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Département d’Informatique 45, rue d’Ulm

75230 Paris cedex 05, France
Vivien.Dubois@ens.fr,

Pierre-Alain.Fouque@ens.fr, Jacques.Stern@ens.fr
2 Weizmann Institute of Science Adi.Shamir@weizmann.ac.il

Abstract. In this paper, we present a practical attack on the signature
scheme SFLASH proposed by Patarin, Goubin and Courtois in 2001 fol-
lowing a design they had introduced in 1998. The attack only needs the
public key and requires about one second to forge a signature for any
message, after a one-time computation of several minutes. It can be ap-
plied to both SFLASHv2 which was accepted by NESSIE, as well as to
SFLASHv3 which is a higher security version.

1 Introduction

In the last twenty years, multivariate cryptography has emerged as a potential
alternative to RSA or DLOG [12, 2] schemes. Many schemes have been proposed
whose security appears somehow related to the problem of deciding whether
or not a quadratic system of equations is solvable, which is known to be NP-
complete [5]. An attractive feature of such schemes is that they have efficient
implementations on smart cards, although the public and secret keys are rather
large. Contrary to RSA or DLOG schemes, no polynomial quantum algorithm
is known to solve this problem.

The SFLASH Scheme. SFLASH is based on the Matsumoto-Imai scheme
(MI) [7], also called the C∗ scheme. It uses the exponentiation x 7→ xqθ+1 in
a finite field Fqn of dimension n over a binary field Fq, and two affine maps
on the input and output variables. The MI scheme was broken by Patarin in
1995 [8]. However, based on an idea of Shamir [13], Patarin et al. proposed
at CT-RSA 2001 [10] to remove some equations from the MI public key and
called the resulting scheme C∗−. This completely avoids the previous attack
and, although not appropriate for an encryption scheme, it is well-suited for a
signature scheme. The scheme was selected in 2003 by the NESSIE European
Consortium as one of the three recommended public key signature schemes, and
as the best known solution for low cost smart cards.



Previous Attacks on SFLASH. The first version of SFLASH, called SFLASHv1,
is a more efficient variant of C∗− using a small subfield. It has been attacked by
Gilbert and Minier in [6]. However, the later versions (SFLASHv2 and SFLASHv3)
were immune to this attack.

Recently, Dubois, Fouque and Stern in [1] proposed an attack on a special
class of SFLASH-like signatures. They show that when the kernel of the linear
map x 7→ x+xqθ

is non-trivial, the C∗− scheme is not secure. The attack is very
efficient in this case, but relies on some specific properties which are not met by
the NESSIE proposals and which make the scheme look less secure.

Our Results. In this paper, we achieve a total break of the NESSIE standard
with the actual parameters suggested by the designers: given only the public
key, a signature for any message can be forged in about one second after a one
time computation of several minutes. The asymptotic running time of the attack
is O(log2(q)n6) since it only needs standard linear algebra algorithms on O(n2)
variables, and n is typically very small. As in [1], the basic strategy of the attack is
to recover additional independent equations in order to apply Patarin’s attack [8].
To this end, both attacks use the differential of the public key. However, the
attacks differ in the way the invariants related to the differential are found. The
differential of the public key, also called its polar form, is very important since
it transforms quadratic equations into linear ones. Hence, it can be used to find
some linear relations that involve the secret keys. Its cryptanalytic significance
had been demonstrated in [4].

Organization of the Paper. In section 2, we describe the SFLASH signa-
ture scheme and the practical parameters recommended by Patarin et al. and
approved by NESSIE. Then, in section 3 we present the multiplicative property
of the differential that we need. Next, in section 4 we describe how to recover
linear maps related to multiplications in the finite field from the public key. In
section 5, we show how to break the NESSIE proposal given only the public
key. In section 6, we extend the attack to cover the case when up to half of the
equations are removed, and finally in section 7, we compare our method with
the technique of [1] before we conclude.

