
Cryptography with Constant Input Locality?

(extended abstract)

Benny Applebaum, Yuval Ishai??, and Eyal Kushilevitz? ? ?

Computer Science Department, Technion, Haifa 32000, Israel
{abenny,yuvali,eyalk}@cs.technion.ac.il

Abstract. We study the following natural question: Which cryptographic
primitives (if any) can be realized by functions with constant input lo-
cality, namely functions in which every bit of the input influences only a
constant number of bits of the output? This continues the study of cryp-
tography in low complexity classes. It was recently shown (Applebaum et
al., FOCS 2004) that, under standard cryptographic assumptions, most
cryptographic primitives can be realized by functions with constant out-
put locality, namely ones in which every bit of the output is influenced
by a constant number of bits from the input.

We (almost) characterize what cryptographic tasks can be performed
with constant input locality. On the negative side, we show that prim-
itives which require some form of non-malleability (such as digital sig-
natures, message authentication, or non-malleable encryption) cannot
be realized with constant input locality. On the positive side, assum-
ing the intractability of certain problems from the domain of error cor-
recting codes (namely, hardness of decoding a random linear code or
the security of the McEliece cryptosystem), we obtain new construc-
tions of one-way functions, pseudorandom generators, commitments, and
semantically-secure public-key encryption schemes whose input locality
is constant. Moreover, these constructions also enjoy constant output
locality. Therefore, they give rise to cryptographic hardware that has
constant-depth, constant fan-in and constant fan-out. As a byproduct,
we obtain a pseudorandom generator whose output and input locality
are both optimal (namely, 3).

1 Introduction

The question of minimizing the complexity of cryptographic primitives has been
the subject of an extensive body of research (see [23, 3] and references therein).
On one extreme, it is natural to ask whether one can implement cryptographic
primitives in NC0, i.e., by functions in which each output bit depends on a

? Research supported by grant 1310/06 from the Israel Science Foundation.
?? Supported by grant 2004361 from the U.S.-Israel Binational Science Foundation.

? ? ? Supported by grant 2002354 from the U.S.-Israel Binational Science Foundation.

constant number of input bits.1 Few primitives, including pseudorandom func-
tions [12], cannot even be realized in AC0 [20]; no similar negative results are
known for other primitives. However, it was shown recently [3, 2] that, under
standard assumptions, most cryptographic primitives can be realized by func-
tions with output locality 4, namely by NC0 functions in which each bit of the
output depends on at most 4 bits of the input.

Another possible extreme is the complementary question of implementing
cryptographic primitives by functions in which each input bit affects only a
constant number of output bits. This was not settled by [3], and was suggested
as an open problem. This natural question can be motivated from several distinct
perspectives:

– (Theoretical examination of a common practice) A well known design princi-
ple for practical cryptosystems asserts that each input bit must affect many
output bits. This principle is sometimes referred to as Confusion/Diffusion
or Avalanche property. It is easy to justify this principle in the context of
block-ciphers (which are theoretically modeled as pseudorandom functions
or permutations), but is it also necessary in other cryptographic applications
(e.g., stream ciphers)?

– (Hardware perspective) Unlike NC0 functions, functions with both constant
input locality and constant output locality can be computed by constant
depth circuits with bounded fan-in and bounded fan-out. Hence, the parallel
time complexity of such functions is constant in a wider class of implemen-
tation scenarios.

– (Complexity theoretic perspective) One can state the existence of cryptog-
raphy in NC0 in terms of average-case hardness of Constraint Satisfaction
Problems in which each constraint involves a constant number of variables
(k-CSPs). The new question can therefore be formulated in terms of k-CSPs
with bounded occurrences of each variable. It is known that NP hardness
and inapproximability results can be carried from the CSP setting to this
setting [24, 6], hence it is interesting to ask whether the same phenomenon
occurs with respect to cryptographic hardness as well.

Motivated by the above, we would like to understand which cryptographic
tasks (if any) can be realized with constant input and output locality, or even
with constant input locality alone.

Another question considered in this work, which was also posed in [3], is
that of closing the (small) gap between positive results for cryptography with
locality 4 and the impossibility of cryptography with locality 2. It was shown
in [3] that the existence of a OWF with locality 3 follows from the intractability
of decoding a random linear code. The possibility of closing this gap for other
primitives remained open.

1 Equivalently, NC0 is the class of functions computed by boolean circuits of polyno-
mial size, constant depth, and bounded fan-in gates. We will also mention the classes
AC0 and NC1 which extend this class. Specifically, in AC0 we allow unbounded fan-in
AND and OR gates, and in NC1 the circuit depth is logarithmic.

1.1 Our Results

We provide an almost full characterization of the cryptographic tasks that can be
realized by functions with constant input locality. On the negative side, we show
that primitives which require some form of non-malleability (e.g., signatures,
MACs, non-malleable encryption schemes) cannot be realized with constant (or,
in some cases, even logarithmic) input locality.

On the positive side, assuming the intractability of some problems from the
domain of error correcting codes, we obtain constructions of pseudorandom gen-
erators, commitments, and semantically-secure public-key encryption schemes
with constant input locality and constant output locality. In particular, we ob-
tain the following results:

– For PRGs, we answer simultaneously both of the above questions. Namely,
we construct a collection2 of PRGs whose output locality and input locality
are both 3. We show that this is optimal in both output locality and input
locality. Our construction is based on the intractability of decoding a random
linear code. Previous constructions of PRGs (or even OWFs) [4, 9] which
enjoyed constant input locality and constant output locality at the same
time, were based on non-standard intractability assumptions.

– We construct a non-interactive commitment scheme, in the common refer-
ence string model, in which the output locality of the commitment function
is 4, and its input locality is 3. The security of this scheme also follows
from the intractability of decoding a random linear code. (We can also get
a non-interactive commitment scheme in the standard model under the as-
sumption that there exists an explicit binary linear code that has a large
minimal distance but is hard to decode.)

– We construct a semantically secure public-key encryption scheme whose en-
cryption algorithm has input locality 3. This scheme is based on the security
of the McEliece cryptosystem [21], an assumption which is related to the
intractability of decoding a random linear code, but is seemingly stronger.
Our encryption function also has constant output locality, if the security
of the McEliece cryptosystem holds when it is instantiated with some error
correcting code whose relative distance is constant.

