
Finding Small Roots of Bivariate Integer

Polynomial Equations: a Direct Approach

Jean-Sébastien Coron

University of Luxembourg

Abstract. Coppersmith described at Eurocrypt 96 an algorithm for
finding small roots of bivariate integer polynomial equations, based on
lattice reduction. A simpler algorithm was later proposed in [9], but it
was asymptotically less efficient than Coppersmith’s algorithm. In this
paper, we describe an analogous simplification but with the same asymp-
totic complexity as Coppersmith. We illustrate our new algorithm with
the problem of factoring RSA moduli with high-order bits known; in
practical experiments our method is several orders of magnitude faster
than [9].

Key-words: Coppersmith’s theorem, lattice reduction, cryptanalysis.

1 Introduction

At Eurocrypt 96, Coppersmith described how lattice reduction can be used to
find small roots of polynomial equations [5–7]. Coppersmith’s technique has
found numerous applications for breaking variants of RSA; for example, crypt-
analysis of RSA with d < N .29 [3], polynomial-time factorization of N = prq for
large r [4], and cryptanalysis of RSA with small secret CRT-exponents [18, 1].
Coppersmith’s technique was also used to obtain an improved security proof for
OAEP with small public exponent [23], and to show the deterministic equiva-
lence between recovering the private exponent d and factoring N [10, 19].

There are two main theorems from Coppersmith. The first one concerns find-
ing small roots of p(x) = 0 mod N when the factorization of N is unknown.
Coppersmith proved that any root x0 with |x0| < N1/δ can be found in poly-
nomial time, where δ = deg p. The technique consists in building a lattice that
contains the solutions of the modular polynomial equation; all small solutions
are shown to belong to an hyperplane of the lattice; an equation of this hyper-
plane is obtained by considering the last vector of an LLL-reduced basis; this
gives a polynomial h(x) such that h(x0) = 0 over the integers, from which one
can recover x0. The method can be extended to handle multivariate modular
polynomial equations, but the extension is heuristic only.

Coppersmith’s algorithm was further simplified by Howgrave-Graham in [13].
Howgrave-Graham’s approach is more direct and consists in building a lattice
of polynomials that are multiples of p(x) and N ; then by lattice reduction one
computes a polynomial with small coefficients such that h(x0) = 0 mod Nk; if

the coefficient of h(x) are sufficiently small then h(x0) = 0 must hold over Z as
well, which enables to recover x0. Howgrave-Graham’s approach seems easier to
analyze, in particular for the heuristic extension to multivariate modular equa-
tions, for which there is much more freedom in selecting the polynomial multiples
than for the univariate case. Howgrave-Graham’s approach was actually used in
all subsequent applications of Coppersmith’s technique [1, 3, 4, 18–20].

Coppersmith’s second theorem concerns finding small roots of bivariate inte-
ger polynomial equations p(x, y) = 0 over the integers (not modulo N). Copper-
smith proved that if |x0| < X and |y0| < Y with XY < W 2/(3δ) then such root
(x0, y0) can be found in polynomial-time, where W := maxij |pij |X iY j . As for
the univariate case, the algorithm consists in building a lattice containing the
solutions of the polynomial equation; all small solutions are shown to belong to
an hyperplane of the lattice, that is obtained by considering the last vector of
an LLL-reduced basis. The equation of the hyperplane gives another polynomial
h(x, y) with the same root (x0, y0) as p(x, y), which enables to recover (x0, y0).
There can be improved bounds depending on the shape of the polynomial p(x, y);
see [2] for a complete analysis. As for the univariate case, the method extends
heuristically to more variables. However, as mentioned in [8], the analysis is more
difficult to follow than for the univariate case.

For Coppersmith’s second theorem, a simplification was later proposed at
Eurocrypt 2004 [9], analogous to Howgrave-Graham’s simplification for the uni-
variate case. It consists in generating an arbitrary integer n of appropriate size
and constructing a lattice of polynomials that are multiples of p(x, y) and n; then
by lattice reduction one computes a polynomial with small coefficients such that
h(x0, y0) = 0 mod n; if the coefficients of h(x, y) are sufficiently small, then
h(x0, y0) = 0 holds over Z, which enables to recover (x0, y0) by taking the resul-
tant of h(x, y) and p(x, y). As for the univariate case, this approach seems easier
to implement; it was later used in [11] for partial key exposure attacks on RSA,
and in [16] to break one variant of RSA.

