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Abstract. We introduce a variant of the random oracle model where oracle-
dependent auxiliary input is allowed. In this setting, the adversary gets an auxiliary
input that can contain information about the random oracle. Using simple examples
we show that this model should be preferred over the classical variant where the
auxiliary input is independent of the random oracle.
In the presence of oracle-dependent auxiliary input, the most important proof
technique in the random oracle model—lazy sampling—does not apply directly.
We present a theorem and a variant of the lazy sampling technique that allows one
to perform proofs in the new model almost as easily as in the old one.
As an application of our approach and to illustrate how existing proofs can be
adapted, we prove that RSA-OAEP is IND-CCA2 secure in the random oracle model
with oracle-dependent auxiliary input.
Keywords: Random oracles, auxiliary input, proof techniques, foundations.

1 Introduction

In [3] the following heuristic was advocated as a practical way to design cryptographic
protocols:1 To prove the security of a cryptographic scheme, one first introduces a
random oracle O, i.e., a randomly chosen function to which all parties including the
adversary have access. One then proves the security of the scheme that uses the random
oracle and subsequently replaces the random oracle by a suitably chosen function (or
family of functions) H . The random oracle heuristic now states that if the scheme using
O is secure, the scheme using H is secure as well.

Unfortunately, a counter-example to this heuristic has been given in [6]. It was shown
that there exist public key encryption and signature schemes that are secure in the random
oracle model but lose their security when instantiated with any function or family of
functions. Nonetheless, the random oracle heuristic still is an important design guideline
for implementing cryptographic schemes.

Furthermore, [15] pointed out that zero-knowledge proofs in the random oracle
model can lose their deniability when instantiated with a fixed function. In contrast to
the result of [6], this happens even for natural protocols. However, [15] was able to give
conditions under which this effect does not occur and gave a protocol that fulfilled these
conditions.

Although the heuristic is known not to be sound in general, no practical scheme is
known where it fails, and schemes that are proven to be secure using this heuristic tend
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1 However, the basic idea seems to have already appeared earlier.



to be simpler and more efficient than schemes that are shown to be secure in the standard
model. As a consequence, schemes used in practise are often based on the random oracle
heuristic, e.g., the RSA-OAEP encryption scheme, introduced in [2] and standardised in
[17], is one of the most widely used public-key encryption schemes, and its security is
based on the random oracle heuristic.

In the light of the results of [6] and [15], and of the practical importance of the
random oracle heuristic, it is important to try and learn what the exact limitations of the
heuristic are, and, if possible, give criteria to distinguish those protocols in the random
oracle model that become insecure when instantiated due to those limitations, and those
protocols where we can at least hope—if not prove—that their instantiations are secure.
The augmented definition of zero-knowledge by [15] is an example of such a criterion.

In this paper, we uncover another such limitation of the random oracle world. We
will see that there are natural schemes secure in the random oracle model that become
insecure with respect to auxiliary input (or equivalently, with respect to nonuniform
adversaries) when instantiated. As [15] did for the deniability, we give augmented
definitions for the random oracle model with auxiliary input that allow one to distinguish
protocols that fail upon instantiation from those that do not (at least not due to the
abovementioned limitation).

Although such a result does not imply the soundness of the random oracle model, it
helps to better understand which protocol can reasonably be expected to be secure when
instantiated with a fixed function.

We will now investigate the problem of auxiliary input in the random oracle model
in more detail. An important concept in cryptology is the auxiliary input. The auxiliary
input is a string that is given to the adversary at the beginning of the execution of some
cryptographic protocol. This string is usually chosen nonuniformly and depends on
all protocol inputs. In other words, the auxiliary input models the possibility that the
adversary has some additional knowledge concerning the situation at the beginning
of the protocol. This additional knowledge may, e.g., represent information acquired
in prior protocol runs. It turns out that in many cases the presence of an auxiliary
input is an essential concept for proving secure sequential composition. Therefore,
most modern cryptographic schemes are designed to be secure even in the presence
of an auxiliary input (given that the underlying complexity assumptions hold against
nonuniform adversaries).

However, when we try to combine these two concepts, the random oracle model and
the auxiliary input, undesirable effects may occur. We will demonstrate this by studying
the definitions of two simple security notions: one-wayness and collision-resistance.
First, consider the notion of a one-way function. We construct a function f := O in
the random oracle model and ask whether it is one-way. For this, we substitute O for f
in the definition of one-wayness with respect to auxiliary input, and get the following
definition: The function f is one-way if for any polynomial-time adversary A and any
auxiliary input z, the following probability is negligible in the security parameter k:

P
(
x

$← {0, 1}k, x′ ← AO(1k, z,O(x)) : O(x′) = O(x)
)
. (1)

Here O is a randomly chosen function (with some given domain and range), and the
adversary is given black-box access to O. It is now easy to see that f := O is indeed
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secure in the above sense: The adversary can make at most a polynomial number of
queries, and each query except O(x) returns a uniformly random image (exploiting this
latter fact is later called the lazy sampling technique). From this fact one can conclude
that the adversary must make an exponential number of queries to find a preimage of
O(x), hence f is secure. The presence of the auxiliary input does not have noticeable
impact on the proof. The random oracle heuristic now claims that f := H is oneway for
a sufficiently unstructured function H , even in the presence of auxiliary input. So far,
nothing out of the ordinary has happened.