2 Description of SFLASH

In 1988, Matsumoto and Imai [7] proposed the C∗ scheme for encryption and
signature. The basic idea is to hide a quadratic easily invertible mapping F in
some large finite field Fqn by two secret invertible linear (or affine) maps U and
T which mix together the n coordinates of F over the small field Fq :

P = T ◦ F ◦ U

where F (x) = xqθ+1 in Fqn . This particular form was chosen since its represen-
tation as a multivariate mapping over the small field is quadratic, and thus the
size of the public key is relatively small.
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The secret key consists of the maps U and T ; the public key P is formed
by the n quadratic expressions, whose inputs and outputs are mixed by U and
T , respectively. It can be seen that F and P are invertible whenever gcd(qθ +
1, qn − 1) = 1, which implies that q has to be a power of 2 since q is a prime
power.

This scheme was successfully attacked by Patarin [8] in 1996. To avoid this
attack and restore security Patarin et al. proposed in [11] to remove from the
public key the last r quadratic expressions (out of the initial n), and called this
variant of C∗ schemes, C∗−. Furthermore, if the value of r is chosen such that
qr ≥ 280, then the variant is termed C∗−−. If we denote by Π the projection of
n variables over Fq onto the first n− r coordinates, we can represent the public
key by the composition :

PΠ = Π ◦ T ◦ F ◦ U = TΠ ◦ F ◦ U.

In the sequel, P denotes the public key of a C∗ scheme whereas PΠ denotes a
C∗− or C∗−− public key. In both cases the secret key consists of the two linear
maps T and U .

To sign a message m, the last r coordinates are chosen at random, and the
signer recovers s such that PΠ(s) = m by inverting T , U and F . A signature
(m, s) can be checked by computing PΠ(s) with the public key, which is ex-
tremely fast since it only involves the evaluation of a small number of quadratic
expressions over the small finite field Fq.

For the NESSIE project and in [10], Patarin et al. proposed two particular
recommended choices for the parameters of C∗−− :

– for SFLASHv2 : q = 27, n = 37, θ = 11 and r = 11
– for SFLASHv3 : q = 27, n = 67, θ = 33 and r = 11

SFLASHv3 was actually proposed to provide an even more conservative level
of security than SFLASHv2 [10]. However, the designers made clear that they
viewed SFLASHv2 as providing adequate security, and no attack on these two
choices of parameters had been reported so far.

The important fact to notice here is that in both cases gcd(n, θ) = 1 and thus
the attack described in [1] on a modified version of SFLASH in which gcd(n, θ) >
1 cannot be applied. The attack described in this paper shares with [1] the basic
observation about the multiplicative property of C∗− schemes which is described
in section 3, but proceeds in a completely different way. More discussion about
the relationships between the two attacks can be found in section 7.

3 The Multiplicative Property of the Differential

The attack uses a specific multiplicative property of the differential of the public
key of a C∗− scheme.

The differential of the internal quadratic system F (x) = xqθ+1 is a symmetric
bilinear function in Fqn , called DF , and it is defined for all a, x ∈ Fqn by the
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linear operator :

DF (a, x) = F (a + x)− F (a)− F (x) + F (0).

When F (x) = xqθ+1, we get for all a, x ∈ Fqn

DF (a, x) = axqθ

+ aqθ

x.

Note that this expression is bilinear since exponentiation by qθ is a linear oper-
ation. This map has a very specific multiplicative property: for all ξ ∈ Fqn

DF (ξ · a, x) + DF (a, ξ · x) = (ξ + ξqθ

) ·DF (a, x) (1)

We now explain how this identity on the internal polynomial induces a similar
one on the differential of the public keys in C∗ and C∗−. Due to the linearity of
the DP operator, we can combine it with the linear maps T and U to get that
the differential of any C∗ public key P is DP (a, x) = T ◦DF (U(a), U(x)). Then,
equation (1) becomes for any ξ ∈ Fqn :

T ◦DF (ξ · U(a), U(x)) + T ◦DF (U(a), ξ · U(x))

= T ◦ (ξ + ξqθ

) ·DF (U(a), U(x))

= T ◦ (ξ + ξqθ

) · T−1(DP (a, x)).

