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Abstract. Oblivious transfer (OT) is an essential building block for se-
cure multiparty computation when there is no honest majority. In this
setting, current protocols for n ≥ 3 parties require each pair of parties to
engage in a single OT for each gate in the circuit being evaluated. Since
implementing OT typically requires expensive public-key operations (al-
ternatively, expensive setup or physical infrastructure), minimizing the
number of OTs is a highly desirable goal.
In this work we initiate a study of this problem in both an information-
theoretic and a computational setting and obtain the following results.
– If the adversary can corrupt up to t = (1− ε)n parties, where ε > 0

is an arbitrarily small constant, then a total of O(n) OT channels
between pairs of parties are necessary and sufficient for general se-
cure computation. Combined with previous protocols for “extending
OTs”, O(nk) invocations of OT are sufficient for computing arbi-
trary functions with computational security, where k is a security
parameter.

– The above result does not improve over the previous state of the
art in the important case where t = n − 1, when the number of
parties is small, or in the information-theoretic setting. For these
cases, we show that an arbitrary function f : {0, 1}n → {0, 1}∗ can
be securely computed by a protocol which makes use of a single OT
(of strings) between each pair of parties. This result is tight in the
sense that at least one OT between each pair of parties is necessary
in these cases. A major disadvantage of this protocol is that its
communication complexity grows exponentially with n. We present
natural classes of functions f for which this exponential overhead
can be avoided.

1 Introduction

Secure multiparty computation (MPC) [46, 23, 7, 11] provides a powerful and
general tool for distributing computational tasks between mutually distrusting
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parties without compromising the privacy of their inputs. We consider the prob-
lem of secure computation in the case where a majority of the parties can be
corrupted. In this case, secure computation of nontrivial functions implies the
existence of oblivious transfer (OT) [44, 40, 17] — a secure two-party protocol
which allows a receiver to select one of two strings held by a sender and learn
this string (but not the other) without revealing its selection. Moreover, OT can
be used as a building block for general MPC protocols that tolerate an arbi-
trary number of corrupted parties [47, 24, 22, 33, 21]. These protocols involve a
large number of OT invocations which typically constitute their efficiency bot-
tleneck. Indeed, standard implementations of OT require expensive public-key
operations, whereas alternative “information-theoretic” implementations of OT
require either a trusted setup [3] or physical infrastructure [13] and may be
viewed as being at least as expensive. Thus, minimizing the number of OTs in
MPC protocols is a highly desirable goal.

How many OTs are needed to secure the world? In a world consisting of just
two parties, this question was essentially answered by Beaver [4] (see also [31]).
In a pure information-theoretic setting, ignoring computational efficiency issues,
computing a two-argument function whose shorter input has length ` generally
requires Θ(`) OTs. (Some specific functions require fewer OTs; see [15, 5] for
a more refined study of the “OT complexity” of information-theoretic secure
two-party computation.) Quite remarkably, it is possible to do much better if
computational security is required. Assuming the existence of one-way functions,
a “seed” of k OTs, where k is a security parameter, can be used for implementing
an arbitrary polynomial number of OTs.1 This implies that k OTs are sufficient
for secure two-party computation of arbitrary functions, even ones whose input
length is much bigger than k.

Given Beaver’s result, it is natural to expect that k OTs would be sufficient
for computationally secure MPC protocols involving an arbitrary number of
parties. Unfortunately, known protocols are very far from achieving this goal.
Beaver’s OT extension technique crucially relies on the fact that the number
of OTs required by Yao’s two-party protocol [46] is equal to the length of the
shorter input. No similar protocols are known for n ≥ 3 parties. To make things
worse, the number of OT invocations in current protocols (e.g., [22, 21]) does
not only depend on the length of the inputs but also on the complexity of the
function f being computed. Specifically, these protocols require each pair of
parties to invoke an OT protocol for each gate of a circuit computing f .2 In
the computational setting it is possible to apply Beaver’s OT extension protocol
between each pair of parties, requiring only k OTs for each of the

(
n
2

)
pairs. Thus,

the state of the art prior to the current work can be summarized as follows:

1 In contrast, it is not known how to implement even a single OT using a one-way
function alone, and the possibility of a black-box construction of this type was ruled
out by Impagliazzo and Rudich [30].

2 Some MPC protocols do not rely on OT but rather on other “public-key” primitives
such as threshold homomorphic encryption [19]; however, in these protocols too the
number of public-key operations grows linearly with the circuit size of f .



– In the information-theoretic setting, the number of OTs needed by n parties
to compute a circuit of size s is O(n2s).

– In the computational setting (assuming one-way functions exist) the total
number of OTs is O(n2k).

The above state of affairs leaves much to be desired and gives rise to several
natural questions: Can one reduce the quadratic dependence on the number of
parties while maintaining security against a dishonest majority? Can the depen-
dence on the circuit size in the information-theoretic case and the dependence
on the security parameter in the computational case be eliminated?