We now try to use the same approach for another security property: collision-
resistance. Again, we set f := O, and then collision-resistance of f means that for
any polynomial-time adversary A and any auxiliary input z, the following probability is
negligible:

P
(
(x1, x2)← AO(1k, z) : x1 6= x2 and O(x′) = O(x)

)
. (2)

This can again easily be proven using the lazy sampling technique: the answers to the
adversary’s queries are independent random values, and finding a collision requires two
of these random values to be identical which happens only with negligible probability.
Again, the auxiliary input does not help the adversary, since it does not contain any
information on where a collision might be. We now use the random oracle heuristic,
replace O by some sufficiently unstructured function H , so that f = H , and then claim
that f is collision-resistant in the presence of an auxiliary input. But this of course is
impossible, since the auxiliary input may simply contain a collision of H , since H is a
fixed function.2

Hence, the random oracle heuristic should not be applied to collision-resistance.
On the other hand, we would like to prove the one-wayness of f := O in the random
oracle model. We hence need a stronger variant of the random oracle heuristic that
does not allow one to prove the collision-resistance of f , but still allows one to prove
its one-wayness. An inspection of our proof above reveals the mistake we made: In
the random oracle model, the auxiliary input was chosen before the random oracle, so
it could not contain a collision. After instantiation, the function H was fixed, so the
auxiliary input did depend on H and therefore could provide a collision. The random
oracle heuristic should hence be recast as follows in the case of auxiliary input: When
a scheme is secure in the random oracle model with oracle-dependent auxiliary input,
it is still secure after replacing the random oracle by a sufficiently unstructured fixed
function H , even in the presence of auxiliary input.

It remains to clarify the formal meaning of oracle-dependent auxiliary input. Un-
fortunately, we cannot simply say: “for randomly chosen O and every z”. At least, the
semantics underlying constructions like (1) and (2) get highly nontrivial in this case.
Fortunately, there is another possibility. By an oracle function z we mean a function that

2 If we replace O by a family of functions, i.e., some parameter i is chosen at the beginning of
the protocol, and then a funcion Hi is used, then the problem described here does not occur.
Unfortunately, one is not always free to use such a family of functions. On one hand, the index
has in some way to be chosen, and we do not want to leave that choice to the corrupted parties.
On the other hand, practical applications usually instantiate the random oracle using a fixed
function like SHA-1 or SHA-256 [8].
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returns a string zO for each possible value of the random oracle O. So formally, z is
simply a function that maps functions to strings. Then a scheme is called secure in the
random oracle model with oracle-dependent auxiliary input if for any polynomial-time
adversary A and for any oracle function z into strings of polynomial length (that may
depend on k, of course), the adversary cannot break the scheme even when given zO as
auxiliary input.

As with the traditional random oracle model, the exact form these definitions take
depends on the security notion under consideration. For example, the one-wayness and
the collision-resistance of f := O take the following form: for any polynomial-time
adversary A and any oracle function z into strings of polynomial-length, we have

P
(
x

$← {0, 1}k, x′ ← AO(1k, zO,O(x)) : O(x′) = O(x)
)

(3)

or
P
(
(x1, x2)← AO(1k, zO) : x1 6= x2 and O(x′) = O(x)

)
, (4)

respectively. However, we can give a simple guideline on how to transform a security
definition in the random oracle model with an oracle-independent auxiliary input z into
a security definition with oracle-dependent auxiliary input. First, one quantifies over
oracle functions z instead of strings z. And then one replaces all occurrences of the
string z by zO.

It is now easy to see that (4) is not negligible: let zO encode a collision x1, x2, and
let the adversary output that collision. Since such a collision always exists (assuming a
length-reducing f ), this breaks the collision-resistance of f in the presence of oracle-
dependent auxiliary input, as we would have expected.

On the other hand, we expect (3) to be negligible in the presence of oracle-dependent
auxiliary input. However, it is not so easy to see whether there may not be some possibility
to encode information about the random oracle in a string of polynomial length that
allows one to find a preimage with non-negligible probability. Although one-wayness
is one of the weakest conceivable security notions, proving its security with respect to
oracle-dependent auxiliary input is quite difficult. (We encourage the reader to try and
find an elementary proof for the one-wayness of f .3) The reason for this difficulty lies in
the fact that it is not possible any more to apply the lazy sampling technique: given some
information zO on the random oracle O, the images under the random oracle are not
independently nor uniformly distributed any more. We therefore need new techniques
if we want to be able to cope with oracle-dependent auxiliary input and to prove more
complex cryptographic schemes secure in this model. Such techniques will be presented
in this paper.
On nonuniform and uniform auxiliary input. In this work, we always consider
nonuniform auxiliary inputs, that is, the auxiliary input is not required to be the result
of an efficient computation. This is the most common modelling of auxiliary input in
the cryptographic community. However, it is also possible to consider uniform auxiliary
inputs: In this case, the auxiliary input is not an arbitrary sequence of strings, but is instead
the output of a uniform probabilistic algorithm. The main motivation of the auxiliary
input, namely to model information gained from prior executions of cryptographic

3 We give a proof using the techniques from this paper in Lemma 10.
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protocols on the same data, and thus to allow for composability, is preserved by this
uniform approach. (See [11] for a detailed analysis.) The main disadvantage of the
uniform approach is that definitions and proofs get more complicated due to the presence
of another machine. This is why the nonuniform auxiliary input is more commonly used.

Applying the uniform approach to our setting, a uniform oracle-dependent auxiliary
input would be the output of a polynomial-time oracle Turing machine Z with access to
the random oracle. Since that Turing machine could only make a polynomial number of
queries, using the lazy sampling technique would be easy: all positions of the random
oracle that have not been queried by Z can be considered random.

However, if we use the random oracle heuristic to motivate the security of a protocol
with respect to uniform auxiliary input, the result is incompatible with existing theorems
and definitions in the nonuniform auxiliary input model. So to use the random oracle
heuristic together with existing results, we either have to reprove all existing results for
the uniform case, or we have to use nonuniform oracle-dependent auxiliary input. It is
the latter approach we follow in this work.