– We show that MACs, signatures and non-malleable symmetric or public-key
encryption schemes cannot be realized by functions whose input locality is
constant or, in some cases, even logarithmic in the input length. In fact,
we prove that even the weakest versions of these primitives (e.g., one-time
secure MACs) cannot be constructed in this model.

1.2 Our Techniques

Our constructions rely on the machinery of randomized encoding, which was
was explicitly introduced in [16] (under the algebraic framework of randomizing
2 All of our collections are indexed by a public random key. That is, {Gz}z∈{0,1}∗ is

a collection of PRGs if for every z the function Gz expands its input and the pair
(z, Gz(x)) is pseudorandom for random x and z.

polynomials) and was implicitly used, in weaker forms, in the context of secure
multiparty computation (e.g., [19, 8]). A randomized encoding of a function f(x)
is a randomized mapping f̂(x, r) whose output distribution depends only on the
output of f . Specifically, it is required that: (1) there exists a decoder algorithm
that recovers f(x) from f̂(x, r), and (2) there exists a simulator algorithm that
given f(x) samples from the distribution f̂(x, r) induced by a uniform choice of
r. That is, the distribution f̂(x, r) hides all the information about x except for
the value f(x).

In [3] it was shown that the security of most cryptographic primitives is
inherited by their randomized encoding. Suppose that we want to construct
some cryptographic primitive P in some low complexity class WEAK. Then,
we can try to encode functions from a higher complexity class STRONG by
functions from WEAK. Now, if we have an implementation f of the primitive
P in STRONG, we can replace f by its encoding f̂ ∈ WEAK and obtain a low-
complexity implementation of P. This paradigm was used in [3, 2]. For example,
it was shown that STRONG can be NC1 and WEAK can be the class of functions
whose output locality is 4.

However, it seems hard to adapt this approach to the current setting, since it
is not clear whether there are non-trivial functions that can be encoded by func-
tions with constant input locality. (In fact, we show that some very simple NC0

functions cannot be encoded in this class.) We solve this problem by introducing
a new construction of randomized encodings. Our construction shows that there
exists a complexity class C of simple (but non-trivial) functions that can be en-
coded by functions with constant input locality. Roughly speaking, a function f
is in C if each of its output bits can be written as a sum of terms over F2 such
that each input variable of f participates in a constant number of distinct terms,
ranging over all outputs of f . Moreover, if the algebraic degree of theses terms
is constant, then f can be encoded by a function with constant input locality as
well as constant output locality. (In particular, all linear functions over F2 admit
such an encoding.)

By relying on the nice algebraic structure of intractability assumptions re-
lated to decoding random linear codes, and using techniques from [4], we con-
struct PRGs, commitments and public-key encryption schemes in C whose al-
gebraic degree is constant. Then, we use the new construction to encode these
primitives, and obtain implementations whose input locality and output locality
are both constant.

Interestingly, unlike previous constructions of randomized encodings, the new
encoding does not have a universal simulator nor a universal decoder; that is, one
should use different decoders and simulators for different functions in C. This
phenomenon is inherent to the setting of constant input locality and is closely
related to the fact that MACs cannot be realized in this model. See Section 6.2
for a discussion.

1.3 Previous Work

The existence of cryptographic primitives in NC0 has been recently studied in
[7, 22, 3]. Goldreich observed that a function whose output locality is 2 cannot
even be one-way [9]. Cryan and Miltersen [7] proved that a PRG whose output
locality is 3 cannot achieve a superlinear stretch; namely, it can only stretch n
bits to n + O(n) bits. Mossel et al. [22] extended this impossibility to functions
whose output locality is 4.

On the positive side, Goldreich [9] suggested an approach for constructing
OWFs based on expander graphs, an approach whose conjectured security does
not follow from any well-known assumption. This general construction can be
instantiated by functions with constant output locality and constant input local-
ity. Mossel et al. [22] constructed (non-cryptographic) ε-biased generators with
(non-optimal) constant input and output locality. Applebaum et al. [3, 2] subse-
quently showed that: (1) the existence of many cryptographic primitives (includ-
ing OWFs, PRGs, encryptions, signatures and hash functions) in NC1 implies
their existence with output locality 4; and (2) the existence of these primitives
in NC1 is implied by most standard cryptographic assumptions such as the in-
tractability of factoring, discrete logarithms and lattice problems. They also con-
structed a OWF with (optimal) output locality 3 based on the intractability of
decoding a random linear code. However, all these constructions did not achieve
constant input locality. The constructions in [3] were also limited to PRGs with
small (sub-linear) stretch, namely, one that stretches a seed of length n to a
pseudorandom string of length n+o(n). This problem was addressed by [4], who
gave a construction of a linear-stretch PRG with (large) constant output locality
under a non-standard assumption taken from [1]. In fact, the construction of [4]
can also give an NC0 PRG with (large) constant input locality (under the same
non-standard assumption).

2 Preliminaries

Notation. All logarithms in this paper are to the base 2. We use Un to denote
a random variable uniformly distributed over {0, 1}n. We let H2(·) denote the
binary entropy function, i.e., for 0 < p < 1, H2(p) def= −p log(p)−(1−p) log(1−p).
The statistical distance between discrete probability distributions Y and Y ′,
denoted SD(Y, Y ′), is defined as the maximum, over all functions A, of the
distinguishing advantage |Pr[A(Y) = 1]− Pr[A(Y ′) = 1]|.

A function ε(·) is said to be negligible if ε(n) < n−c for any constant c > 0 and
sufficiently large n. We will sometimes use neg(·) to denote an unspecified negli-
gible function. For two distribution ensembles {Xn}n∈N and {Yn}n∈N, we write
Xn ≡ Yn if Xn and Yn are identically distributed, and Xn

s≡ Yn if the two ensem-
bles are statistically indistinguishable; namely, SD(Xn, Yn) is negligible in n. A
weaker notion of closeness between distributions is that of computational indistin-
guishability: We write Xn

c≡ Yn if for every (non-uniform) polynomial-size circuit
family {An}, the distinguishing advantage |Pr[An(Xn) = 1] − Pr[An(Yn) = 1]|

is negligible. A distribution ensemble {Xn}n∈N is said to be pseudorandom if
Xn

c≡ Um(n) where m(n) is the length of strings over which Xn is distributed.