However, as opposed to the univariate case, this later simplification is not
fully satisfactory because asymptotically its complexity is worse than for Cop-
persmith’s second theorem. Namely, the algorithm in [9] is polynomial time
under the stronger condition XY < W 2/(3δ)−ε, for any constant ε > 0; but for
XY < W 2/(3δ) the algorithm has exponential-time complexity :

exp
(

O(log2/3 W)
)

,

whereas Coppersmith’s algorithm is polynomial time.
Therefore in this paper we describe a new algorithm for the bivariate integer

case, with a simplification analogous to Howgrave-Graham and [9], but with the
same polynomial-time complexity as in Coppersmith’s algorithm; namely for
XY < W 2/(3δ) our algorithm has complexity

O(log15 W)

using LLL [17] and O(log11 W) using the improved L2 algorithm [21]. This is
done by taking a well chosen integer n (rather than arbitrary) when building the

lattice of polynomials; this enables to eliminate most columns of the lattice and
then apply LLL on a sub-lattice of smaller dimension. Our new algorithm is easy
to implement and performs well in practice. In Section 4 we show the results of
practical experiments for the factoring with high-order bits known attack against
RSA; we show that the running time is improved by several orders of magnitude
compared to [9].

2 Preliminaries

Let u1, . . . , uω ∈ Z
n be linearly independent vectors with ω ≤ n. A lattice L

spanned by 〈u1, . . . , uω〉 is the set of all integer linear combinations of u1, . . . , uω.
Such a set of vectors ui’s is called a lattice basis. We say that the lattice is full
rank if ω = n.

Any two bases of the same lattice L are related by some integral matrix of
determinant ±1. Therefore, all the bases have the same Gramian determinant
det1≤i,j≤ω < ui, uj >. One defines the determinant of the lattice L as the square
root of the Gramian determinant. If the lattice L is full rank, then the determi-
nant of L is equal to the absolute value of the determinant of the ω × ω matrix
whose rows are the basis vectors u1, . . . , uω.

Theorem 1 (LLL). Let L be a lattice spanned by (u1, . . . , uω) ∈ Z
n, where

the Euclidean norm of each vector is bounded by B. The LLL algorithm, given

(u1, . . . , uω), finds in time O(ω5n log3 B) a vector b1 such that:

‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω.

In order to obtain a better complexity, one can use an improved version of
LLL due to Nguyen and Stehlé, called the L2 algorithm [21]. The L2 algorithm
achieves the same bound on ‖b1‖ but in time O(ω4n(ω + log B) log B).

In this paper we also consider lattices generated by a set of vectors that
are not necessarily linearly independent. Let u1, . . . , um ∈ Z

n with m ≥ n;
the lattice L generated by 〈u1, . . . , um〉 consists of all integral linear combina-
tions of u1, . . . , um. A lattice basis for L can be obtained by triangularization of
u1, . . . , um; a polynomial-time triangularization algorithm is described in [12];
more details will be given in Section 3.1.

We prove a simple lemma that will be useful when analyzing the determinant
of such lattices; it shows that the determinant of a full rank lattice generated by
a matrix of row vectors is not modified when performing elementary operations
on the columns of the matrix :

Lemma 1. Let M be an integer matrix with m rows and n columns, with m ≥ n.

Let L be the lattice generated by the rows of M . Let M ′ be a matrix obtained by

elementary operations on the columns of M , and let L′ be the lattice generated

by the rows of M ′. Then if L is full rank, L′ is full rank with detL′ = detL.

Proof. See Appendix.

3 Our new Algorithm

We consider a polynomial p(x, y) with coefficients in Z with maximum degree δ
independently in x, y :

p(x, y) =
∑

0≤i,j≤δ

pi,jx
iyj.

We are looking for an integer pair (x0, y0) such that p(x0, y0) = 0 and |x0| < X
and |y0| < Y . We assume that p(x, y) is irreducible over the integers.

Let k be an integer > 0. We consider the set of polynomials :

sa,b(x, y) = xa · yb · p(x, y), for 0 ≤ a, b < k (1)

ri,j(x, y) = xi · yj · n, for 0 ≤ i, j < k + δ (2)

where the integer n is generated in the following way.
Let indexes (i0, j0) be such that 0 ≤ i0, j0 ≤ δ; let S be the matrix of

row vectors obtained by taking the coefficients of the polynomials sa,b(x, y) for
0 ≤ a, b < k, but only in the monomials xi0+iyj0+j for 0 ≤ i, j < k. There are k2

such polynomials sa,b(x, y) and k2 such monomials, so the matrix S is a square
matrix of dimension k2 (see Figure 1 for an illustration); we take :

n := | detS|.

We will show in Lemma 3 that for a well chosen (i0, j0), the value | detS| is lower
bounded; in particular, this implies that | detS| > 0 and therefore matrix S is
invertible.

S =

x2y2 x2y xy2 xy

s1,1(x, y) a b c d

s1,0(x, y) a c

s0,1(x, y) a b

s0,0(x, y) a

Fig. 1. Matrix S with p(x, y) = axy + bx + cy + d, for k = 2 and (i0, j0) = (1, 1). We
get n = |detS| = a4.

Let h(x, y) be a linear combination of the polynomials sa,b(x, y) and ri,j(x, y).
Since we have that sa,b(x0, y0) = 0 mod n for all a, b and ri,j(x0, y0) = 0 mod n
for all i, j, we obtain :

h(x0, y0) = 0 mod n.