Instantiating the random oracle with keyed families of functions. Above, we
showed that the random oracle is (unsurprisingly) not collision-resistant in the presence
of auxiliary input. It follows that we may not instantiate the random oracle with a fixed
function if we need collision-resistance. On the other hand, replacing the random-oracle
by a keyed family of functions may be secure, since the auxiliary input cannot encode a
collision for each function. We do not claim that it is necessary to use oracle-dependent
auxiliary input when instantiating with families of functions. Rather, oracle-dependent
auxiliary input provides a tool for distinguishing the cases where the use of a single
function4 is sufficient (e.g., in the case where we require only one-wayness) and where
a keyed family of functions is necessary (e.g., in the case that we require collision-
resistance). Since instantiating with a single function is much simpler (e.g., we do
not have to worry about who chooses the key), and is the usual practice in real-world
protocols, examining random oracle based protocols with respect to oracle-dependent
auxiliary input may give additional insight into when instantiation with single functions
is permitted and when we have to use keyed families. Another disadvantage of using a
family of functions is that we have to ensure that the key is honestly generated, which
may introduce additional difficulties if no trusted party is available for this task.

Designing special protocols. An alternative to the approach in this paper would be
to systematically construct or transform a protocol so that it is secure with respect to
oracle-dependent auxiliary input (instead of verifying a given protocol). However, here
the same arguments as in the previous paragraph apply. First, we might not be interested
in a new protocol, but might want to examine the security of an existing protocol (that
possibly even has already been implemented). Further, efficiency considerations might
prevent the use of more elaborate constructions.

4 Here, by a single function we mean that the function is not parametrised by a key that has to be
known by all parties. However, the function may depend on the security parameter. Otherwise a
property like collision-resistance trivially cannot be fulfilled by a single function, even against
uniform adversaries. See also [16] in this context.
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1.1 Our results

We introduce and motivate the random oracle model with oracle-dependent auxiliary
input (preceding section). In this model, the auxiliary input given to the adversary may
depend on the random oracle.

In order to be able to prove security in the new model, we introduce a new variant of
the lazy sampling technique that is applicable even in the presence of oracle-dependent
auxiliary input. We show that one can replace the random-oracle O by a new random
oracle P that is independent of the auxiliary input, except for a presampling. That is,
a small fraction of the total random oracle P is fixed (and dependent on the auxiliary
input), while all other images are chosen independently and uniformly at random (and
in particular are independent of the auxiliary input). In this new setting, lazy sampling
is possible again: an oracle query that is not in the presampled set is given a random
answer.

This also gives some insight into why some schemes are secure and some fail in
the presence of oracle-dependent auxiliary input: Intuitively the protocols that fail are
those for which you can have a “reason for a failure” (e.g., a collision) contained in a
few entries of the random oracle.

As a technical tool, we also formulate a security amplification technique: for many
security notions, security with respect to nonuniform polynomial-time adversaries im-
plies security with respect to nonuniform adversaries whose running time is bounded
by some suitable superpolynomial function f . This technique is useful in the context of
oracle-dependent auxiliary input, since some reduction proofs with presampling tend to
introduce superpolynomial adversaries.

As an application of our techniques, we show that RSA-OAEP is IND-CCA2 secure
in the random oracle model with oracle-dependent auxiliary input. Our proof closely
follows the proof of [9] where the security of RSA-OAEP was shown in the classical
random oracle model. This allows the reader to better compare the differences in the
proof introduced by the oracle-dependent auxiliary input. However, we believe that the
result does not only exemplify our techniques but is worthwhile in its own light: it gives
the first evidence that RSA-OAEP as used in practical application (i.e., with the random
oracle instantiated with a fixed functionH), is secure even in the presence of an auxiliary
input.

1.2 Related work

In [19], the problem of composition of zero-knowledge proofs in the random-oracle
model is investigated. It is shown that to guarantee sequential composition, oracle-
dependent auxiliary input is necessary. Their definition of oracle-dependent auxiliary
input is somewhat weaker than ours in that the machine z generating the auxiliary input
is allowed only a polynomial number of queries to the random oracle (it is similar to
uniform oracle-dependent auxiliary input in that respect). They give protocols that are
secure with respect to that notion. It would be interesting to know whether the techniques
developed here allow to show their protocols to be secure even with respect to our
stronger notion of oracle-dependent auxiliary input.
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In [10], it was shown that a random permutation is one-way with respect to oracle-
dependent auxiliary input. They showed that the advantage of the adversary is in 2−Ω(k)

which is essentially the same bound as we achieve for random functions in Section 3.
However, their proof is specific to the property of one-wayness and does not generalise
to our setting. According to [10], a similar result was shown for random functions in
[12]. However, their proofs apply only to the one-wayness of the random oracle, while
our results imply that many more cryptographic properties of the random oracle are
preserved in the presence of oracle-dependent auxiliary input.

In [14,5,4,7], unconditional security proofs in the bounded-storage model were
investigated. In this model, one assumes that the adversary is computationally unlimited,
but that it may only store a limited amount of data. One assumes that at the beginning
of the protocol some large source of randomness (e.g., a random oracle) is available
to all parties. The security of the protocol then roughly hinges on the following idea:
The honest parties store some (small) random part of the source. Since the adversary
does not know which part has been chosen, and since it may not store the whole source,
with high probability the honest parties will find some part of the random source they
both have information about, but that is unknown to the adversary. To prove the security
in this model, it is crucial to show that the adversary cannot compress the source in a
manner that contains enough information to break the protocol. This is very similar to
the scenario investigated here, since the oracle-dependent auxiliary input can be seen
as compressed information on the random oracle. Our results differ from those in the
bounded-storage model in two ways: first, our results cover a more general case, since we
consider the effect of auxiliary input on arbitrary protocols, while in the bounded-storage
model a single protocol is analysed that is specially designed to extract information
from the random source that cannot be extracted given only a part of the source. On the
other hand, precisely due to the specialised nature of the protocols, the bounds achieved
in the bounded-storage model are better than those presented here. In particular, there
are protocols in the bounded storage model that are secure given a random source of
polynomial size [7], while our results are—at least with the present bounds—only useful
if the domain of the random oracle has superpolynomial size (cf. the exact bounds given
by Theorem 2). It would be interesting to know whether our techniques can be used in
the context of the bounded-storage model, and to what extent the techniques developed
in the bounded-storage model can be applied to improve our bounds.