Locality. Let f : {0, 1}n → {0, 1}s be a function. The output locality of f
is c if each of its output bits depends on at most c input bits. The locality
of an input variable xi in f is c if at most c output bits depend on xi. The
input locality of f is c if the input locality of all the input variables of f is
bounded by c. The output locality (resp. input locality) of a function family
f : {0, 1}∗ → {0, 1}∗ is c if for every n the restriction of f to n-bit inputs has
output locality (resp. input locality) c. We envision circuits as having their inputs
at the bottom and their outputs at the top. Hence, for functions l(n),m(n), we
let Localm(n)

l(n) (resp. Locall(n), Localm(n)) denote the non-uniform class which
includes all functions f : {0, 1}∗ → {0, 1}∗ whose input locality is l(n) and
output locality is m(n) (resp. whose input locality is l(n), whose output locality
is m(n)). The uniform versions of these classes contain only functions that can
be computed in polynomial time. (All of our positive results are indeed uniform.)
Note that LocalO(1) is equivalent to the class NC0 which is the class of functions
that can be computed by constant depth circuits with bounded fan-in. Also, the
class LocalO(1)

O(1) is equivalent to the class of functions that can be computed by
constant depth circuits with bounded fan-in and bounded fan-out.

2.1 Randomized Encoding

We review the notions of randomized encoding and randomizing polynomials
from [16, 17, 3].

Definition 1. (Perfect randomized encoding [3]) Let f : {0, 1}n → {0, 1}l

be a function. We say that a function f̂ : {0, 1}n×{0, 1}m → {0, 1}s is a perfect
randomized encoding of f , if there exist an algorithm B, called a decoder, and
a randomized algorithm S, called a simulator, for which the following hold:

– perfect correctness. B(f̂(x, r)) = f(x) for any input x ∈ {0, 1}n, r ∈
{0, 1}m.

– perfect privacy. S(f(x)) ≡ f̂(x,Um) for any x ∈ {0, 1}n.
– balance. S(Ul) ≡ Us.
– stretch preservation. s− (n + m) = l − n, or equivalently m = s− l.

We refer to the second input of f̂ as its random input, and to m and s as the
randomness complexity and the output complexity of f̂ , respectively. The overall
complexity (or complexity) of f̂ is defined to be m + s.

Definition 1 naturally extends to infinite functions f : {0, 1}∗ → {0, 1}∗. In
this case, the parameters l, m, s are all viewed as functions of the input length
n, and the algorithms B, S receive 1n as an additional input. By default, we
require f̂ to be computable in poly(n) time whenever f is. In particular, both
m(n) and s(n) are polynomially bounded. We also require both the decoder and
the simulator to be efficient.

We will rely on the following composition property of randomized encodings.

Lemma 1 (Lemma 4.6 in [3]). (Composition) Let g(x, rg) be a perfect en-
coding of f(x) and h((x, rg), rh) be a perfect encoding of g((x, rg)) (viewed as a
single-argument function). Then, the function f̂(x, (rg, rh)) def= h((x, rg), rh) is a
perfect encoding of f .

3 Randomized Encoding with Constant Input Locality

In this section we will show that functions with a “simple” algebraic structure
(and in particular linear functions over F2) can be encoded by functions with
constant input locality. We begin with the following construction that shows
how to reduce the input locality of a function which is represented as a sum of
functions.

Construction 1. (Basic input locality construction) Let

f(x) = (a(x) + b1(x), a(x) + b2(x), . . . , a(x) + bk(x), c1(x), . . . , cl(x)),

where f : Fn
2 → Fk+l

2 and a, b1, . . . , bk, c1, . . . , cl : Fn
2 → F2. The encoding f̂ :

Fn+k
2 → F2k+l

2 is defined by:

f̂(x, (r1, . . . , rk))
def
= (r1 + b1(x), r2 + b2(x), . . . , rk + bk(x),

a(x)− r1, r1 − r2, . . . , rk−1 − rk, c1(x), . . . , cl(x)) .

Note that after the transformation the function a(x) appears only once and
therefore the locality of the input variables that appear in a is reduced. In
addition, the locality of all the other original input variables does not increase.

Lemma 2. (Input locality lemma) Let f and f̂ be as in Construction 1.
Then, f̂ is a perfect randomized encoding of f .

Proof. The encoding f̂ is stretch-preserving since the number of random inputs
equals the number of additional outputs (i.e., k). Moreover, given a string ŷ =
f̂(x, r) we can decode the value of f(x) as follows: To recover a(x) + bi(x),
compute the sum yi + yk+1 + yk+2 + . . . + yk+i; To compute ci(x), simply take
y2k+i. This decoder never errs.

Fix some x ∈ {0, 1}n. Let y = f(x) and let ŷ denote the distribution f̂(x,Uk).
To prove perfect privacy, note that: (1) the last l bits of ŷ are fixed and equal
to y[k+1...k+l]; (2) the first k bits of ŷ are independently uniformly distributed;
(3) the remaining bits of ŷ are uniquely determined by y and ŷ1, . . . , ŷk. To see
(3), observe that, by the definition of f̂ , we have ŷk+1 = y1 − ŷ1; and for every
1 < i ≤ k, we also have ŷk+i = yi − ŷi −

∑i−1
j=1 ŷk+j .

Hence, define a perfect simulator as follows. Given y ∈ {0, 1}k+l, the sim-
ulator S chooses a random string r of length k, and outputs (r, s, y[k+1...k+l]),
where s1 = y1 − r1 and si = yi − ri −

∑i−1
j=0 sj for 1 < i ≤ k. This simulator

is also balanced as each of its outputs is a linear function that contains a fresh
random bit. (Namely, the output bit S(y; r)i depends on: (1) ri if 1 ≤ i ≤ k; or
(2) yi−k if k + 1 ≤ i ≤ 2k + l.) ut

An additive representation of a function f : Fn
2 → Fl

2 is a representation
in which each output bit is written as as a sum (over F2) of functions of the
input x. That is, each output bit fi can be written as fi(x) =

∑
a∈Ti

a(x),
where Ti is a set of boolean functions over n variables. We specify such an
additive representation by an l-tuple (T1, . . . , Tl) where Ti is a set of boolean
functions a : Fn

2 → F2. We assume, without loss of generality, that none of the
Ti’s contains the constant functions 0 or 1. The following measures are defined
with respect to a given additive representation of f . For a function a : Fn

2 → F2,
define the multiplicity of a to be the number of Ti’s in which a appears, i.e.,
#a = |{Ti | a ∈ Ti}|. For a variable xj , we define the rank of xj to be the
number of different boolean functions a which depend on xj and appear in some
Ti. That is, rank(xj) = |{a : Fn

2 → F2 | a depends on xj , a ∈ T1

⋃
. . .

