach is based on the paper of Naor and
Reingold [NR97] that pre-dates all these modes by at least five years, and for
which no patent was filed. Specifically for TET, I presented the basic construction
from Section 2 in an open meeting of the IEEE SISWG in October of 2002 (as
well as in an email message that I sent the SISWG mailing list on October
9, 2002), and I never filed for any patent related to this construction. Thus it
seems unlikely to me that there are any patents that cover either the general
“hash-ECB-hash” approach or TET in particular.