1.1 Our Contribution

We answer the above questions affirmatively, obtaining several upper and lower
bounds on the OT complexity of both information-theoretic and computationally
secure MPC with no honest majority. Before describing our results, we outline
(and justify) some essential details of our model.
Model. We consider a network of n parties that are connected via a synchronous
network of secure point-to-point channels (secure channels are necessary in the
information-theoretic setting, and can be cheaply implemented in a computa-
tional setting via the use of a hybrid encryption). The parties wish to compute
a function f , which by default is a polynomial-time computable function taking
one input bit from each party and returning an output of an arbitrary length
(our results can be generalized to the case where each party has an `-bit input
– see below). Our goal is to design an OT-efficient protocol which securely com-
putes f in the presence of a semi-honest (aka “honest-but-curious”) adversary
which may corrupt at most t parties, where the security threshold t satisfies
n/2 < t < n. In the computational setting, restricting the attention to security
in the semi-honest model is justified by the fact that it is possible to use one-
way functions (and no additional OTs) for upgrading security to the malicious
model [23, 21]. Finally, we allow each pair of parties to invoke an ideal OT oracle
during the execution of the protocol and count the number of invocations of
this oracle. (This model is also referred to as the “OT-hybrid” model.) Using a
suitable composition theorem [10, 21], each call to the OT oracle can be substi-
tuted with an actual secure OT protocol. It is important to stress that our basic
OT primitive is string OT; that is, the sender’s strings are of arbitrary length
(yet this length counts towards the communication complexity of our protocols).
This is justified by the fact that OT of long strings can be easily reduced to a
single invocation of OT of short keys of length k by using symmetric encryption
and no public-key operations. Furthermore, most efficient implementations of
OT (cf. [38]) directly realize OT of k-bit strings rather than bits.

In the above model, we obtain the following main results.
Number of OT channels. We start by examining the required number of
“OT channels” between pairs of parties, that is, the number of distinct pairs that
should jointly invoke the OT primitive. We show that if the adversary can corrupt



up to t = (1 − ε)n parties, where ε > 0 is an arbitrarily small constant, then a
total of O(n) OT channels between pairs of parties are sufficient and necessary for
general MPC. This is a quadratic improvement over previous protocols, which
require OTs between each pair of parties. The O(n) upper bound relies on a
technique of Bracha [9] for distributing computations among several committees,
a technique for combining oblivious transfers [27], and explicit constructions
of dispersers [25, 42, 26]. Using OT extension protocols [4, 31], the O(n) bound
implies that O(nk) invocations of OT are sufficient for computing arbitrary
functions with computational security3 when t = (1− ε)n. The lower bound (in
a more general form) relies on results from extremal graph theory. We note that
the Ω(n) lower bound holds also if the OT channels are chosen dynamically,
namely the identity of the pairs of parties which can invoke the OT oracle can
be chosen during the execution of the protocol.

Coping with a bigger security threshold. The above results do not improve
over the previous state of the art in the important case where t = n − 1, when
the number of parties is small, or in the information-theoretic setting. For these
cases, we show that an arbitrary function f : {0, 1}n → {0, 1}∗ can be securely
computed by a protocol which makes use of a single OT between each pair of
parties. We also show that this result is tight, in the sense that when t = n− 1
at least one OT between each pair of parties is necessary. At a high level, the
protocol proceeds by n− 1 iterations, where in the end of the i-th iteration the
first i + 1 parties hold additive shares of the truth table of f(x1, . . . , xi, ·, . . . , ·),
namely f restricted by the inputs of the first i parties. A major disadvantage of
this protocol is that its communication complexity grows exponentially with n.
We present natural classes of functions f for which this exponential overhead can
be avoided. These include sparse polynomials, decision trees, deterministic and
nondeterministic finite automata, and CNF and DNF formulas, which capture
useful secure computation tasks (cf. [2]). Some of these efficient protocols rely
on expander-based constructions of extractors for bit-fixing sources [32].

In the case where each party holds an `-bit input (rather than a 1-bit input)
the above upper and lower bounds on the number of OTs grow by a factor of `,
whereas the bounds on the number of OT channels remain unchanged.

2 Preliminaries

Throughout the paper we use the following notation: By P1, . . . , Pn we denote
the n parties, the security threshold t is the maximal number of parties that the
adversary can corrupt, and k stands for a security parameter when considering
computational or statistical security. When an n-party function f has a single
output, we assume by default that the output is given to the first party P1.

3 This protocol inherits the security and assumptions of the underlying OT extension
protocol. In particular, the protocol of [4] can be based on one-way functions but
is only proved to be secure against non-adaptive adversaries, whereas the protocol
of [31] in the random oracle model can be shown to be adaptively secure.



Our model for secure multiparty computation follows standard definitions
from the literature [10, 21]. The availability of an OT primitive is captured by
considering an OT-hybrid model, in which each pair of parties can invoke an
ideal OT oracle. By a t-secure protocol for f we refer by default to a protocol
which is perfectly secure in the semi-honest model against an adversary that may
adaptively corrupt at most t parties. Perfect security will sometimes be relaxed
to statistical or computational security.

3 Counting OT Channels: Upper and Lower Bounds

A closely related question to the number of required OT calls is the number
of required OT channels in a network. That is, given a network of n parties,
we look at a graph where each node stands for a party and an edge stands for
the ability to run an OT between two parties. On each such edge, we assume
the ability to execute arbitrarily many OT calls. In addition, there exist private
communication channels between every pair of parties. The question is how many
OT channels are needed in order to simulate a full network of OTs (a network
in which every two parties can execute an OT functionality).