The following lemma, due to Howgrave-Graham [13], shows that if the coeffi-
cients of polynomial h(x, y) are sufficiently small, then h(x0, y0) = 0 holds over
the integers. For a polynomial h(x, y) =

∑

i,j hijx
iyj , we define ‖h(x, y)‖2 :=

∑

i,j |hij |2.

Lemma 2 (Howgrave-Graham). Let h(x, y) ∈ Z[x, y] which is a sum of at

most ω monomials. Suppose that h(x0, y0) = 0 mod n where |x0| ≤ X and

|y0| ≤ Y and ‖h(xX, yY)‖ < n/
√

ω. Then h(x0, y0) = 0 holds over the integers.

Proof. We have:

|h(x0, y0)| =
∣

∣

∣

∑

hijx
i
0y

i
0

∣

∣

∣
=

∣

∣

∣

∣

∑

hijX
iY j

(x0

X

)i (y0

Y

)j
∣

∣

∣

∣

≤
∑

∣

∣

∣

∣

hijX
iY j

(x0

X

)i (y0

Y

)j
∣

∣

∣

∣

≤
∑

∣

∣hijX
iY j
∣

∣

≤
√

ω‖h(xX, yY)‖ < n

Since h(x0, y0) = 0 mod n, this gives h(x0, y0) = 0. ⊓⊔

We consider the lattice L generated by the row vectors formed with the
coefficients of polynomials sa,b(xX, yY) and ri,j(xX, yY). In total, there are
k2 + (k + δ)2 such polynomials; moreover these polynomials are of maximum
degree δ + k − 1 in x, y, so they contain at most (δ + k)2 coefficients. Let M
be the corresponding matrix of row vectors; M is therefore a rectangular matrix
with k2 + (k + δ)2 rows and (k + δ)2 columns (see Figure 2 for an illustration).
Observe that the rows of M do not form a basis of L (because there are more
rows than columns), but L is a full rank lattice of dimension (k+δ)2 (because the
row vectors corresponding to polynomials ri,j(xX, yY) form a full rank lattice).

M =

x2y2 x2y xy2 xy x2 y2 x y 1

s1,1(xX, yY) aX2Y 2 bX2Y cXY 2 dXY

s1,0(xX, yY) aX2Y cXY bX2 dX

s0,1(xX, yY) aXY 2 bXY cY 2 dY

s0,0(xX, yY) aXY bX cY d

r2,2(xX, yY) nX2Y 2

r2,1(xX, yY) nX2Y

r1,2(xX, yY) nXY 2

r1,1(xX, yY) nXY

r2,0(xX, yY) nX2

r0,2(xX, yY) nY 2

r1,0(xX, yY) nX

r0,1(xX, yY) nY

r0,0(xX, yY) n

Fig. 2. Lattice of polynomials with p(x, y) = axy+ bx+ cy+d, for k = 2 and (i0, j0) =
(1, 1)

Let L2 be the sublattice of L where the coefficients corresponding to all
monomials of the form xi0+iyj0+j with 0 ≤ i, j < k are set to zero (those
monomials correspond to the matrix left-hand block in Fig. 2). There are k2

such monomials, so L2 is a full rank lattice of dimension :

ω = (δ + k)2 − k2 = δ2 + 2 · k · δ. (3)

A matrix basis for L2 can be obtained by first triangularizing M using elementary
row operations and then taking the corresponding submatrix (see Fig. 3). A
polynomial-time triangularization algorithm is described in [12]; more details
will be given in Section 3.1.

x2y2 x2y xy2 xy x2 y2 x y 1

s1,1(xX, yY) aX2Y 2 bX2Y cXY 2 dXY

s1,0(xX, yY) aX2Y cXY bX2 dX

s0,1(xX, yY) aXY 2 bXY cY 2 dY

s0,0(xX, yY) aXY bX cY d

q0(xX, yY) ∗ ∗ ∗ ∗ ∗
q1(xX, yY) ∗ ∗ ∗ ∗
q2(xX, yY) ∗ ∗ ∗
q3(xX, yY) ∗ ∗
q4(xX, yY) ∗

Fig. 3. Triangularized lattice of polynomials with p(x, y) = axy + bx + cy + d, for
k = 2 and (i0, j0) = (1, 1). The 5 polynomials qi(xX, yY) generate lattice L2, with
coefficients only in the 5 monomials x2, y2, x, y and 1. Algorithm LLL is applied on
the corresponding 5-dimensional lattice.

We apply the LLL algorithm on lattice L2. From theorem 1, we obtain a
non-zero polynomial h(x, y) that satisfies h(x0, y0) = 0 mod n and :

‖h(xX, yY)‖ ≤ 2(ω−1)/4 · det(L2)
1/ω. (4)

From lemma 2, this implies that if :

2(ω−1)/4 · det(L2)
1/ω ≤ n√

ω
, (5)

then h(x0, y0) = 0 must hold over the integers.
Now we claim that polynomial h(x, y) cannot be a multiple of p(x, y). Assume

the contrary; then the row vector coefficients of h(x, y) is a linear combination
of the row vector coefficients of polynomials sa,b(x, y) only. Given that matrix
S contains the coefficients of sa,b(x, y) for monomials xi+i0yj+j0 and given that
h(x, y) does not contain such monomials (because h(x, y) lies in L2), this gives
a linear combination of the rows of S equal to zero with non-zero coefficients; a
contradiction since matrix S is invertible.