1.3 Further applications

Besides the application described above, namely to be able to use the random-oracle
heuristic in the case of auxiliary input, our main result (the lazy sampling technique)
may also be useful in other situations.

In [10] it was shown that a random permutation is one-way in the presence of oracle-
dependent auxiliary input. This was the main ingredient for several lower bounds on
black-box constructions using one-way permutations. Using our techniques, we might
find lower bounds on black-box constructions based on other cryptographic primitives:
namely, we would show that the random oracle (or a protocol using the random oracle)
has a given security property X even in the presence of oracle-dependent auxiliary input.
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Then using techniques from [10], lower bounds on black-box constructions based on
cryptographic primitives fulfilling X might be derived.

1.4 Organisation

In Section 1 we introduce and motivate the concept of oracle-dependent auxiliary input.
In Section 2 we present the main result of this paper: a theorem that allows one to use
the lazy sampling technique even in the presence of oracle-dependent auxiliary input. In
Section 3 we give a simple example to show how to use the lazy sampling technique. In
Section 4 we present the security amplification technique. This technique allows one to
use superpolynomial adversaries in reduction proofs, which sometimes is needed when
using the lazy sampling technique. In Section 5 we prove that RSA-OAEP is IND-CCA2
secure in the random oracle model with oracle-dependent auxiliary input. Details and
proofs left out in this paper are given in the full version [18].

1.5 Notation

For random variables A and B, we denote the Shannon-entropy of A by H(A), and the
conditional entropy of A given B by H(A|B). The statistical distance between A and B
is denoted∆(A;B). The operator log means the logarithm base 2. The variable k always
denotes the security parameter. In asymptotic statements of theorems or definitions,
some variables implicitly depend on the security parameter k. These variables are then
listed at the end of the theorem/definition. We call a nonnegative function in k negligible,
if it lies in k−ω(1). We call a nonnegative function non-negligible if it is not negligible.

Let O always denote the random oracle. Let Domain be the domain and Range the
range of the random oracle, i.e., O is a uniformly random function from Domain →
Range. In an asymptotic setting, O, Domain and Range implicitly depend on the
security parameter k. In this case we always assume #Domain and #Range to grow at
least exponentially in k.

An oracle function g intoX is a mapping from Domain → Range intoX . We write
the image of some function O under g as gO.

An assignment S is a list S = (x1 → y1, . . . , xn → yn) with xi ∈ Domain and
yi ∈ Range and with xi 6= xj for i 6= j. The length of S is n. We call yi the image
of xi under S. We write x ∈ S if xi = x for some i. The image imS is defined as
imS = {y1, . . . , yn}.

2 Lazy sampling with auxiliary input

The main result of this paper is the following theorem which guarantees that we can
replace a random oracle with oracle-dependent auxiliary input by a new random oracle
that is independent of the auxiliary input with the exception of some fraction of its
domain (which is presampled). In order to formulate the theorem, we first need to state
what exactly we mean by an oracle with presampling:
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Definition 1 (Random oracle with presampling). Let S = (x1 → y1, . . . , xn → yn)
be an assignment. Then the random oracle P with presampling S is defined as follows:

When queried x ∈ Domain with x = xi for some i ∈ {1, . . . , n}, the oracle returns
yi. If x has already been queried, the same answer is given again. Otherwise, a uniformly
random element y is chosen from Range and returned.

We can now state the main theorem.

Theorem 2 (Lazy sampling with auxiliary input). Let f ≥ 1 and q ≥ 0 be integers.
Let z be an oracle function with finite range Z and p := log #Z.

Then there is an oracle function S, such that SO is an assignment of length at most
f , so that the following holds: For any probabilistic oracle Turing machine A that makes
at most q queries to the random oracle, it is

∆
(
AO(zO); AP(zO)

)
≤
√
pq

2f

where P is the random oracle with presampling SO.

Before presenting the actual proof, we give a short sketch that is intended to serve as
a guide through the rest of the proof. To ease comparison with the details given later, we
provide forward references to the lemmas of the actual proof.

For any i, let Ji be the maximum amount of information that a sequence of i queries
to the random oracle O gives about the auxiliary input zO. Since |z| = p, Ji ≤ p for
all i. Let Fi be the sequence of i queries that achieves this bound, that is, the mutual
information between zO and the oracle’s answers to Fi is Ji.

Assume that the queries Fi have already been performed. Let G be a sequence of q
queries. Then the answers to the queries Fi and G together contain at most Jq+i bits of
information about z. Thus the answers toG contain at most Jq+i−Ji bits of information
about z beyond what is already known from the answers to Fi.

Consider the quantities J0, Jq, J2q, . . . , Jf+q (assuming that q divides f ). Since
J0 ≥ 0 and Jf+q ≤ p, there must be some f ′ ≤ f such that the Jf ′+q − Jf ′ ≤ pq

f .
Thus, given the answers to F := Ff ′ , any sequence G of q queries reveals at most pqf
bits about the auxiliary input z. In other words, the answers to G are almost independent
of z (assuming that pqf is sufficiently small). Thus, if we fix the oracle P to match the
answers to F , but choose P independently of z everywhere else, with q queries we
cannot distinguish between P and the original oracle O. This gives Theorem 2 (except
for the concrete bound

√
pq/2f ).