More precisely, define the n party OT function fOT as a function that takes
inputs from two parties (if more than two parties provide inputs then the function
outputs an abort symbol). The first party inputs two string s0, s1 and the second
inputs a bit c. The output sc is received by the second party. The question at
hand is how many OT channels are required for the network to be able to securely
compute the function fOT .
OT Channels: Static vs. Dynamic. When discussing OT channels, special
care needs to be taken when modelling the network. The simpler case is when
the network is static, i.e., the OT channels are set in advance and known to
the adversary (this case is suitable for an implementation of OTs based on
some physical infrastructure). A stronger model (for the honest parties) allows
a dynamic network, in which the parties may set the OT channels as part of the
protocol (while trying to hide this information from the adversary). Our upper
bounds do not take advantage of the dynamic setting and work also in the static
setting. We prove our lower bounds initially in the static case and then extend
them to the dynamic case.
OT Channels and Counting OTs. Counting OT channels is an interesting
question in its own right, and may directly capture the case where OTs are im-
plemented via some physical infrastructure (e.g., noisy point-to-point channels).
Moreover, its connection to the number of OT calls needed for secure computa-
tion is two fold:

– As means of achieving upper bounds on the number of OT calls in a
computational setting. In the two-party computational setting, it is known
how to achieve a polynomial number of OT calls at the price of just k calls
[4, 31] (where k is the security parameter). Therefore, if we only need, say,
O(n) OT channels, then we can simulate the whole network at the price of



O(nk) OT calls, which is better than the trivial upper bound of
(
n
2

)
k OT

calls.
– As a mechanism for proving lower bounds on the number of OT calls (see

Theorem 4). Namely, the minimal number of channels needed to securely
compute the functionality fOT is in particular a lower bound on the number
of OT calls necessary.

We note that the function fOT is just a single example of a function for which
the lower bounds hold; a similar lower bound holds for any function that is
complete for n-party computation, in the sense that it can be used as an oracle for
computing arbitrary functions t-securely. A sufficient condition for completeness
is that for every pair of inputs, one of the two-party criteria from [34, 6, 28] is
met for some restriction of the other inputs.

3.1 Upper bounds for t = (1 − δ)n: The Committees Method

We turn to the case that t = (1−δ)n (we mostly think of δ as a constant fraction,
but the discussion is not restricted to this case). Consider the following strategy:
from the n parties choose m committees, each of size d, where a party can (and
will) participate in several different committees. Assume that each committee
has a full network of OT channels between them.

Using each committee we generate a candidate for an OT protocol between
party A and party B as follows: The sender and receiver additively share their
inputs (s0, s1 and c respectively) between all committee members. The commit-
tee members now run a secure computation protocol that computes a random
additive sharing of sc between the committee members (this is done using their
OT channels and the “GMW protocol” [22]). Now each committee member sends
his share of sc to the receiver B who reconstructs the output. This constitutes
a secure OT protocol as long as not all of the committee has been corrupted
(if all of the committee is corrupted then there is no security at all). In total,
for each of the m committees we have a candidate for an OT protocol, which is
secure if not all of the underlying committee is corrupted. It is known how one
can combine OT candidates protocols to 1-secure OT protocol as long as a ma-
jority of the candidates are secure. This method is called an (dm+1

2 e,m)-robust
combiner for OT and its existence was pointed out in [27] (and [37]) based on
amplification techniques from [14, 45].

Our goal is therefore to solve the following combinatorial problem: find a
collection of “small” committees such that every adversary, corrupting at most
t = (1 − δ)n of the parties, covers less than half of the committees. A simple
probabilistic argument shows that such collections exist and moreover a random
collection whose size depends only on δ (and not on n) is a good solution with
high probability.
An Explicit Construction. We next give an explicit choice of committees that
satisfies the above requirements. Consider a bipartite graph with m vertices
on the left (the committees) and n vertices on the right (the parties). Every
committee has d edges connecting it to all the parties it consists of (that is, the



graph is d-regular on its left side). The requirement for the committees protocol
to be secure is that every set of m/2 vertices on the left are connected to more
than (1 − δ)n vertices on the right. This is exactly the setting of a disperser4

with very high min-entropy (min-entropy of log(n/2) out of the possible log n).
There are several explicit constructions that we can use for this task including
Goldreich and Wigderson [25], Reingold et al. [42] and Gradwohl et al. [26], all
of which have near optimal degree (up to constants with respect to the lower
bounds of [41]). Specifically we can work with d = d 1

δ e, and m = n + o(n) (or
even m = n− o(n) if using the construction of [26]).

Corollary 1 There exists an explicit construction of a network consisting of
(n+o(n))

(d1/δe
2

)
OT channels such that the network can t-securely compute fOT

in the presence of an adversary that corrupts up to t = (1 − δ)n of the parties.
Specifically:

– If δ is a constant then the network needs O(n) OT channels.
– As long as δ ≥ 1√

n
, the construction requires strictly less than the

(
n
2

)
OT

channels of the full network.