The polynomial p(x, y) being irreducible, this implies that p(x, y) and h(x, y)
are algebraically independent with a common root (x0, y0); therefore, taking :

Q(x) = Resultanty(h(x, y), p(x, y))

gives a non-zero integer polynomial such that Q(x0) = 0. Using any standard
root-finding algorithm, we can recover x0, and finally y0 by solving p(x0, y) = 0.
This terminates the description of our algorithm.

It remains to compute the determinant of lattice L2. First we consider the
same matrices of row vectors as previously, except that we remove the X iY j

powers. Therefore let M ′ be the same matrix as M , except that we take the
coefficients of polynomials sa,b(x, y) and ri,j(x, y), instead of sa,b(xX, yY) and
ri,j(xX, yY); matrix M ′ has k2 +(k+δ)2 rows and (k+δ)2 columns. We put the
coefficients corresponding to monomials xi+i0yj+j0 for 0 ≤ i, j < k on the left
hand block, which has therefore k2 columns; matrix M ′ has then the following
form :

M ′ =

S T
nIk2 0

0 nIw

where S is the previously defined square matrix of dimension k2, while T is a
matrix with k2 rows and ω = k2 + 2kδ columns. Let L′ be the lattice generated
by the rows of M ′, and let L′

2 be the sublattice where all coefficients corre-
sponding to monomials xi+i0yj+j0 for 0 ≤ i, j < k are set to zero. Note that
lattice L′ corresponds to lattice L without the X iY j powers, whereas lattice L′

2

corresponds to lattice L2.
Since n = | detS|, we can find an integer matrix S′ satisfying :

S′ · S = nIk2 ,

namely S′ is (up to sign) the adjoint matrix (or comatrix) of S, verifying S′ ·
S = (det S)Ik2 . By elementary operations on the rows of M ′, we can therefore
subtract S′ · S to the nIk2 block of M ′; this gives the following matrix :

M ′
2 =

Ik2 0 0
−S′ Ik2 0
0 0 Iω

 · M ′ =

S T
0 T ′

0 nIω

 , (6)

where T ′ = −S′ · T is a matrix with k2 rows and ω columns. By elementary
operations on the rows of M ′

2, we obtain :

M ′
3 = U · M ′

2 =

S T
0 T ′′

0

 ,

where T ′′ is a square matrix of dimension ω. We obtain that T ′′ is a row matrix
basis of lattice L′

2, which gives :

det L′ = | det

[

S T
0 T ′′

]

| = | detS| · | detT ′′| = | detS| · detL′
2 = n · detL′

2. (7)

We now proceed to compute detL′. The polynomial p(x, y) being irreducible,
the gcd of its coefficients is equal to 1. This implies that by elementary operation

of the columns of M ′, we can obtain a matrix whose left upper k2 × k2 block is
the identity matrix and the right upper block is zero. From lemma 1, this does
not change the determinant of the generated lattice. Let V be the corresponding
unimodular transformation matrix of dimension (δ + k)2; this gives :

M ′
4 = M ′ · V =

[

Ik2 0
nV

]

.

By elementary row operations on M ′
4 based on V −1 we obtain :

M ′
5 =

[

Ik2 0
0 V −1

]

· M ′
4 =

[

Ik2 0
nI(δ+k)2

]

=

Ik2 0
nIk2 0

0 nIω

 ,

which again by elementary row operations gives :

M ′
6 = U ′ · M ′

5 =

Ik2 0
0 nIω

0 0

 .

Finally this implies :

detL′ = det

[

Ik2 0
0 nIω

]

= nω (8)

Combining equations (7) and (8), we obtain :

detL′
2 = nω−1.

Recall that the columns of L′
2 correspond to monomials xiyj for 0 ≤ i, j < δ +k,

excluding monomials xi0+iyj0+j for 0 ≤ i, j < k. The columns of lattice L2 are
obtained from the columns of L′

2 by multiplication with the corresponding X iY j

powers; this gives :

detL2 = detL′
2 ·

∏

0≤i,j<δ+k

X iY j

∏

0≤i,j<k

X i0+iY j0+j

= nω−1 · (XY)(δ+k−1)·(δ+k)2/2−(k−1)·k2/2

(X i0Y j0)k2

From inequality (5) we obtain the following condition for Howgrave-Graham’s
lemma to apply :

2ω·(ω−1)/4 · (XY)(δ+k−1)·(δ+k)2/2−(k−1)·k2/2

(X i0Y j0)k2
≤ n

ωω/2
. (9)

It remains to bound n = | detS| as a function of the coefficients of p(x, y).
Let

W = max
i,j

|pij |X iY j

The following lemma shows that for the right choice of (i0, j0), the determinant
of S is bounded in absolute value :

Lemma 3. Given (u, v) such that W = |puv|XuY v, let indices (i0, j0) that max-

imize the quantity 8(i−u)2+(j−v)2 |pij |X iY j. Then

(

W

X i0Y j0

)k2

2−6k2δ2−2k2 ≤ | detS| ≤
(

W

X i0Y j0

)k2

· 2k2

. (10)

Proof. The proof is very similar to the proof of Lemma 3 in [7]; see Appendix
B.