In reality, however, the queries performed by A are adaptive, i.e., they depend on z
and on the answer to prior queries. So we cannot talk about a fixed sequenceG of queries
made by A. To overcome this problem, we introduce the concept of an adaptive list
(Definitions 3 and 4), which is a generalisation of a sequence of queries where the queries
are allowed to be adaptive. When considering adaptive lists, it does not make immediate
sense to speak about the mutual information between the answers to an adaptive list G
and the auxiliary input zO. In Definition 5 we therefore introduce quantities J(G) and
J(G|F ) denoting the information that the answers to the adaptive list G contains about
zO (given the answers to the adaptive list F in the case of J(G|F )). For this quantity,
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we show that J(F ) ≤ p (Lemma 7) and give a chain rule for the information contained
in the concatenation of adaptive lists (Lemma 6). Then we can construct the sequence
F as in the proof sketch above (Lemma 8). However, F is now an adaptive list. Finally,
Theorem 2 is proven (page 12) by showing that the adversary A can be considered as
an adaptive list G of length q, and therefore cannot distinguish the answers to queries
outside F from uniform randomness. For convenience, in Corollary 9 we formulate an
asymptotic version of Theorem 2.

We now give the details of the proof, broken down to several lemmas. First we have
to define the concept of an adaptive list. To capture the possibility of adaptive queries, an
adaptive list is formally just a deterministic oracle Turing machine. An adaptive list of
length n makes n queries to the oracle and outputs an assignment containing the queries
and the results of these queries. To be able to talk about the concatenation of adaptive
lists, we slightly extend this idea. An adaptive list takes an auxiliary input z, but also an
assignment X . This assignment can be thought of as the queries made by an adaptive list
executed earlier. So in a concatenation of two adaptive lists, the queries of the second
adaptive list can depend on the results of the queries made by the first adaptive list. For
definitional convenience, an adaptive list does not only output its queries, but also the
queries received as input. An adaptive list expecting a queries as input and then making
b − a queries, we call an a → b adaptive list. We require that an adaptive list never
repeats a query. Note that an adaptive list is indeed a generalisation of a non-adaptive
sequence of queries: a sequence (x1, . . . , xn) corresponds to the 0 → n adaptive list
querying the positions x1 to xn and returning the results.

Definition 3 (Adaptive list). Let #Domain ≥ b ≥ a ≥ 0. An a → b adaptive list M
is defined as a deterministic oracle Turing machine that takes an assignment X =
(x1 → y1, . . . , xa → ya) and a string z ∈ Σ∗ as input and satisfies the following
properties

– M = M(X, z) does not query the oracle at positions x1, . . . , xa.
– M never queries the oracle twice at the same position.
– M queries the oracle exactly b− a times.
– Let x′1, . . . , x

′
b−a be the positions of the oracle calls made by M (in that order). Let

y′i := O(x′i) be the corresponding oracle answers.
– Then M outputs the assignment (x1 → y1, . . . , xa → ya, x

′
1 → y′1, . . . , x

′
b−a →

y′b−a).

We can now define simple operations on adaptive lists. The length of an adaptive list is
the number of queries it makes, and the composition of two adaptive lists is the adaptive
list that first queries the first list, and then executes the second, which gets the queries
made by the first as input.

Definition 4 (Operations on adaptive lists). Let M be an a → b adaptive list. Then
the length |M | is defined as |M | := b− a.

Let N be an a → b adaptive list, and M some b → c adaptive list. Then the
composition M ◦ N is defined as the oracle Turing machine that upon input of an
assignment X and a string z ∈ Σ∗ outputs MO(NO(X, z), z).
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Obviously, M ◦N is an a→ c adaptive list, and |M ◦N | = |M |+ |N |.
We can now define the quantity J(M |N) for adaptive lists M,N . Intuitively,

J(M |N) denotes the information that the queries made by M (when executed after N )
contain about the auxiliary input zO beyond what is already known from the queries
made by N . Since the results to the queries made by M should be uniformly random if
they are independent of zO, we define J(M |N) as the quantity by which the conditional
entropy of M ’s queries given N ’s queries and zO is lower than the hypothetical value of
|M | · log #Range .

Definition 5 (Information of an adaptive list). Let N be some 0 → b adaptive list,
and M some b→ c adaptive list. Let further O be the random oracle and z a random
variable (where z does not need to be independent of O).

Then the information J(M |N) is defined by

J(M |N) := |M | · log #Range −H(M ◦NO(z)|NO(z), z).

(Note that J(M |N) implicitly depends on the joint distribution of O and z.)
We write short J(M) for J(M |∅) where ∅ is the adaptive list making no queries.

We now give two simple properties of the information J(M |N): a chain rule and an
upper bound in terms of the auxiliary input’s length.

Lemma 6 (Chain rule for the information). Let N be some 0→ b adaptive list, M2

some b→ c adaptive list, and M1 some c→ d adaptive list. Then

J(M1 ◦M2|N) ≥ J(M1|M2 ◦N) + J(M2|N).

Lemma 7 (Bounds for the information). Let z be a random variable with finite range
Z and p := log #Z. Let F be some 0→ b adaptive list. Then J(F ) ≤ p.

The proofs of these lemmas as well as of the subsequent ones are given in the full
version [18].

Let Ji := maxF J(F ) where F ranges over all adaptive lists of length |F | = i.
Choose Fi such that J(Fi) = Ji. Consider the quantities J0, Jq, J2q, . . . , Jf+q (as-
suming that q divides f ). Since J0 ≥ 0 and Jf+q ≤ p by Lemma 7, there must
be some f ′ ≤ f such that Jf ′+q − Jf ′ ≤ pq

f =: ε. Defining F := Ff ′ we get
J(G|F ) ≤ J(G ◦ Ff ′)− J(Ff ′) ≤ Jq+f ′ − Jf ′ ≤ ε by Lemma 6.