The above corollary can be combined with OT extension protocols [4, 31]
to yield a ((1 − δ)n)-secure protocol for an arbitrary function f that uses a
total of O(kn) OTs. This protocol inherits the security and assumptions of the
underlying OT extension protocol (see Footnote 3).

Related works using committees. The idea of virtually performing tasks by
committees has been used in distributed computing and cryptography. Originat-
ing in the work of Bracha [9] in the context of Byzantine agreement, committees
have been used in the same context by [8, 12], for MPC [29] and for leader election
[39, 48, 35]. Committees have recently been used by Fitzi et al. [18] to achieve
Perfectly Secure Message Transmission (PSMT) in a partial network of secure
channels. It should be noted that while the task of PSMT is reminiscent of our
question regarding OT channels, there are inherent differences. For example, our
committees protocol (above) can effectively achieve an OT call even between two
parties that are isolated in the OT graph (not connected by an OT channel to
any other party). In PSMT, on the other hand, there is no chance of achieving
secure communication with a node that is not connected by any secure channel.5

On non-adaptive adversaries. In the case that the adversary is non-adaptive
but the network is dynamic, one can do much better. In fact, only a single
good committee is needed. Indeed, a randomly chosen committee of size k/δ has
probability of 1−2−Ω(k) of being good. Note, however, that this simple protocol
can be trivially broken by an adaptive adversary who first learns the identity of
the committee members and then corrupts all of them.

4 A definition and discussion on dispersers can be found in, e.g. [43].
5 Recall that in our OT channels model we assume a full network of secure channels

to be intact.



3.2 Lower Bounds for t = n − 1: Full OT Network is Necessary

In this section we look at the strictest security scenario, where the adversary can
corrupt all but one of the parties. We show that given an almost full network
of OT channels except for one missing channel, it is impossible to complete the
network (i.e., securely compute the function fOT ). As a first step we consider a
static network with just 3 parties, A,B and C.

Claim 2 Let A,B and C form a network where C has OT channels with both
A and B, but there is no OT channel between A and B. Then, any 2-secure
protocol for fOT over this partial network can be used (as a black box) to obtain
a two-party OT protocol in the plain model.

Proof: We transform the given 3-party protocol π3 into a two-party OT protocol
π2 in two steps: first we eliminate all invocations of the OT oracle, and then we
obtain a two-party protocol by letting one of the parties simulate A and the
other simulate B and C. These steps are captured by the following two lemmas.

Lemma 1. Any 3-party protocol π3 as in Claim 2 can be used (as a black box)
to obtain a protocol π′3 over a network with no OT channels, such that π′3 is
secure against an adversary that corrupts either {A,C} or {B,C}.

The protocol π′3 is obtained from π3 by implementing each OT call via the trivial
protocol in which C sends its input to the other OT participant (either A or B).
Note that this trivial OT protocol is perfectly secure against an adversary that
corrupts either {A,C} or {B,C}, since the input of C is guaranteed to be known
to the adversary.

We can now use π′3 to implement OT between A and B in a 3-party network
without OT channels. An important observation is that C has no inputs in this
protocol.

Lemma 2. Let Π be a protocol between A,B, C that computes a function for
which C has no inputs, and suppose that Π is secure against {A,C} and {B,C}.
Then Π is also secure against {A} and {B}.

The lemma follows simply by observing that when C has no input the view of
a corrupted A can be simulated using the simulation of {A,C} and likewise for
B.

We can now use π′3 to get a two-party OT protocol π2 by letting one party
simulate A and the other party simulate B,C. Due to Lemma 2 we get that the
protocol is secure against corruption of either party and hence constitutes an
OT protocol in the plain model between two parties.

We Generalize Claim 2 to hold for a dynamic network of n parties (rather
than a static 3-party network). The proof appears in the full version.

Claim 3 Any (n − 1)-secure protocol for fOT over an n-party partial network
with at most

(
n
2

)
− 1 OT channels can be used (as a black box) to obtain a

two-party OT protocol in the plain model.



As corollaries of the previous lemma, we get the lower bounds that we were
seeking for the number of OT invocations:

Theorem 4. Any n-party protocol Π that (n− 1)-securely computes fOT using
less than

(
n
2

)
OT calls can be used (as a black box) to implement a two-party

OT protocol in the plain model. In particular, there is no such Π with perfect or
statistical security, and its existence with computational security cannot be based
on one-way functions in black-box way.

3.3 Lower Bounds for Corruption of t = n − d Parties

We show impossibility results for this case that are based on extremal graph
theory and give tight bounds (for different ranges of d). The bounds hold also
in the dynamic network model.

Theorem 5 (Lower bound for general d). Consider a network of n parties
in the presence of an adversary that can corrupt t = n− d parties.

1. Suppose the network (even a dynamic one) has o(n2/d) OT channels. Then
any (n− d)-secure protocol for fOT in this network be used (as a black box)
to implement a two-party OT protocol in the plain model.

2. Suppose d is a constant and the network (even a dynamic one) has less than
(1 − c))

(
n
2

)
OT channels (for some constant c). Then any (n − d)-secure

protocol for fOT in this network be used (as a black box) to implement a
two-party OT protocol in the plain model.