⋃
Tl}|.

Theorem 2. Let f : Fn
2 → Fl

2 be a function, and fix some additive repre-
sentation (T1, . . . , Tl) for f . Then f can be perfectly encoded by a function
f̂ : Fn

2 × Fm
2 → Fs

2 such that the following hold:

1. The input locality of every xj in f̂ is at most rank(xj), and the input locality
of the random inputs ri of f̂ is at most 3.

2. If the output locality of f is i, then the output locality of f̂ is max(i, 2).
3. The randomness complexity of f̂ is m =

∑
a∈T #a, where T =

⋃l
i=1 Ti.

Proof. We will use the following convention. The additive representation of a
function ĝ resulting from applying Construction 1 to a function g is the (natural)
representation induced by the original additive representation of g. We construct
f̂ iteratively via the following process. (1) Let f (0) = f, i = 0. (2) For j = 1, . . . , n
do the following: (2a) while there exists a function a in f (i) that depends on xj ,
whose multiplicity is greater than 1, apply Construction 1 to f (i), let f (i+1) be
the resulting encoding and let i = i + 1. (3) Let f̂ = f (i). By Lemma 2, the
function f (i) perfectly encodes the function f (i−1), hence by the composition
property of randomized encodings (Lemma 1), the final function f̂ perfectly
encodes f . The first item of the theorem follows from the following observations:
(1) In each iteration the input locality and the rank of each original variable
xj do not increase. (2) The multiplicity in f̂ of every function a that depends
on some original input variable xj is 1. (3) The input locality of the random
inputs which are introduced by the locality construction is at most 3. The last
two items of the theorem follow directly from the definition of Construction 1
and the construction of f̂ . ut

Remarks on Theorem 2.

1. By Theorem 2, every linear function admits an encoding of constant input
locality, since each output bit can be written as a sum of degree 1 monomials.
More generally, every function f whose canonic representation as a sum of
monomials (i.e., each output bit is written as a sum of monomials) includes
a constant number of monomials per input bit can be encoded by a function
of constant input locality.

2. Interestingly, Construction 1 does not provide a universal encoding for any
natural class of functions (e.g., the class of linear functions mapping n bits
into l bits). This is contrasted with previous constructions of randomized
encoding with constant output locality (cf. [16, 17, 3]). In fact, in Section 6.1
we prove that there is no universal encoding with constant input locality for
the class of linear function L : Fn

2 → F2.
3. When Theorem 2 is applied to a function family fn : {0, 1}n → {0, 1}l(n)

then the resulting encoding is uniform whenever the additive representation
(T1, . . . , Tl) is polynomial-time computable.

4. In Section 6.1, we show that Theorem 2 is tight in the sense that for each
integer i we can construct a function f in which the rank of x1 is i, and in
every encoding f̂ of f the input locality of x1 is at least i.

In some cases we can combine Theorem 2 and the output-locality construction
from [3, Construction 4.11] to derive an encoding which enjoys low input locality
and output locality at the same time. In particular, we will use the following
lemma which is implicit in [3].

Lemma 3 (implicit in [3]). Let f : Fn
2 → Fl

2 be a function such that each of
its output bits can be written as sum of monomials of degree d. Then, we can
perfectly encode f by a function f̂ such that: (1) The output locality of f̂ is d+1;
(2) The rank of every original variable xi in f̂ is equal to the rank of xi in f ; (3)
The new variables introduced by f̂ appear only in monomials of degree 1; hence
their rank is 1.

By combining Lemma 3 with Theorem 2 we get:

Corollary 1. Let f : Fn
2 → Fl

2 be a function. Fix some additive representation
for f in which each output bit is written as a sum of monomials of degree (at
most) d and the rank of each variable is at most ρ. Then, f can be perfectly
encoded by a function f̂ of input locality max(ρ, 3) and output locality d + 1.
Moreover, the resulting encoding is uniform whenever the additive representation
is polynomial-time computable.

Proof. First, by Lemma 3, we can perfectly encode f by a function f ′ ∈ Locald+1

without increasing the rank of the input variables of f . Next, we apply Theorem 2
and perfectly encode f ′ by a function f̂ ∈ Locald+1

max(ρ,3). By the composition

property of randomized encodings (Lemma 1), the resulting function f̂ perfectly
encodes f . Finally, the proofs of Theorem 2 and Lemma 3 both allow to efficiently
transform an additive representation of the function f into an encoding f̂ in
Locald+1

max(ρ,3). Hence, the uniformity of f is inherited by f̂ . ut

We remark that Theorem 2 as well as Lemma 3 generalize to any finite field
F. Hence, so does Corollary 1.

4 Primitives with Constant Input Locality and Output
Locality

4.1 Main Assumption: Intractability of Decoding Random Linear
Code

Our positive results are based on the intractability of decoding a random linear
code. In the following we introduce and formalize this assumption.

An (m, n, δ) binary linear code is a n-dimensional linear subspace of Fm
2 in

which the Hamming distance between each two distinct vectors (codewords)
is at least δm. We refer to the ratio n/m as the rate of the code and to δ
as its (relative) distance. Such a code can be defined by an m × n generator
matrix whose columns span the space of codewords. It follows from the Gilbert–
Varshamov bound that whenever n/m < 1−H2(δ)−ε, almost all m×n generator
matrices form (m,n, δ)-linear codes. Formally,

Fact 3 ([26]). Let 0 < δ < 1/2 and ε > 0. Let n/m ≤ 1 − H2(δ) − ε. Then,
a randomly chosen m × n generator matrix generates an (m,n, δ) code with
probability 1− 2−(ε/2)m.

A proof of the above version of the Gilbert–Varshamov bound can be found
in [25, Lecture 5].

Definition 2. Let m(n) ≤ poly(n) be a code length parameter, and 0 < µ(n) <
1/2 be a noise parameter. We say that CODE(m,µ) is intractable if for every
polynomial-time adversary A,

Pr[A(C, Cx + e) = x] ≤ neg(n),

where C is an m(n) × n random binary generator matrix, x ← Un, and e ∈
{0, 1}m is a random error vector in which each entry is chosen to be 1 with
probability µ (independently of other entries), and arithmetic is over F2.