Combining inequalities (9) and (10) with n = | detS| and
√

ω ≤ 2ω/2, we
obtain the sufficient condition :

2ω·(ω−1)/4 · (XY)(δ+k−1)·(δ+k)2/2−(k−1)·k2/2 ≤ W k2 · 2−6k2δ2−2k2 · 2−ω2/2.

This condition is satisfied if :

XY < Wα · 2−9δ,

where

α =
2k2

δ · (3k2 + k(3δ − 2) + δ2 − δ)
.

Finally we obtain the sufficient condition :

XY < W 2/(3δ)−1/k · 2−9δ. (11)

The running time is dominated by the time it takes to run LLL on a lattice
of dimension δ2+2kδ, with entries bounded by O(W k2

). Namely, the entries of a
matrix basis for L2 can be reduced modulo n·X iY j on the columns corresponding
to monomial xiyj, because of polynomials rij(xX, yY) = n · X iY jxiyj . This
implies that we can obtain a matrix basis for L2 whose entries are bounded
by O(nXδ+kY δ+k). From inequality (10) we have n = O(W k2

); using (11) this

implies that the matrix entries can be bounded by O(W k2

). From theorem 1
and taking k > δ, the running time is therefore bounded by :

O
(

δ6k12 log3 W
)

using the LLL algorithm, and O
(

δ5k9 log2 W
)

using the improved L2 algorithm.
Finally, under the weaker condition

XY < W 2/(3δ),

one can set k = ⌊log W ⌋ and do exhaustive search on the high order O(δ)
unknown bits of x0. The running time is then polynomial in 2δ and log W .
Moreover, for a fixed δ, the running time is O(log15 W) using the LLL algorithm,
and O(log11 W) using the improved L2 algorithm. Thus we have shown :

Theorem 2 (Coppersmith). Let p(x, y) be an irreducible polynomial in two

variables over Z, of maximum degree δ in each variable separately. Let X and Y
be upper bounds on the desired integer solution (x0, y0), and let W = maxi,j |pij |X iY j.

If XY < W 2/(3δ), then in time polynomial in (log W, 2δ), one can find all integer

pairs (x0, y0) such that p(x0, y0) = 0, |x0| ≤ X, and |y0| ≤ Y .

As in [7], there can be improved bounds depending on the shape of the polyno-
mial p(x, y) :

Theorem 3 (Coppersmith). With the hypothesis of Theorem 2, except that

p(x, y) has total degree δ, the appropriate bound is :

XY < W 1/δ.

Proof. See the full version of this paper.

3.1 Computing a Basis of L2

In the previous section one needs to compute a basis for lattice L2, which is
then given as input to the LLL algorithm. Such lattice basis can be obtained
by triangularization of matrix M ; a matrix A is upper triangular if Aij = 0 for
i > j (as illustrated in Figure 3). A triangularization algorithm is described in
[12]; for an m× n matrix of row vectors, its running time is O(n3+εm log1+ε B)
for any ε > 0, when the matrix entries are bounded by B in absolute value.

Observe that we don’t need to triangularize the full matrix M . Namely from
our analysis of the previous section, equation (6) can be used to obtain a set of
row vectors that generate L2; a triangularization algorithm is then applied to
derive a lattice basis for L2. For this we need to compute matrix S′ such that
S′ ·S = (det S) ·I; we note that this is implemented in Shoup’s NTL library [22].

Another possibility is to compute the Hermite Normal form (HNF) of M .
An m × n matrix A of rank n is in HNF if it is upper triangular and aii > 0
for all 1 ≤ i ≤ n and 0 ≤ aij < ajj for all 1 ≤ j ≤ n and 1 ≤ i < j. A
classical result says that if an m × n matrix M is of rank n then there exists
a m × m unimodular matrix U such that U · M is in HNF; moreover the HNF
is unique. An algorithm for computing the HNF is also described in [12], with
the same asymptotic complexity as triangularization. A HNF algorithm is also
implemented in Shoup’s NTL library 1.

3.2 Difference with the Algorithm in [9]

In [9] a similar lattice L is built but with an integer n which is co-prime with
the constant coefficient of p(x, y). This implies that the full lattice L must be
considered, whose dimension dL = (δ + k)2 grows quadratically with k instead
of linearly as in our sub-lattice of dimension ω = δ2 + 2kδ.