Proof: The two claims follow the same principle. The crux is that unless every
two sets of parties of size d be connected in the OT graph, then one can build
an OT in the plain model. Suppose that there exist two disconnected sets of size
at least d then define each of the groups as A and B and the rest of the graph
as C. We now reduce this setting to the case of the previous section where we
have parties A,B and C such that A and B are not connected and the adversary
may corrupt either {A,C} or {B,C} (since these are sets of size at most n− d).
By Claim 2, such a setting would allow building a two-party OT protocol in the
plain model.

Proving (1) for the static case. Due to the outline above, we examine graphs
where every two sets of size d must contain at least one edge between them. This
means, in particular, that in the graph of non-edges there exists no clique of size
2d. By Turan’s Theorem, such a graph can have at most (1− 1/(2d))n2/2 non-
edges, and hence the OT graph must have at least n2

4d edges.

Proving (2). The above argument is limited since it only considers the fact
that the non-edges graph must not contain a clique of size 2d. But actually, the
graph cannot even contain a bipartite d× d clique which is a stricter constraint.
For such a graph there are rather tight results when d is a constant. Namely, for
constant d the Erdös-Stone-Simonovits Theorem [16] states that the non-edges
graph must have at most o(n2) missing edges, which amounts to the OT graph



containing (1 − o(1))
(
n
2

)
OT channels. As in Claim 3, even if the layout of OT

channels is not known in advance it can simply be guessed. Since the number of
missing edges is constant, the probability that a random guess is correct about
the eventual network is inverse polynomial, which suffices to extend any static
network result (with constant d) to a similar result for dynamic networks.

Sketch of proof of (1) in the dynamic case. We provide an argument that
there must be at least n2

2d edges in the graph (when assuming that every two
sets of size d must contain at least one edge between them). This argument
provides a slightly better bound than Turan’s Theorem (since Turan’s theorem
discusses anti-cliques rather than bipartite d×d anti-cliques) but, more crucially,
gives us information that is useful for proving the bound in the dynamic case.
Specifically, we get a guarantee that if there are less than n2

2d edges in the graph
then in every partition of the graph to d sized sets, at least one of the sets has
no neighbor with some other d-sized set (the other set is not necessarily in the
partition). This information, gives rise to an efficient procedure that finds (with
noticeable probability) sets A,B and C where A and B are of size d and have no
connecting edges in the dynamically set network. This, in turn, allows to build a
two-party OT in the plain model from a secure protocol for fOT in the dynamic
setting. The complete proof appears in the full version.

4 Upper Bounds for the case of t = n − 1

4.1 The Tables Method

The tables method is a generic secure computation protocol that computes a
function by an iterative process on the truth table of the function. The truth
table of a function f : {0, 1}n → {0, 1}m is simply a 2nm bit long string such that
the ith cell (or entry) contains the value f(x) where x is the string representing
the integer i. Denote the bits of the string x by x1, . . . , xn. The idea is to use
the fact that restricting the value of the variable x1 to be either 0 or 1 amounts
to looking either at the first or at the second half of the table. Denote by T f the
truth table of f and by T f |b the new table when fixing the first input variable
x1 to b, for b ∈ {0, 1}. Thus, T f |0 is simply the first half of the table T f while
the second half is T f |1.6 Similarly, denote the table of f after fixing the j most
significant bits of x as T f |x1,...,xj

.
The idea of the protocol is that at the jth iteration the j parties P1, . . . , Pj

jointly distribute additive shares of the table T f |x1,...,xj
between themselves. At

the end of the protocol all parties hold a share of the table T f |x1,...,xn
which

consists simply of the single value f(x). The full protocol TABLES is presented
in Figure 1.

6 The first and second halves of a table correspond to fixing of the “most significant”
bit, x1. For every other xi, the fixing of the ith bit xi amounts to a different partition
of the table into two halves.



TABLES f(x1, . . . , xn)
Let f : {0, 1}n → {0, 1}m be a function to be computed by n parties P1, . . . , Pn, each
holding a single input bit x1, . . . , xn respectively.

– Initialization stage: P1 computes T f |x1 , i.e. the truth table of f when restricted
to his input x1. Let S1

1 = T f |x1 .
– Iteration stage: The following steps are repeated sequentially for each j ∈

[n− 1]. At the beginning of the jth iteration, each of the parties P1, . . . , Pj holds
a share Sj

1, . . . , Sj
j (respectively) such that

L
i∈[j] S

j
i = T f |x1,...,xj . At the end of

the iteration, the table T f |x1,...,xj+1 is shared among the parties P1, . . . , Pj+1.

1. For each i ∈ [j], party Pi chooses a random mask Ri ∈ {0, 1}2
n−jm and

calculates T 0
i = Sj

i |0 ⊕Ri and T 1
i = Sj

i |1 ⊕Ri.
2. Pj+1 runs an OT protocol with every Pi such that i ∈ [j]. They run the

protocol OT (T 0
i , T 1

i ; xj+1) with Pi as sender and Pj+1 as receiver.
3. For each i ∈ [j], party P i sets Sj+1

i = Ri while party Pj+1 sets Sj+1
j+1 =L

i∈[j] T
xj+1
i .

– Output stage: Each party sends its share Sn
i to P1 who outputs

L
i∈[n] S

n
i .

Fig. 1. The TABLES protocol.