Typically, we let m(n) = O(n) and µ be a constant such that n/m(n) <
1− H2(µ + ε) where ε > 0 is a constant. Hence, by Fact 3, the random code C
is, with overwhelming probability, an (m, n, µ + ε) code. Note that, except with
negligible probability, the noise vector flips less than µ + ε of the bits of y. In
this case, the fact that the noise is random (rather than adversarial) guarantees,
by Shannon’s coding theorem (for random linear codes), that x will be unique
with overwhelming probability. That is, roughly speaking, we assume that it
is intractable to correct µn random errors in a random linear code of relative
distance µ + ε > µ. The plausibility of such an assumption is supported by the
fact that a successful adversary would imply a major breakthrough in coding
theory. Similar assumptions were put forward in [13, 5, 10].

We will rely on the following Lemma of [5].

Lemma 4. Let m(n) be a code length parameter, and µ(n) be a noise parameter.
If CODE(m, µ) is intractable then the distribution (C,Cx+e) is pseudorandom,
where C, x and e are as in Definition 2.

4.2 Pseudorandom Generator in Local33

A pseudorandom generator (PRG) is an efficiently computable function G which
expands its input and its output distribution G(Un) is pseudorandom. An effi-
ciently computable collection of functions {Gz}z∈{0,1}∗ is a PRG collection if for
every z, the function Gz expands its input and the pair (z, Gz(x)) is pseudoran-
dom for random x and z. We show that pseudorandom generators (and therefore
also one-way functions and one-time symmetric encryption schemes) can be re-
alized by LocalO(1)

O(1) functions. Specifically, we get a PRG in Local33. In the full
version we also show that such a PRG has optimal output locality and optimal
input locality. We rely on the following assumption.

Assumption 4. The problem CODE(13n, 1/4) is intractable.

Note that the code considered here is of rate n/m = 1/13 which is strictly smaller
than 1−H2(1

3). Therefore, except with negligible probability, its relative distance
is at least 1

3 . Hence the above assumption roughly says that it is intractable to
correct n/4 random errors in a random linear code of relative distance 1

3 . (We
did not attempt to optimize the constant 13 in the above.)

Let m(n) = 13n. Let C ← Um(n)×n, x ← Un and e ∈ {0, 1}m be a random
error vector of rate 1/4, that is, each of the entries of e is 1 with probability 1/4
(independently of the other entries). By Lemma 4, the distribution (C, Cx + e)
is pseudorandom under the above assumption. Since the noise rate is 1/4, it is
natural to sample the noise distribution e by using 2m random bits r1, . . . , r2m

and letting the i-th bit of e be the product of two fresh random bits, i.e., ei =
r2i−1 · r2i. We can now define the mapping f(C, x, r) = (C, Cx + e(r)) where
e(r) = (r2i−1 ·r2i)m

i=1. The output distribution of f is pseudorandom, however, f
is not a PRG since it does not expand its input. In [4], it was shown how to bypass
this problem by applying a randomness extractor. Namely, the following function
was shown to be a PRG: G(C, x, r, s) = (C, Cx + e(r),Ext(r, s)). Although the
setting of parameters in [4] is different than ours, a similar solution works here as
well. We rely on the leftover hashing lemma of [15] and base our extractor on a
family of pairwise independent hash functions (which is realized by the mapping
x 7→ Ax + b where A is a random matrix and b is a random vector).3

Construction 5. Let m = 13n and let t = d1.1 ·me. Define the function

G(x,C, r,A, b) def= (C,Cx + e(r), Ar + b, A, b),

where x ∈ {0, 1}n, C ∈ {0, 1}m×n, r ∈ {0, 1}2m, A ∈ {0, 1}t×2m, and b ∈ {0, 1}t.

Theorem 6. Under Assumption 4, the function G defined in Construction 5 is
a PRG.
3 We remark that in [4] one had to rely on a specially made extractor in order to

maintain the large stretch of the PRG. In particular, the leftover hashing lemma
could not be used there.

The proof of the above theorem is deferred to the full version of this paper.
From now on, we fix the parameters m, t according to Construction 5. We can
redefine the above construction as a collection of PRGs by letting C, A, b be the
keys of the collection. Namely,

GC,A,b(x, r) = (Cx + e(r), Ar + b).

We can now prove the main theorem of this section.

Theorem 7. Under Assumption 4, there exists a collection of pseudorandom
generators {Gz}z∈{0,1}p(n) in Local33. Namely, for every z ∈ {0, 1}p(n), it holds
that Gz ∈ Local33.

Proof. Fix C, A, b and write each output bit of GC,A,b(x, r) as a sum of monomi-
als. Note that in this case, each variable xi appears only in degree 1 monomials,
and each variable ri appears only in the monomial r2i−1r2i and also in degree 1
monomials. Hence, the rank of each variable is at most 2. Moreover, the (alge-
braic) degree of each output bit of GC,A,b is at most 2. Therefore, by Corollary 1,
we can perfectly encode the function GC,A,b by a function ĜC,A,b in Local33. In [3,
Lemma 6.1] it was shown that a uniform perfect encoding of a PRG is also a
PRG. Thus, we get a collection of PRGs in Local33. ut

We can rely on Theorem 7 to obtain a one-time semantically-secure symmet-
ric encryption scheme (E, D) whose encryption algorithm is in Local33 (see [2,
Construction 4.3]). (This scheme allows to encrypt an arbitrary polynomially
long message with a short key.) A similar approach can be also used to give mul-
tiple message security, at the price of requiring the encryption and decryption
algorithms to maintain a synchronized state. The results of Section 4.4 give a
direct construction of public-key encryption (hence also symmetric encryption)
with constant input locality under the stronger assumption that the McEliece
cryptosystem is one-way secure.

4.3 Commitment in Local43

We will consider a non-interactive commitment scheme in the common reference
string (CRS) model. In such a scheme, the sender and the receiver share a com-
mon public random key k (that can be selected once and be used in many invoca-
tions of the scheme). To commit to a bit b, the sender computes the commitment
function Comk(b, r) that outputs a commitment c using the randomness r, and
sends the output to the receiver. To open the commitment, the sender sends the
randomness r and the committed bit b to the receiver who checks whether the
opening is valid by computing the function Reck(c, b, r). The scheme should be
both (computationally) hiding and (statistically) binding. Hiding requires that
c = Comk(b, r) keep b computationally secret. Binding means that, except with
negligible probability over the choice of the random public key, it is impossible
for the sender to open its commitment in two different ways.