With the full lattice L the LLL fudge factor is then 2(dL−1)/4 = 2O(k2) instead
of 2(ω−1)/4 = 2O(k). This translates in the bound for XY into the condition
XY < W 2/(3δ)−1/k · 2−O(k2+δ) instead of XY < W 2/(3δ)−1/k · 2−9δ. This implies
that in [9], in order to reach the bound XY < W 2/(3δ), one must do exhaustive

1 The LLL algorithms implemented in Shoup’s NTL library can in principle receive
as input a matrix with m ≥ n, but for large dimensions we got better results when
a lattice basis was provided instead.

search on the high order O((log W)/k + k2) bits of X . The optimum is to take

k := O(log1/3 W); this gives a sub-exponential time complexity :

exp
(

O(log2/3 W)
)

,

instead of the polynomial-time complexity as in Coppersmith’s algorithm and
our new algorithm.

3.3 Extension to more Variables

Our algorithm can be extended to solve integer polynomial equations with more
than two variables, but as for Coppersmith’s algorithm, the extension is heuristic
only.

Let p(x, y, z) be a polynomial in three variables over the integers, of degree δ
independently in x, y and z. Let (x0, y0, z0) be an integer root of p(x, y, z), with
|x0| ≤ X , |y0| ≤ Y and |z0| ≤ Z. As for the bivariate case, we can select indices
(i0, j0, k0) that maximize the quantity X iY jZk|pijk| and consider the matrix
S formed by the coefficients of polynomials sabc(x, y, z) = xaybzc · p(x, y, z) for
0 ≤ a, b, c < m for some parameter m, but only in the monomials xi0+iyj0+jzk0+k

for 0 ≤ i, j, k < m. Then we take n := | detS| and define the additional poly-
nomials rijk(x, y, z) = xiyjzkn for 0 ≤ i, j, k < δ + m. Then one builds the
lattice L formed by all linear combinations of polynomials sabc(xX, yY, zZ) and
rijk(xX, yY, zZ), and consider the sublattice L2 obtained by setting to 0 the
coefficients of monomials corresponding to matrix S. Lattice L2 has dimension
ω = (δ + m)3 − m3 and using the same analysis as in Section 3, one obtains
that detL′

2 = nω−1 where L′
2 is the same lattice as L2 but without the X iY jZk

powers.
One then applies LLL to sublattice L2; if the ranges X, Y, Z are small enough,

we are guaranteed to find a polynomial h1(x, y, z) such that h1(x0, y0, z0) = 0
over Z and h1(x, y, z) is not a multiple of p(x, y, z), but this is not enough. The
second vector produced by LLL gives us a second polynomial h2(x, y, z) that
can satisfy the same property by bounding its norm as in [3]. One can then take
the resultant between the three polynomials p(x, y, z), h1(x, y, z) and h2(x, y, z)
in order to obtain a polynomial f(x) such that f(x0) = 0. But we have no
guarantee that the polynomials h1(x, y, z) and h2(x, y, z) will be algebraically
independent; this makes the method heuristic only.

4 Practical Experiments

As mentioned previously, a direct application of Coppersmith’s theorem for the
bivariate integer case is to factor N = pq when half of the most significant bits
(or least significant bits) of p are known.

Theorem 4 (Coppersmith [7]). Given N = pq and the high-order 1/4 log2 N
bits of p, one can recover the factorization of N in time polynomial in log N .

Namely, given the most significant bits of p, one can write :

N = (P0 + x) · (Q0 + y),

where P0 and Q0 contain the most significant bits of p and q. This gives a bivari-
ate integer polynomial equation, for which Theorem 2 can be applied directly.
One gets W = P0 · X ≃ N1/2 · X which gives XY < W 2/3 ≃ N1/3 · X2/3. With
X = Y this gives |x0| ≤ X = N1/4.

The result of practical experiments are summarized in Table 1, using Shoup’s
NTL library [22]. For comparison we have implemented our algorithm and the
algorithm in [9]. Table 1 shows that our new algorithm is significantly more
efficient; for example, for a 1024-bits modulus with 282 = 256 + 26 bits of p
given, our algorithm takes 1 second instead of 13 minutes for the algorithm in
[9]; this is due to the fact that LLL is applied on a lattice of smaller dimension.

Parameters New algorithm Algorithm in [9]
N k bits of p given Dimension LLL Dimension LLL

512 bits 4 144 bits 9 <1 s 25 20 s
512 bits 5 141 bits 11 <1 s 36 2 min
1024 bits 5 282 bits 11 1 s 36 13 min
1024 bits 12 266 bits 25 42 s 169 -

Table 1. Running times for factoring N = pq given the high-order bits of p, using our
algorithm and the algorithm in [9], with Shoup’s NTL library on a 1.6 GHz PC under
Linux

The problem of factoring N = pq given the high-order (or low-order) bits
of p can also be solved using a simple variant of the one variable modular case,
as shown by Howgrave-Graham in [13]. Therefore we have also implemented
Howgrave-Graham’s algorithm to provide a comparison; experimental results
are given in Table 2. We obtain that for the particular case of factoring with
high-order bits known, our algorithm and Howgrave-Graham’s algorithm have
roughly the same running time, and work with the same lattice dimension (but
the two lattices are different).