Theorem 6. Protocol TABLES is an (n−1)-secure protocol for the function f .
The protocol involves a single OT call between each pair of players.

A proof of Theorem 6 appears in the full version. Note that the protocol can be
easily generalized to handle `-bit inputs rather than single bits. In such a case,
each party runs ` consecutive iterations, one for each input bit. The number of
OTs between each pair of players grows to `.

4.2 Applying the Tables Method

The advantage of the tables method is that it requires exactly one OT call
between each pair of parties (overall,

(
n
2

)
OT calls) and presents a plausibility

result for (n − 1)-secure computation of any function on n bits, matching the
lower bound on the number of OTs for the case of t = n− 1 (Theorem 4).

The main problem with the tables method, however, is that the strings sent
in the (string) OT are of length 2nm. This makes the protocol inefficient except
when the input domain of f is of feasible size. In the following we show that
for certain classes of functions one can get efficient protocols that still require
a minimal number of OTs. For example, we describe how to securely compute
any function in NC0, namely a function in which each bit of the output depends
on a constant number of input bits. Note that, under standard cryptographic
assumptions, there exist non-trivial cryptographic primitives such as one-way
functions and pseudorandom generators in NC0 [1].



Proposition 7 For every function f ∈ NC0 there exists an efficient (n − 1)-
secure computation protocol using just

(
n
2

)
OT calls.

Proof sketch: For a function f : {0, 1}n → {0, 1}m in NC0 it is guaranteed
that each output bit is a function of c = O(1) input bits. We call these the c
input bits that affect the output bit.

The straightforward protocol runs m separate TABLES protocols, one for
each output bit. Since each output bit is affected by only c parties, then each
TABLES protocol can be executed only by the c parties that affect this output,
using a table of size 2c which is constant. However, if each protocol is run sep-
arately then the number of OT calls would grow to

(
c
2

)
m, which may be bigger

than
(
n
2

)
when m is large. Using a careful scheduling of the TABLES protocols,

all OT calls between each pair of parties can be computed using a single OT in-
vocation. (See full version for details.) Thus, the overall number of OTs remains(
n
2

)
, matching the lower bound.

Note that the above mentioned schedule works for every function f (not
necessarily in NC0). The efficiency though is only guaranteed for limited types
of functions. More precisely, efficiency is guaranteed for every function where
each output bit is affected only by a logarithmic number of input variables.
Extension to bounded degree polynomials. A straightforward extension
of the above proposition follows from observing that if the output stage is not
executed then the above protocol efficiently computes an additive secret-sharing
for each output bit. At the same cost, the parties can get an additive secret-
sharing of the sum of various outputs. This is done simply by each party taking
a local sum of the various shares that it holds to create a new share for the
sum. This forms an efficient low communication (n − 1)-secure protocol for all
logarithmic degree polynomials whose representation as the sum of monomials
has only a polynomially many terms.

4.3 Oblivious Linear Branching Programs

This section puts forward a generalization of the tables method that extends
the class of functions that we can securely compute by an efficient protocol. The
class of functions that we deal with is a linear version of oblivious branching
programs.

Definition 8 (Oblivious Linear Branching Programs) A linear branching
program LBP on an n-bit input is an ordered set of triples {(i1;M0

1 ,M1
1 ), . . . , (is;

M0
s ,M1

s )} and an initial vector v0 ∈ {0, 1}w0 . Each triple contains an index
ij ∈ [n] and a pair of boolean wj−1 × wj matrices M0

j ,M1
j (where wj ≥ 1). The

size of the program is s and its width w is the maximal wj over all j ∈ [s]. On
input x ∈ {0, 1}n the output of the program is LBP (x) = v0M

xi1
1 · · ·Mxis

s .

Theorem 9. There exists an (n−1)-secure computation protocol for computing
the output of a linear branching program LBP. The protocol makes at most sn OT
calls on `-bit strings (where s and ` are the size and width of LBP, respectively).



The protocol runs along the lines of the TABLES protocol (Figure 1), with
the main difference being that at step (1), the ith party computes T 0

i = Sj
i M0

j ⊕
Ri and T 1

i = Sj
i M1

j ⊕Ri (rather than T 0
i = Sj

i |0 ⊕Ri and T 1
i = Sj

i |1 ⊕Ri). The
complete protocol appears in the full version.

4.4 Functions Captured by Linear Branching Programs

As mentioned before, the protocol for linear branching programs is a general-
ization of the tables method. As such, it captures the same applications as the
previous method, but it also captures other functions that could not be efficiently
computed in the previous method. We highlight some function classes that can
be computed using this methodology:

Tables. The LBP model is indeed a generalization as exemplified by the fol-
lowing presentation: consider the initial vector v0 that is the truth table of the
function f . For each iteration, the two matrices M0

j and M1
j are simply two

projection matrices (and hence also linear operations). M0
j leaves only the first

half of the coordinates while M1
j leaves the second half of the coordinates.