We construct a commitment scheme in Local43, i.e., a commitment of input
locality 3 and output locality 4. Let c be a constant that satisfies c > 1

1−H2(1/4) .
Let m = m(n) = dcne. Then, by Fact 3, a random m × n generator matrix
generates, except with negligible probability (i.e., 2−Ω(m) = 2−Ω(n)), a code
whose relative distance is 1/4 + ε, for some constant ε > 0. The public key of
our scheme will be a random m(n) × n generator matrix C. To commit to a
bit b, we first choose a random information word x ∈ {0, 1}n and hide it by
computing Cx + e, where e ∈ {0, 1}m is a noise vector of rate 1/8, and then
take the exclusive-or of b with a hardcore bit β(x) of the above function. That
is, we send the receiver the value (Cx + e, b + β(x)). In particular, we can use
the Goldreich-Levin [14] hardcore bit and get

ComC(b, (x, r, s)) = (Cx + e(r), s, b + 〈x, s〉),
where r is a random 3m-bit string, e(r) = (r1r2r3, r4r5r6, . . . , r3m−2r3m−1r3m), s
is a random n-bit string and 〈·, ·〉 denotes inner product (over F2). Assuming that
CODE(m, 1/8) is intractable, this commitment hides the committed bit b. (This
is so because 〈x, s〉 is unpredictable given (C,Cx + e, s), cf. [10, Construction
4.4.2].) Suppose that the relative distance of C is indeed 1/4 + ε. Then, if e
contains no more than 1/8 + ε/2 ones, x is uniquely determined by Cx + e. Of
course, the sender might try to cheat and open the commitment ambiguously
by claiming that the weight of the error vector is larger than 1/8 + ε/2. Hence,
we let the receiver verify that the Hamming weight of the noise vector e given
to him by the sender in the opening phase is indeed smaller than 1/8 + ε/2.
This way, the receiver will always catch a cheating sender (assuming that C
is indeed a good code). Note that an honest sender will be rejected only if its
randomly chosen noise vector is heavier than 1/8 + ε/2, which, by a Chernoff
bound, happens with negligible probability (i.e., e−Ω(m) = e−Ω(n)) as the noise
rate is 1/8. Hence, the pair (Com,Rec) defined above is indeed a commitment
scheme. When C is fixed, the rank and algebraic degree of the function ComC

are 2 and 3 (with respect to the natural representation as a sum of monomials).
Hence, by Corollary 1, we can encode ComC by a function ˆComC ∈ Local43.
By [3], this encoding is also a commitment scheme. Summarizing, we have:

Theorem 8. Let c be a constant that satisfies c > 1
1−H2(1/4) , and m = m(n) =

dcne. If CODE(m, 1/8) is intractable, then there exists a commitment scheme
(Com,Rec) in Local43; i.e., for every public key C, we have ComC ∈ Local43.

We remark that we can eliminate the use of the CRS by letting C be a
generator matrix of some fixed error correcting error whose relative distance
is large (i.e., 1/4 or any other constant) in which decoding is intractable. For
example, one might use the dual of a BCH code.

4.4 Semantically Secure Public-Key Encryption in LocalO(1)
3

We construct a semantically-secure public-key encryption scheme (PKE) whose
encryption algorithm is in LocalO(1)

O(1). Our scheme is based on the McEliece cryp-
tosystem [21]. We begin by reviewing the general scheme proposed by McEliece.

– System parameters: Let m(n) : IN → IN, where m(n) > n, and µ(n) :
IN → (0, 1). For every n ∈ IN, let Cn be a set of generating matrices of
(m(n), n, 2(µ(n) + ε)) codes that have a (universal) efficient decoding al-
gorithm D that, given a generating matrix from Cn, can correct up to
(µ(n) + ε) · m(n) errors, where ε > 0 is some constant. We also assume
that there exists an efficient sampling algorithm that samples a generator
matrix of a random code from Cn.

– Key Generation: Given a security parameter 1n, use the sampling algo-
rithm to choose a random code from Cn and let C be its generating matrix.
Let m = m(n) and µ = µ(n). Choose a random n × n non-singular matrix
S over F2, and a random m×m permutation matrix P . Let C ′ = P · C · S
be the public key and P, S,DC be the private key where DC is the efficient
decoding algorithm of C.

– Encryption: To encrypt x ∈ {0, 1}n compute c = C ′x+e where e ∈ {0, 1}m

is an error vector of noise rate µ.
– Decryption: To decrypt a ciphertext c, compute P−1y = P−1(C ′x + e) =

CSx + P−1e = CSx + e′ where e′ is a vector whose weight equals to the
weight of e (since P−1 is also a permutation matrix). Now, use the decoding
algorithm D to recover the information word Sx (i.e., D(C, CSx + P−1e) =
Sx). Finally, to get x multiply Sx on the left by S−1.

By Chernoff bound, the weight of the error vector e is, except with negligible
probability, smaller than (µ+ε)·m and so the decryption algorithm almost never
errs.4 As for the security of the scheme, it is not hard to see that the scheme is
not semantically secure. (For example, it is easy to verify that a ciphertext c is
an encryption of a given plaintext x by checking whether the weight of c − Cx
is approximately µn.)

However, the scheme is conjectured to be a one-way cryptosystem; namely, it
is widely believed that, for proper choice of parameters, any efficient adversary
fails with probability 1− neg(n) to recover x from (c = C ′x + e, C ′) where x is
a random n-bit string.

Suppose that the scheme is indeed one-way with respect to the parameters
m(n), µ(n) and Cn. Then, we can convert it into a semantically secure public-key
encryption scheme by extracting a hardcore predicate and xoring it with a 1-bit
plaintext b (this transformation is similar to the one used for commitments in
the previous section). That is, we encrypt the bit b by the ciphertext (C ′x +
e, s, 〈s, x〉+ b) where x, s are random n-bit strings, and e is a noise vector of rate
µ. (Again, we use the Goldreich-Levin hardcore predicate [14].) To decrypt the
message, we first compute x, by invoking the McEliece decryption algorithm,
and then compute 〈s, x〉 and xor it with the last entry of the ciphertext. We
refer to this scheme as the modified McEliece public-key encryption scheme. If
the McEliece cryptosystem is indeed one-way, then 〈s, x〉 is pseudorandom given
4 In fact, we may allow ε to decrease with n. In such case, we might get a non-

negligible decryption error. This can be fixed (without increasing the rank or the
degree of the encryption function) by repeating the encryption with independent
fresh randomness. Details omitted.