By definition of J(G|F ), this implies that the results of the queries made by G are
only ε away from the maximum possible entropy |G| · log #Range . This implies using a
result from [13] that the statistical distance between those query-results and the uniform
distribution is bounded by

√
ε/2, even when given the results of the queries made by F

and the auxiliary input zO. This is formally captured by the following lemma which is
the core of the proof of Theorem 2.

Lemma 8 (The adaptive list F ). Let f, q ≥ 1 be integers. Let z be a random variable
with finite range Z (z may depend on the random oracle O) and p := log #Z. Let Un
denote the uniform distributions on n-tupels over #Range (independent of z and O).
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Then there is an adaptive list F with |F | ≤ f , such that for any |F | → min{|F |+
q,#Domain} adaptive list G, it is

∆
(
∇G ◦ FO(z), FO(z), z; U|G|, FO(z), z

)
≤
√
pq

2f
.

Here ∇G ◦ F denotes the oracle Turing machine that behaves as G ◦ F but only
outputs the oracle answers that G got (instead of also outputting G’s input and G’s
queries). More formally, if G ◦FO(z) = (x1 → y1, . . . , x|F |+|G| → y|F |+|G|), we have
∇G ◦ FO(z) = (y|F |+1, . . . , y|F |+|G|).

Using Lemma 8, proving the main Theorem 2 is easy. For some adversary A let
µ := ∆

(
AO(zO); AP(zO)

)
. By fixing the worst-case random-tape, we can make the

adversaryA deterministic. ThenA’s output depends only on its input zO and the answers
to its oracle queries. So if we let A just output the queries it made, the statistical distance
µ does not diminish. Further, if we give the presampled queries SO as an additional
input to A, we can assume A to make exactly q distinct queries, and not to query any
x ∈ SO. But then A fulfils the definition of an adaptive list, so by Lemma 8 we have
µ ≤

√
pq
2f , which proves Theorem 2.

We give the full details of the proof in the full version [18].
An interesting question is whether the bound

√
pq/2f on the statistical distance ∆

achieved by Theorem 2 is tight. In particular, the bound falls only sublinearly with f ,
while we were unable to find a counterexample where ∆ did not fall exponentially
with f . So a tighter bound may be possible. However, this would need to use new proof
techniques, since the approach in this paper uses an averaging argument that will at best
give a bound that falls polynomially in f (cf. the computation of Jf ′+q − Jf ′ below
Lemma 7 above.)

Finally, for convenience we state an asymptotic version of Theorem 2 that hides the
exact bounds achieved there:

Corollary 9 (Lazy sampling with auxiliary input, asymptotic version). For any su-
perpolynomial function f and any polynomial q and oracle function z into strings of
polynomial length, there is an oracle function S, such that SO is an assignment of
length at most f , so that for any probabilistic oracle Turing machine A making at most
q queries, the following random variables are statistically indistinguishable:

AO(1k, zO) and AP(1k, zO).

Here P is the random oracle with presampling SO.
(In this corollary, O, z, and S depend implicitly on the security parameter k.)

Proof. Immediate from Theorem 2. ut

3 Example: one-wayness of the random oracle

To give a first impression on how the lazy sampling technique is used in the random
oracle model with oracle-dependent auxiliary input, we show a very simple result: If we
let f := O, then f is a one-way function.

12



In the full version [18], as a second example we show that f := O is given-preimage
collision-resistant.

Lemma 10 (The random oracle is one-way). Let g := O whereO denotes the random
oracle. Then g is a one-way function in the random oracle model with oracle-dependent
auxiliary input.

More formally, for any probabilistic polynomial-time oracle Turing machine A and
any oracle function z into strings of polynomial length, the following probability is
negligible (in k):

AdvA := P
(
x

$← Domain, x′ ← AO(1k, zO,O(x)) : O(x′) = O(x)
)

(In this lemma, O, Domain , f , and z depend implicitly on the security parameter k.)

We present this proof in some detail, to illustrate how Theorem 2 or Corollary 9
can be used. Since these steps are almost identical in most situations, knowledge of this
proof facilitates understanding of the proofs given later on.

Proof. Let f := min{
√

#Range,
√

#Domain}. Let Ã be the oracle Turing machine
that chooses a random x from Domaink, then let A(1k, zO,O(x)) choose x′, and
outputs 1 if and only if O(x′) = O(x). Then AdvA = P

(
ÃO(1k, zO) = 1

)
.

SinceA is polynomial-time, Ãmakes only a polynomial number of queries, so Corol-
lary 9 applies to Ã, hence ÃO(1k, zO) and ÃP(1k, zO) are statistically indistinguishable
(where P is the random oracle with presampling SO, and S is as in Corollary 9). Then
consider the following game:

Game 1: x
$← Domain, x′ ← AP(1k, zO,P(x)) : P(x′) = P(x).

We call the probability that the last expression evaluates to true (i.e., that P(x′) =
P(x)) the advantage Adv1 of the game. Since Adv1 is the probability that ÃP(1k, zO)
outputs 1, |AdvA −Adv1| is negligible.

(This step probably occurs at the beginning of virtually all proofs that use Theorem 2
or Corollary 9. We are now in the situation that with at most f exceptions, the oracle
query P(x) returns a fresh random value, and can use standard techniques based on lazy
sampling.)

We now modify A in the following way resulting in a machine A2: A2 expects an
assignment S as an additional argument. Whenever A would query the random oracle
P with a value x, A2 first checks if x ∈ S. If so, A returns the image of x under S.
Otherwise, A2 queries its oracle. Then consider the following game:

Game 2: x
$← Domain, y ← P(x), x′ ← AP2 (1k, zO, y, SO) : y = P(x′)

Obviously, Adv1 = Adv2.
Since for some x /∈ SO (which happens with probability at least 1− f/#Domain),

the oracle P returns a random y ∈ #Range, the probability that y ∈ imSO is at most
f/#Domain + f/#Range. Furthermore, if x′ ∈ SO but y /∈ imSO, the predicate
y = P(x′) will be false.
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So |Adv2 −Adv3| ≤ P (y ∈ imSO) is negligible for the following game 3:

Game 3: x
$← Domain, y ← P(x), x′ ← AP2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = P(x′).