Oblivious branching programs. Similar to linear branching programs, obliv-
ious branching programs inquire a single variable at each layer and move to a
new state according to its answer. This can be viewed as a layered graph where
each node has two outgoing edges labeled 0 and 1 going to the next level. The
width of the program is the maximal number of nodes in a layer and the number
of layers is the length of the program. The simulation of such a branching pro-
gram by an LBP looks at the intermediate states as indicator vectors of length
w (all zeros except a single one indicating the current state). The matrix for
input 0 has as its ith row, the indicator vector that the ith state should move to
in case that the input bit is 0 and likewise for the second matrix. Other models
of computation or functions that are captured by their view as a branching pro-
gram include decision trees, oblivious automata and membership in small
(polynomial size) set.

Oblivious counting branching programs. As in the oblivious branching
program case, a non-deterministic branching program allows going from one
state to a number of states. A counting branching program outputs the number
of accepting paths that a non-deterministic branching program has. Such non-
determinism can easily be incorporated into LBPs by allowing the state vector
to vary from an indicator with a single one. The ith row of the matrix will have
a 1 for each possible move from the ith state to the next level. If the operations
are executed over a large enough field, then the intermediate vector holds in
each location the number of paths that lead up to this state. Thus, over a large
field this implements a counting branching program. If working over the field
GF (2) then this is simply a parity branching program that indicates the parity
of the number of paths that lead to a state. Unfortunately, the most natural
non-deterministic model is not captured by LBPs. This is a non-deterministic
procedure that asks whether their exists an accepting path to the program at all



(an operation that is no longer a linear one). In Section 5, we present protocols
for secure computation for this model.
Sparse Polynomials. LBPs allow for a simple and efficient computation of a
monomial over input bits.7 In addition, an LBP can incorporate in it a number of
parallel LBP computations and have the last operation sum their outputs (simply
by incorporating this linear operation in the last pair of matrices). Thus LBPs
can compute a polynomial as a sum of all of its monomials. For the program to
be efficient, the only limitation is that the number of monomials is polynomial.
Note that this captures a larger family of functions than in Section 4.2. A closely
related question is can one compute a DNF formula using LBPs (DNFs are the
OR of monomials rather than their sum). This is a special case of the non-
deterministic question addressed in the next section.

5 Secure Computation for Non-Deterministic LBP

In this section we suggest a method of securely computing a nondeterministic
(or existential) linear branching program. As opposed to counting branching
programs that give the sum of the number of solutions (and are easy to compute
by LBPs), asking whether or not the exists a solution is a non-linear operation
and therefore is not captured by the general framework. A good example is the
computation of DNF formulas. Like sparse polynomials these are a polynomial
size collection of monomials over n input bits but the question is whether x
satisfies at least one of the monomials (rather than their sum). The problem
arises from the fact that the OR operation is not a linear one and hence it is
not captured by the LBP model. A natural approach is to first compute the
sum of the monomials over a large enough field (to avoid a wraparound), and
then check whether this sum is zero or not. However, revealing the sum is not a
good solution as it leaks more information on the inputs than the desired output
(it differentiates, for instance, whether there was a single satisfied monomial or
many of them).

We propose a generic method that securely computes the existential analogue
of any counting LBP. The method is secure against adversaries that can corrupt
up to t ≤ n − Ω(k) where k is the security parameter, and adds a statistical
error of at most 2−k. For simplicity we state and prove the theorem formally for
limited LBPs where each party has a single input bit and note that as in the
previous sections, this protocol may be generalized to more complex LBPs, at
the price of additional OT invocations.

Theorem 10. Let L be a LBP of length n computing a function f : {0, 1}n →
Zp where p is a (k/2)-bit prime and k is the security parameter. Then there
exists an efficient n-party statistically t-secure protocol with t = n−O(k) for the
predicate g defined as:

g(x) =
{

0, f(x) = 0;
1, otherwise.

7 For example, an LBP for the AND function over n bits simply uses vectors and
matrices of dimension 1 and takes v0 = (0) and the ith triplet is (i, 0, 1).,



The protocol requires 4
(
n
2

)
OT calls.

Proof: The basic idea is to add a randomization stage in each of the iterations of
the secure computation protocol for L. This randomization should give an output
with the following properties: The output should be uniformly distributed over
the domain if f(x) 6= 0 but should always be 0 if f(x) = 0. Therefore, if the
output is not 0 then we know for sure that f(x) 6= 0 but learn nothing else
about f(x). If the output is 0, then it is most likely that f(x) = 0. An error only
happens if the uniformly distributed output happened to hit 0 which happens
with probability that is inverse of the domain size (we will choose the domain
to be of size 2k).

Cayley expanders and a matrix representation. For the randomization
steps we use a constant degree Cayley expander graph with a specific structure. A
Cayley graph is described over a multiplicative group by a small set of generators
{G1, . . . , Gd}. For each element (vertex) v in the group, its neighbors are {G1 ·
v, . . . , Gd · v}. We can use any expander graph with a constant degree such that
its generators can be represented as affine transformation over Zm

p . In particular
we can use the expander graph of Margulis [36] and Gaber and Galil [20]. This
is an expander over ZN × ZN for some integer N , and we take N to be a prime
p in the order of 2k/2. The expander has degree 8 and as we required can be
presented by 8 affine transformations.