(C ′, C ′x+e, s), and thus the modified McEliece public-key is semantically secure.
Formally,

Lemma 5. If the McEliece cryptosystem is one-way with respect to the parame-
ters m(n), µ(n) and Cn, then the modified McEliece PKE is semantically secure
with respect to the same parameters.

The proof of this lemma is essentially the same as the proof of [11, Prop. 5.3.14].
Let µ(n) = 2−t(n). Then, we can sample the noise vector e by using the

function e(r) =
(∏t

j=1 rt·(i−1)+j

)m(n)

i=1
where r is a t(n) · m(n) bit string. In

this case, we can write the encryption function of the modified McEliece as
EC′(b, x, r, s) = (C ′x + e(r), s, 〈x, s〉+ b).

The rank of each variable of this function is at most 2, and its algebraic
degree is at most t(n). Hence, by Corollary 1, we can encode it by a function
Ê ∈ Localt(n)+1

3 , i.e., the output locality of Ê is t(n) + 1 and its input locality is
3. In [3, Lem. 7.5] it was shown that randomized encoding preserves the security
of PKE. Namely, if (G,E,D) is a semantically secure PKE then (G, Ê, D̂) is also
an encryption scheme where Ê is an encoding of E, D̂(c) = D(B(c)) and B is
the decoder of the encoding. Hence we have,

Theorem 9. If the McEliece cryptosystem is one-way with respect to to the
parameters m(n), µ(n) = 2−t(n) and Cn, then there exists a semantically secure
PKE whose encryption algorithm is in Localt(n)

3 .

The scheme we construct encrypts a single bit, however we can use concatenation
to derive a PKE for messages of arbitrary (polynomial) length without increas-
ing the input and output locality. Theorem 9 gives a PKE with constant output
locality whenever the noise rate µ is constant. Unfortunately, the binary classi-
cal Goppa Codes, which are commonly used with the McEliece scheme [21], are
known to have an efficient decoding only for subconstant noise rate. Hence, we
cannot use them for the purpose of achieving constant output locality and con-
stant input locality simultaneously. Instead, we suggest using algebraic-geometric
(AG) codes which generalize the classical Goppa Codes and enjoy an efficient
decoding algorithm for constant noise rate. It seems that the use of such codes
does not decrease the security of the McEliece cryptosystem [18].

5 Negative Results for Cryptographic Primitives

In this section we show that cryptographic tasks which require some form of
“non-malleability” cannot be performed by functions with low input locality.
This includes MACs, signatures and non-malleable encryption schemes (e.g.,
CCA2 secure encryptions). We prove our results in the private-key setting (i.e.,
for MAC and symmetric encryption). This makes them stronger as any construc-
tion that gains security in the public-key setting is also secure in the private-key
setting.

We will use the following simple observation.

Lemma 6. Let f : {0, 1}n → {0, 1}s(n) be a function in Locall(n). Then, there
exist a (probabilistic) polynomial-size circuit family {An} such that for every
x ∈ {0, 1}n and i ∈ [n], the output of An on (y = f(x), i, 1n) equals, with
probability 2−l(n), to the string y′ = f(x′) where x′ differs from x only in the
i-th bit. In particular, when l(n) = O(log(n)), the success probability of An is
1/poly(n).

Proof. Since f is in Locall(n), the input variable xi affects at most l(n) output
bits. Hence, y and y′ differ in at most l(n) bits. Thus, we can randomly choose
y′ from a set of strings whose size is at most 2l(n). (We assume that the set of
output bits which are affected by the i-th input bit is hardwired into An.) ut

In the full version we show how to get rid of the non-uniformity when f is
polynomial-time computable. We now sketch the impossibility results.

5.1 MACs and Signatures

Let (S, V) be a MAC scheme, where the randomized signing function S(k, α, r)
computes a signature β on the document α using the (random and secret) key
k and randomness r, and the verification algorithm V (k, α, β) verifies that β
is a valid signature on α using the key k. The scheme is secure (unforgeable)
if it is infeasible to forge a signature in a chosen message attack. Namely, any
efficient adversary that gets an oracle access to the signing process S(s, ·) fails to
produce a valid signature β on a document α (with respect to the corresponding
key k) for which it has not requested a signature from the oracle.5 The scheme
is one-time secure if the adversary is allowed to query the signing oracle only
once.

Suppose that the signature function S(k, α, r) has logarithmic input locality
(i.e., S(k, α, r) ∈ LocalO(log(|k|))). Then, by Lemma 6, we can break the scheme
by transforming, with noticeable probability, a valid pair (α, β) of document and
signature into a valid pair (α′, β′) for which α′ and α differ in, say, their first
bit. Since we used a single oracle call, such a scheme cannot be even one-time
secure.

Now, suppose that for each fixed key k the signature function Sk(α, r) =
S(k, α, r) has input locality `(n). In this case we cannot use Lemma 6 directly
as we do not know which output bits are affected by the i-th input bit. When
`(n) = c is constant, we can easily overcome this problem. We guess which bits
are affected by, say, the first input bit and then guess their value as in Lemma 6.
This attack succeeds with probability 1/(mc · 2c) = 1/poly(n) where m is the
length of the message (and so is polynomial in n). Again, this shows that the
scheme is not even one-time secure. To summarize:

Theorem 10. Let (S, V) be a MAC scheme. If S(k, α, r) ∈ LocalO(log(|k|)) or
Sk(α, r) ∈ LocalO(1) for every k, then the scheme is not one-time secure.

5 When querying the signing oracle, the adversary chooses only the message and is not
allowed to choose the randomness which the oracle uses to produce the signature.

5.2 Non-Malleable Encryption

Let (E,D) be a private-key encryption scheme, where the encryption function
E(k,m, r) computes a ciphertext c encrypting the message m using the (random
and secret) key k and randomness r, and the decryption algorithm D(k, c, r)
decrypts the ciphertext c that was encrypted under the key k. Roughly speak-
ing, non-malleability of an encryption scheme guarantees that it is infeasible to
modify a ciphertext c into a ciphertext c′ of a message related to the decryption
of c. In the full version we prove the following theorem:

Theorem 11. Let (E, D) be a private-key encryption scheme. If E(k, m, r) ∈
LocalO(log(|k|)) or Ek(m, r) ∈ LocalO(1) for every k, then the scheme is malleable
with respect to an adversary that has no access to neither the encryption oracle
nor the decryption oracle. If (G, E, D) is a public-key encryption scheme and
Ek(m, r) ∈ LocalO(log(|k|)) for every k, then the scheme is malleable.