5 Conclusion

We have described a new algorithm for finding small roots of bivariate polynomial
equations over the integers, which is simpler than Coppersmith’s algorithm but
with the same asymptotic complexity. Our simplification is analogous to the
simplification brought by Howgrave-Graham for the univariate modular case;
it improves on the algorithm in [9] which was not polynomial-time for certain
parameters. In practical experiments, our algorithm performs several order of
magnitude faster than the algorithm in [9].

N k bits of p given Dimension LLL

512 bits 4 144 bits 9 <1 s
512 bits 5 141 bits 11 <1 s
1024 bits 5 282 bits 11 1 s
1024 bits 12 266 bits 25 37 s

Table 2. Running times for factoring N = pq given the high-order bits of p, using
Howgrave-Graham’s algorithm with Shoup’s NTL library on a 1.6 GHz PC running
under Linux.

References

1. D. Bleichenbacher and A. May, New Attacks on RSA with Small Secret CRT-
Exponents. In Practice and Theory in Public Key Cryptography (PKC 2006), Lecture
Notes in Computer Science, Springer-Verlag, 2006.

2. J. Blomer and Alexander May, A Tool Kit for Finding Small Roots of Bivariate
Polynomials over the Integers, In Advances in Cryptology (Eurocrypt 2005), Lecture
Notes in Computer Science Volume 3494, pages 251-267, Springer-Verlag, 2005.

3. D. Boneh and G. Durfee, Crypanalysis of RSA with private key d less than N0.292 ,
proceedings of Eurocrypt ’99, vol. 1592, Lecture Notes in Computer Science.

4. D. Boneh, G. Durfee and N.A. Howgrave-Graham, Factoring n = prq for large r,
proceedings of Crypto ’99, vol. 1666, Lecture Notes in Computer Science.

5. D. Coppersmith, Finding a Small Root of a Univariate Modular Equation, proceed-
ings of Eurocrypt ’96, vol. 1070, Lecture Notes in Computer Science.

6. D. Coppersmith, Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known, proceedings of Eurocrypt’ 96, vol. 1070, Lecture Notes in
Computer Science.

7. D. Coppersmith, Small solutions to polynomial equations, and low exponent vul-
nerabilities. J. of Cryptology, 10(4)233-260, 1997. Revised version of two articles of
Eurocrypt ’96.

8. D. Coppersmith, Finding small solutions to small degree polynomials. In Proc. of
CALC ’01, LNCS, Sptinger-Verlag, 2001.

9. J.S. Coron, Finding Small Roots of Bivariate Polynomial Equations Revisited. Pro-
ceedings of Eurocrypt 2004, LNCS, Springer-Verlag, 2004.

10. J.S. Coron and A. May, Deterministic Polynomial-Time Equivalence of Computing
the RSA Secret Key and Factoring, Journal of Cryptology, Volume 20, Number 1,
January 2007.

11. M. Ernst, E. Jochemsz, A. May and B. de Weger, Partial Key Exposure Attacks
on RSA up to Full Size Exponents. In Advances in Cryptology (Eurocrypt 2005),
Lecture Notes in Computer Science Volume 3494, pages 371-386, Springer-Verlag,
2005.

12. J. Hafner and K. McCurley, Asymptotically fast triangularization of matrices over
rings, SIAM J. Comput. 20 (1991), 1068-1083.

13. N. A. Howgrave-Graham, Finding small roots of univariate modular equations
revisited. In Cryptography and Coding, volume 1355 of LNCS, pp. 131-142. Springer
Verlag, 1997.

14. N. A. Howgrave-Graham, Approximate integer common divisors. In Proc. of CALC
’01, LNCS. Springer-Verlag, 2001.

15. N. A. Howgrave-Graham, Computational Mathematics Inspired by RSA. PhD the-
sis, University of Bath, 1998.

16. E. Jochemz, A. May, A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants. In Advances in Cryptology (Asi-
acrypt 2006), Lecture Notes in Computer Science, Springer-Verlag, 2006.

17. A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász, Factoring polynomials with ratio-
nal coefficients. Mathematische Ann., 261:513-534, 1982.

18. A. May, Cryptanalysis of Unbalanced RSA with Small CRT-Exponent. In Advances
in Cryptology (Crypto 2002), Lecture Notes in Computer Science Volume 2442, pages
242-256, Springer Verlag, 2002.

19. A. May, Computing the RSA Secret Key is Deterministic Polynomial Time Equiv-
alent to Factoring, In Advances in Cryptology (Crypto 2004), Lecture Notes in Com-
puter Science Volume 3152, pages 213-219, Springer Verlag, 2004.