For simplicity we will describe the construction over Z2
p (as in the Margulis

graph) although this can be generalized. Suppose that each step is an affine
transformation, e.g. a step moves from vertex v ∈ Z2

p to the vector Av + e where
A ∈ [Z]2,2 is a 2× 2 matrix and e ∈ Z2

p is a vector. For each such generator we
define the corresponding 3× 3 matrix G ∈ [Z]3,3 as:

G =

0@ a11 a12 e1

a21 a22 e2

0 0 1

1A
Notice that multiplying the vector v = (v1, v2, 1) by G simply amounts to a

step in the expander from vertex (v1, v2) with the third coordinate remaining
1. If A1, . . . , An denotes a series of steps where each Ai ∈ {G1, . . . , Gd} and let
v = (0, 0, 1) then AnAn−1 . . . A1v stands for a random walk starting at vertex
(0, 0) and the first 2 coordinates of the output hold the end vertex of the walk.
On the other hand, AnAn−1 . . . A10 simply equals 0 (where 0 stands for the
vector (0, 0, 0)).

The randomization technique. Basically, each party in its turn will con-
tribute a random step Ai in the expander. Our goal is that at the end of the
execution the output will be the multiplication An . . . A1v where v is the vector
(0, 0, f(x)). Hence, if f(x) = 0 the output will simply be 0. On the other hand if
f(x) 6= 0 then the output represents the end of a random walk starting at (0, 0).
We use the following result of Kamp and Zuckerman [32], which states that an
adversary that does not know Ω(k) of the n expander steps has essentially no
knowledge about the outcome of the random walk. The precise statement is that



a random walk on a good expander (where each step is represented by a single
symbol) is an extractor for a symbol fixing source.8

Theorem 11 (adapted from Kamp and Zuckerman [32], Theorem 3.1).
Let a1, . . . , an be a series of steps on an expander of degree d, size dm and second
eigenvalue λ ≤ d−α and let t be such that n − t ≥ 1

2α

(
m + 2

log d log 1
2ε

)
. Then

conditioned on the view of an adversary that observes at most t elements in the
series, the output of the walk is ε-close to uniform.

In our application the graph has parameters d = 8, α ≈ 0.06 (due to [20]) and
the graph is of size 2k, thus m = k/3. When choosing ε = 2−k the requirement
in the Theorem translates to n− t ≥ Ω(k).

Corollary 12 Let A1, . . . , An be a sequence of randomly chosen generator ma-
trices for a good expander graph (e.g. the Margulis graph) with vertex set Z2

p

(for prime p in the order of 2k/2) . Let v = (0, 0, c) for c 6= 0 and denote
u = An . . . A1v. Then conditioned on the view of an adversary that observes at
most t = n−Ω(k) of the sequence the pair (u1, u2) is 2−k-close to the uniform
distribution on Z2

p.

Proof: (of Corollary 12) The corollary follows directly from Theorem 11 in the
case that c = 1. It is left to show that it also holds for any c 6= 0. This can
be seen by breaking the vector v into the sum of c vectors of the type (0, 0, 1).
For each of the c vectors the random walk gives an almost uniform distribution.
When summing up we have a uniform distribution multiplied by c. Since we are
working in Zp then multiplication amounts to a permutation on the elements
of Zp and the output remains close to uniform. Note that this is the only place
where we require that p is prime.

The actual protocol. The protocol is the same protocol as the general one
for computing LBPs only at each iteration, the acting party (that redistributes
the shares) chooses a random step in the extractor. The matrix operations of
the LBP will always be multiplied from the right, while the random steps of the
expander will be multiplied from the left. Technically, the following changes are
applied:

– Instead of starting with the vector v0 of length w0, the protocol starts with
a matrix B0 of 3 vectors (B0 ∈ [Zp]3,w0). The first two rows of B0 are all
zero vectors and the third is the vector v0. Accordingly, the protocol runs
throughout with 3 row matrices rather than single row vectors.

– At step (1) of the iteration stage, rather than computing two values, party
Pi computes 2d values, two for each generator of the expander. They are for
each τ ∈ [d]: T 0τ

i = GτSj
i M0

j ⊕Ri and T 1τ
i = GτSj

i M1
j ⊕Ri.

– At step (2) of the iteration, the acting party Pi chooses a random τ ∈ [d]
and runs a

(
2d
1

)
-OT protocol with each party according to his input xj and

τ . Such a protocol requires log d + 1 OT calls.
8 A symbol fixing source is a randomness source for which t of n symbols are fixed

while the rest are uniformly distributed.



– At the output step, all parties send the first two rows of their shares (but
not the third row!) to the designated party P1. This party calculates the sum
and outputs 0 if the sum was (0, 0) and 1 otherwise.

The correctness and security of the overall protocol follows since the modified
LBP protocol forms a n − 1-secure computation for a sharing of the following
vector

u = An . . . A1B0M
xi1
1 . . .M

xin
n

In addition, B0M
xi1
1 . . .M

xin
n is simply the vector (0, 0, f(x)). Therefore, com-

bined with corollary 12, we get that if P1 outputs the correct value (up to an
error probability of at most 1/p2 ≤ 2−k). Moreover, if f(x) 6= 0 then an adver-
sary that corrupts up to t parties (including P1) sees a value that is statistically
close to uniform, hence leaking no additional information on f(x) or x. This
concludes the proof of Theorem 10.
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