Note that in game 3, A2 never queries P at a position in SO. Furthermore, the query
P(x′) is only executed if x′ /∈ S. So P is only queried at a position in SO, if x ∈ SO,
which has probability at most f/#Domain . But when queried at positions outside SO,
P behaves like a normal random oracle (i.e., without presampling). We can therefore
replace the oracle P by a random oracleR (independent of O):

Game 4: x
$← Domain, y ← R(x), x′ ← AR2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = R(x′).

Then |Adv3 −Adv4| ≤ P (x ∈ SO) is negligible.
(We have now succeeded in completely separating the oracle from the auxiliary

input; R is independent from (zO, SO). From here on, the proof is a standard proof
of one-wayness of the random oracle. Note however, that SO has a length that may be
superpolynomial, soA2 is not polynomially bounded any more. In our case, this does not
pose a problem, since we only use the fact that A2 uses a polynomial number of queries.
In proof that additionally need computational assumptions, one might need additional
tools which we present in Section 4.)

Consider the following game:

Game 5: x
$← Domain, y $← Range, x′ ← AR2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = R(x′).

Since A was polynomially bounded, there is a polynomial q bounding the number of
oracle queries of A2. The probability that A2 queries R at position x is therefore at
most q/#Domain (since x is randomly chosen and never used). Furthermore, game 4
and 5 only differ if A2 queries R at position x. So |Adv4 − Adv5| ≤ q/#Domain is
negligible.

Since A2 makes at most q queries, the probability that one of these returns y is at
most q/#Domain . If x′ returns a value x′ it has not queried before, the probability that
y = R(x′) is at most 1/#Domain . So Adv5 ≤ (q − 1)/#Domain is negligible.

Collecting the bounds shown so far, we see that AdvA is negligible. ut

In the preceding proof, we have only verified that the advantage of the adversary is
negligible. By using Theorem 2 instead of Corollary 9 and computing the exact bounds,
we even get AdvA ∈ 2−Ω(k) which is essentially the same bound as given in [12] and
[10].

4 Security amplification

When using a random oracle with presampling, reduction proofs sometimes run into situ-
ations where the adversary gets the presampling SO as an input. Unfortunately, this pre-
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sampling is usually of superpolynomial size, so the resulting adversary is not polynomial-
time any more and a reduction to complexity assumptions relative to polynomial-time
adversaries is bound to fail. (E.g., in the proof of Lemma 10 the adversary A2 was
not polynomial-time in the security parameter any more. In that case however, this did
not matter since we only used the polynomial bound on the number of queries made
by A2.) An example of a situation where superpolynomial adversaries occur, and do
pose a problem, is the proof that RSA-OAEP is secure with respect to oracle-dependent
auxiliary input, cf. Section 5. One possibility is simply to assume a stronger security
notion; in the case of RSA-OAEP one could use, e.g., the RSA-assumption against
quasi-polynomial adversaries.

Fortunately, there is another way which allows to use standard assumptions (i.e., with
respect to polynomial-time adversaries) in many cases. We show that for some kinds of
security notions, security against polynomial-time adversaries implies security against
adversaries with f -bounded runtime, where f is a suitably chosen superpolynomial
function. Using this fact we can finish our reduction proof: Corollary 9 guarantees that
for any superpolynomial function f ′, we can replace the random oracle by a random
oracle with presampling of length f ′. We then choose f ′ to be the largest function
such that all adversaries constructed in our proof are still f -bounded. Such an f ′ is still
superpolynomial, so Corollary 9 applies. On the other hand, the resulting adversaries
are efficient enough for the reduction to go through. This proof method is applied in
Section 5 to show the security of RSA-OAEP.

Instead of giving a general proof of our security amplification technique, we give
here a proof for the security notion of partial-domain one-wayness (Definition 11). The
proof can easily be adapted to other security notions (in particular, our proof does not
exploit how the advantage Adv is defined for this particular notion). In the full version
[18] we give a more general characterisation of the security notions for which security
amplification is possible.5

Definition 11 (Partial-domain one-way). A family of 1-1 functions fpk : B×C → D
is partial-domain one-way, if for any nonuniform polynomial-time adversary A, the
following advantage is negligible:

AdvA,k := P
(
pk ← K(1k), (s, t) $← B×C, y ← fpk (s, t), s′ ← A(1k, y) : s = s′

)
.

Here K denotes the index generation algorithm for the family fpk of functions. Partial-
domain one-way against f -bounded adversaries for some function f is defined analo-
gously.

(In this definition, B, C, and D depend implicitly on the security parameter k.)

Lemma 12 (Security amplification for partial-domain one-wayness). Let the family
fpk be partial-domain one-way (against polynomial-time nonuniform adversaries). Then
there exists a superpolynomial function f such that fpk is partial-domain one-way
against f -bounded nonuniform adversaries.

5 This includes one-wayness, partial-domain one-wayness, IND-CPA, IND-CCA2, black-box stand-
alone security of function evaluations, UC (where the amplification concerns the running time of
the environment), black-box zero-knowledge, arguments, black-box arguments of knowledge.
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Proof. For n ∈ N let µn(k) := max|A|≤n(AdvA,k) where A goes over all circuits of
size at most n. Assume there was a polynomial p with integer coefficients (an integer
polynomial for short) such that µp(k)(k) is not negligible in k. Then there is a nonuniform
adversary A consisting of circuits Ak with |Ak| ≤ p(k) such that AdvA,k ≥ µp(k)(k)
is non-negligible. Since A is polynomial-time, this contradicts the assumption that the
fpk are partial-domain one-way. Hence µp := µp(k)(k) is negligible for all integer
polynomials p.