6 Negative Results for Randomized Encodings

In the following, we prove some negative results regarding randomized encoding
with low input locality. In Section 6.1, we provide a necessary condition for a
function to have such an encoding. We use this condition to prove that some
simple (NC0) functions cannot be encoded by functions having sub-linear input
locality (regardless of the complexity of the encoding). This is contrasted with
the case of constant output locality, where it is known [17, 3] that every function
f can be encoded by a function f̂ whose output locality is 4 (and whose com-
plexity is polynomial in the size of the branching program that computes f). In
Section 6.2 we show that, although linear functions do admit efficient constant-
input encoding, they do not admit an efficient universal constant-input encoding.
That is, one should use different decoders and simulators for each linear function.

6.1 A Necessary Condition for Encoding with Low Input Locality

Let f : {0, 1}n → {0, 1}l be a function. For a string x ∈ {0, 1}n, let x⊕i denote
the string x with the i-th bit flipped. Define an undirected graph Gi over Im(f)
such that there is an edge between the strings y and y′ if there exists x ∈ {0, 1}n

such that f(x) = y and f(x⊕i) = y′. Let f̂ : {0, 1}n × {0, 1}m → {0, 1}s be a
(perfectly correct and private) randomized encoding of f with decoder B and
simulator S. Let ti be the number of output bits in f̂ which are affected by the
input variable xi. We rely on the following lemma whose proof is omitted and
deferred to the full version of this paper.

Lemma 7. The size of each connected component of Gi is at most 2ti .

We conclude that a function f : {0, 1}n → {0, 1}l can be perfectly encoded by
a function f̂ : {0, 1}n×{0, 1}m → {0, 1}s in Localt only if for every 1 ≤ i ≤ n the
size of the connected components of Gi is at most 2t. This shows that even some

very simple functions do not admit an encoding with constant input locality.
Consider, for example, the function

f(x1, . . . , xn) = x1 · (x2, . . . , xn) = (x1 · x2, x1 · x3, . . . , x1 · xn).

For every y ∈ Im(f) = {0, 1}n−1 it holds that f(1, y) = y and f(0, y) = 0n−1.
Hence, every vertex in G1 is a neighbor of 0n−1 and the size of the connected
component of G1 is 2n−1. Thus, the input locality of x1 in any perfect encoding
of this function is n − 1. (Note that this matches the results of Section 3 since
rank(x1) = n− 1.)

6.2 Impossibility of Universal Encoding for Linear Functions

For a class C of functions that map n-bits into l-bits, we say that C has a
universal encoding in the class Ĉ if there exists a universal simulator S and a
universal decoder B such that, for every function fz ∈ C, there is an encoding
f̂z ∈ Ĉ which is private and correct with respect to the simulator S and the
decoder B.

We show that, although linear functions do admit encodings with constant
input locality, they do not admit such a universal encoding. Suppose that the
class of linear (equivalently affine) functions had a universal encoding with con-
stant input locality. Then, by the results of [3], we would have a one-time secure
MACs (S, V) whose signing algorithm has constant input locality for every fixed
key; i.e., Sk(α, r) ∈ LocalO(1) for every fixed key k. However, the results of
Section 5.1 rule out the existence of such a scheme. In the full version of this
paper, we give a more direct proof to the impossibility of obtaining a universal
constant-input encoding for linear functions. This proof is based on the notions
presented in Section 6.1.

Acknowledgments. We thank Ronny Roth for helpful discussions.

References

1. M. Alekhnovich. More on average case vs approximation complexity. In Proc. 44th
FOCS, pages 298–307, 2003.

2. B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing
polynomials and their applications. Computional Complexity, 15(2):115–162, 2006.

3. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM J.
Comput., 36(4):845–888, 2006.

4. B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom generators with
linear stretch in NC0. In Proc. 10th Random., 2006.

5. A. Blum, M. Furst, M. Kearns, and R. J. Lipton. Cryptographic primitives based
on hard learning problems. In Advances in Cryptology: Proc. of CRYPTO ’93,
volume 773 of LNCS, pages 278–291, 1994.

6. S. A. Cook. The complexity of theorem-proving procedures. In STOC ’71: Proceed-
ings of the third annual ACM symposium on Theory of computing, pages 151–158,
New York, NY, USA, 1971. ACM Press.

7. M. Cryan and P. B. Miltersen. On pseudorandom generators in NC0. In Proc.
26th MFCS, pages 272–284, 2001.

8. U. Feige, J. Killian, and M. Naor. A minimal model for secure computation (ex-
tended abstract). In Proc. of the 26th STOC, pages 554–563, 1994.

9. O. Goldreich. Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7(090), 2000.

10. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

11. O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, 2004.

12. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. of the ACM., 33:792–807, 1986.

13. O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom
generators. SIAM J. Comput., 22(6):1163–1175, 1993.

14. O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In
Proc. 21st STOC, pages 25–32, 1989.

15. R. Impagliazzo, L. A. Levin, and M. Luby. Pseudorandom generation from one-way
functions. In Proc. 21st STOC, pages 12–24, 1989.

16. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In Proc. 41st FOCS, pages
294–304, 2000.

17. Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In Proc. 29th ICALP, pages 244–256, 2002.

18. H. Janwa and O. Moreno. Mceliece public key cryptosystems using algebraic-
geometric codes. Des. Codes Cryptography, 8(3):293–307, 1996.

19. J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th STOC, pages
20–31, 1988.

20. N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform,
and learnability. J. ACM, 40(3):607–620, 1993.

21. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory.
Technical Report DSN PR 42-44, Jet Prop. Lab., 1978.

22. E. Mossel, A. Shpilka, and L. Trevisan. On ε-biased generators in NC0. In Proc.
44th FOCS, pages 136–145, 2003.

23. M. Naor and O. Reingold. Synthesizers and their application to the parallel con-
struction of pseudo-random functions. J. of Computer and Systems Sciences,
58(2):336–375, 1999.

24. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complex-
ity classes. J. of Computer and Systems Sciences, 43:425–440, 1991.

25. M. Sudan. Algorithmic introduction to coding theory - lecture notes, 2002.
http://theory.csail.mit.edu/∼madhu/FT01/.

26. R. Varshamov. Estimate of the number of signals in error correcting codes. Doklady
Akademii Nauk SSSR, 117:739–741, 1957.