20. A. May, Secret Exponent Attacks on RSA-type Schemes with Moduli N = prq.
In Practice and Theory in Public Key Cryptography (PKC 2004), Lecture Notes in
Computer Science Volume 2947, pages 218-230, Springer-Verlag, 2004.

21. P.Q. Nguyen and D. Stehlé, Floating-Point LLL Revisited, Proceedings of Euro-
crypt 2005. LNCS vol. 3494, Springer-Verlag, 2005.

22. V. Shoup, Number Theory C++ Library (NTL) version 5.4. Available at
www.shoup.net.

23. V. Shoup, OAEP reconsidered. Proceedings of Crypto ’01, vol. 2139, Lecture Notes
in Computer Science.

A Proof of Lemma 1

Let R be a matrix basis of L and let U be the unimodular matrix such that :

U · M =

[

R
0

]

(a unimodular matrix U satisfies detU = ±1). Let V be the unimodular matrix
such that M ′ = M · V . Then :

U · M · V = U · M ′ =

[

R′

0

]

,

where R′ = R · V is a matrix basis for L′. Then

det L′ = | detR′| = | det(R · V)| = | detR| · | detV | = | detR| = detL.

B Proof of Lemma 3

The proof is very similar to the proof of Lemma 3 in [7]. It consists in showing
that a matrix related to S is diagonally dominant, which enables to derive a
lower bound for its determinant.

Let W = maxi,j |pij |X iY j and let indices (u, v) such that W = |puv|XuY v.
Let indices (i0, j0) that maximize the quantity

8(i−u)2+(j−v)2 |pij |X iY j .

The matrix S is obtained by taking the coefficients of the polynomials xaybp(x, y)
for 0 ≤ a, b < k, taking only the coefficients of monomials xi0+iyj0+j for 0 ≤
i, j < k. We must show :

(

W

X i0Y j0

)k2

2−6k2δ2−2k2 ≤ | det S| ≤
(

W

X i0Y j0

)k2

2k2

(12)

We let µ(i, j) = ki + j be an index function; the matrix element Sµ(a,b),µ(i,j)

is the coefficient of xi0+iyj0+j in xaybp(x, y), namely :

Sµ(a,b),µ(i,j) = pi0+i−a,j0+j−b

We multiply each µ(i, j) column of S by

82(i0−u)i+2(j0−v)jX i0+iY j0+j

and we multiply each µ(a, b) row by

8−2(i0−u)a−2(j0−v)bX−aY −b

to create a new matrix S′ whose element is :

S′
µ(a,b),µ(i,j) = pi0+i−a,j0+j−bX

i0+i−aY j0+j−b82(i0−u)(i−a)+2(j0−v)(j−b)

and we have :

det S′ = detS ·
(

X i0Y j0
)k2

(13)

Now we show that S′ is a diagonally dominant matrix. Let denote p̃ij = pijX
iY j ;

the elements of matrix S′ are :

S′
µ(a,b),µ(i,j) = p̃i0+i−a,j0+j−b8

2(i0−u)(i−a)+2(j0−v)(j−b)

From maximality of (i0, j0) we have :

|p̃i0+i−a,j0+j−b| · 8(i−a+i0−u)2+(j−b+j0−v)2 ≤ |p̃i0j0 |8(i0−u)2+(j0−v)2

which gives :

|p̃i0+i−a,j0+j−b| · 82(i−a)(i0−u)+2(j−b)(j0−v) ≤ |p̃i0j0 |8−(i−a)2−(j−b)2

and then :
|S′

µ(a,b),µ(i,j)| ≤ |p̃i0,j0 |8−(i−a)2−(j−b)2

Each diagonal element S′
µ(a,b),µ(a,b) of matrix S′ is equal to p̃i0,j0 , and using :

∑

(i,j) 6=(a,b)

8−(i−a)2−(j−b)2 ≤
∑

(i,j) 6=(0,0)

8−i2−j2 ≤ −1 +
∑

(i,j)

8−i2−j2

≤ −1 +

(

∑

i

8−i2

)2

≤ 3

4

we obtain that the sum of the absolute values of the off-diagonal entries in each
µ(a, b) row is at most 3

4 |p̃i0,j0 |. Therefore matrix S′ is diagonally dominant and
each eigenvalue λ must verify :

1

4
|p̃i0,j0 | ≤ |λ| ≤ 7

4
|p̃i0,j0 |

which gives :

|p̃i0,j0 |k
2

2−2k2 ≤ | detS′| ≤ |p̃i0,j0 |k
2

2k2

(14)

From the optimality of (i0, j0), we have :

8(i0−u)2+(j0−v)2 |p̃i0,j0 | ≥ 80+0|p̃u,v| = W

which gives :

8−2δ2

W ≤ |p̃i0,j0 | ≤ W

Combining with (14) we obtain :

W k2

2−6k2δ2−2k2 ≤ | detS′| ≤ W k2 · 2k2

and using (13) we obtain (12).