We say that a function µ asymptotically dominates a function ν if for all sufficiently
large k we have µ(k) ≥ ν(k). [1] proves that for any countable set S of negligible
functions, there is a negligible function µ∗ that asymptotically dominates all µ ∈ S.

Therefore, there is a negligible function µ∗, that asymptotically dominates µp for
every integer polynomial p.

Let f(k) := max{p ∈ N : µp(k) ≤ µ∗(k)}. Then µfX(k)(k) ≤ µ∗(k) is negligible.
So for any nonuniform f -bounded adversary A the advantage AdvA,k is negligible.
Furthermore, we can show that f is superpolynomial. Assume this is not the case. Then
there an integer polynomial p such that p > f infinitely often. But then µp > µ∗ holds
infinitely often, in contradiction to the choice of µ∗ (by definition of f ). Thus f is
superpolynomial. ut

5 OAEP encryption

In [9] it was shown that RSA-OAEP (introduced by [2]) is secure in the random oracle
model under the RSA-assumption. However, their proof only covers the case that no
auxiliary input is given (or at least that the auxiliary input is not oracle-dependent). In this
section, we extend this result to encompass the case of oracle-dependent auxiliary input.
On one hand, this gives a nontrivial example of the application of the lazy sampling
technique in combination with the security amplification technique. On the other hand,
this result is important in its own light, since it gives evidence that RSA-OAEP may
be secure with respect to an auxiliary input, even when the random oracle has been
instantiated with a fixed function.

To read this section, it is helpful to have at least basic knowledge of the OAEP
construction and its proof from [9]. We recommend [9] as an introduction.

Theorem 13 (OAEP is secure with respect to oracle-dependent auxiliary input). Let
fpk be a family of partial-domain one-way trapdoor 1-1 functions (with the property, that
the elements of the domain of fpk consist of two components each of superlogarithmic
length).

Then the OAEP encryption scheme based on fpk is IND-CCA2 secure in the random
oracle model with oracle-dependent auxiliary input.

This theorem implies that RSA-OAEP is IND-CCA2 secure under the RSA-assumption
with respect to oracle-dependent auxiliary input, since in [9] it is shown that the RSA
family of functions is partial-domain one-way.

At this point, we only describe on a high level, in what points our proof differs from
the proof in [9]. In the full version [18], we reproduce the full proof of [9] and highlight
our changes for comparison.
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In [9], the proof has roughly the following outer form: First, the IND-CCA2 game
is formulated for the special case of the OAEP encryption scheme. Then the game is
rewritten in a series of small changes, to finally yield a plaintext extractor. If the first
game had a non-negligible success probability (i.e., the OAEP encryption scheme was
not IND-CCA2 secure), the plaintext extractor had, for some random ciphertext fpk (s, t),
a non-negligible probability of outputting s. This breaks the assumption that fpk is
partial-domain one-way.

Our proof starts with the same game, except that the adversary now has access to an
oracle-dependent auxiliary input zO. Then we can use Corollary 9 to replace the random
oracle O by a random oracle P with presampling SO of a yet to determine superpolyno-
mial subexponential length f (similar to the first step in the proof of Lemma 10).6 In this
new situation, for randomly chosen x ∈ Domain , with overwhelming probability, the
oracle response P(x) is uniformly distributed. Using this fact, most of the rewriting steps
in the sequence of games are the same as in [9], sometimes with slightly larger errors to
account for the possibility of randomly choosing an x ∈ SO. Only in the construction of
the plaintext extractor additional care has to be taken. Here the original argument uses
that the answer to an oracle query can be assumed to be random if the adversary has
not yet queried it. From this they conclude any ciphertext the decryption oracle would
accept can also be decrypted by encrypting and comparing all oracles queries that have
been made by the adversary so far. This does not hold any more since the auxiliary
input zO can supply additional information on the presampled queries SO. We thus have
to change the plaintext extractor not only to encrypt all oracle queries but also all pre-
sampled queries SO. Therefore the plaintext extractor is not polynomial-time anymore,
but instead a nonuniform machine with running time p(f) for some polynomial p. We
consequently do not directly obtain a contradiction to the partial-domain one-wayness,
since therefore the plaintext extractor would have to be polynomial-time.

However, we can use the security amplification technique. By Lemma 12, there is
a superpolynomial function f ′ such that fpk is partial-domain one-way even against
nonuniform f ′-bounded adversaries. By choosing f small enough (but still superpoly-
nomial), it is p(f) ≤ f ′, so the plaintext extractor is f ′-bounded, and the fact that
the plaintext extractor returns s for some fpk (s, t) with non-negligible probability is a
contradiction.

6 Open questions

We have shown how to apply the lazy sampling technique to the case of oracle-dependent
auxiliary input. Going further, the following open problems come to mind:

– Polynomial presampling: In Corollary 9, we require the length f of the presampling
to be superpolynomial. This makes reduction proofs more difficult, in particular it
necessitates the use of the security amplification technique. It would be preferable to
be able to use a polynomial length f (in this case, the length would of course have
to depend on the length of auxiliary input and the number of queries made by the
adversary).

6 The actual proof uses Theorem 2, but the asymptotic version is sufficient.
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– The random oracle as considered here is only a specific example of the class of
random objects that are given as oracle to the parties. Other examples include random
permutations (with or without access to the inverse), the generic group model, ideal
ciphers, or just random oracles with a skewed distribution. When using these to
motivate security results, the same arguments apply as in the case of random oracles,
and oracle-dependent auxiliary input should be considered. It is then necessary to
extend the lazy sampling technique to these constructions as well.

In the full version [18], we discuss these open questions in slightly more detail.
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