We denote by Mξ and ML(ξ) respectively the multiplications by ξ and by
L(ξ) = ξ+ξqθ

. Also, we let Nξ denote the linear map U−1◦Mξ◦U which depends
on the secret key. We still use the word “multiplication” for Nξ, even though this
wording is not actually accurate since this is not the standard multiplication in
Fqn , due to the action of the input transformation U . With these notations :

DP (Nξ(a), x) + DP (a,Nξ(x)) = T ◦ML(ξ) ◦ T−1(DP (a, x)).

Finally, if DPΠ is the differential of a C∗− public key PΠ , then :

DPΠ(Nξ(a), x) + DPΠ(a,Nξ(x)) = TΠ ◦ML(ξ) ◦ T−1(DP (a, x)).

Let Λ(L(ξ)) denote the linear map TΠ ◦ML(ξ) ◦ T−1, then

DPΠ(Nξ(a), x) + DPΠ(a,Nξ(x)) = Λ(L(ξ)) (DP (a, x)) . (2)

This last equation is interesting since each coordinate of the left hand side is
linear in the unknown coefficients of Nξ and each coordinate of the right hand side
is a linear combination by the unknown coefficients of Λ(L(ξ)) of the symmetric
bilinear coordinate forms of the original DP , which are partially known since
their first (n− r) coordinates are public.

The heart of the attack consists in identifying some Nξ, given the public
key and equation (2), and then using its mixing effect on the n coordinates to
recover the r missing quadratic forms from the (n−r) known quadratic forms of
the public key. In the next section, we will see how to recover some non-trivial
multiplication Nξ, in which ξ can be any value in Fqn \ Fq.
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4 Recovering Multiplications from the Public Key

Any linear mapping can be represented by an n×n matrix with n2 entries from
Fq. Note that the multiplications Nξ form a tiny subspace of dimension n within
the space of all linear maps whose dimension is n2.

The coordinates of DPΠ are known symmetric bilinear forms that can be
seen as n(n − 1)/2-dimensional vectors. They generate a (n − r)-dimensional
subspace VΠ which is contained in the n-dimensional space V , generated by the
full set of coordinates of DP in the original C∗ public key.

Consider now the expression :

SM (a, x) = DPΠ(M(a), x) + DPΠ(a,M(x))

where SM is defined for any linear mapping M as a (n− r)-tuple of symmetric
bilinear forms. Most choices of M do not correspond to any multiplication by a
large field element ξ, and thus we do not expect them to satisfy the multiplicative
property described in section 3. Due to relation (2), when M is a multiplication
Nξ, the (n − r) coordinates of SNξ

are in V . It is unlikely that they are all in
the subspace VΠ . However, there is a huge number of possible values for ξ, and
it can be expected that for some choices of ξ ∈ Fqn \ Fq, some of the bilinear
forms in SM (a, x) will be contained in the known subspace VΠ . Our goal now is
to detect such special multiplications.

Dimension of the overall linear maps space. Let us consider k of the
published expressions, for instance the first k, and let us study the vector space
E(1, . . . , k) of linear maps M such that the first k coordinates of SM (a, x) are
all contained in VΠ . Since membership in VΠ is expressed by the vanishing of
n(n− 1)/2− (n− r) linear forms, the elements of this subspace satisfy a system
of k · (n(n − 1)/2 − (n − r)) linear equations in the n2 unknown coefficients of
M . If all these equations were independent, the dimension of E(1, . . . , k) would
be n2 − k · (n(n − 1)/2 − (n − r)) which is clearly impossible as soon as k ≥ 3.
Otherwise, we can only claim that it is lower-bounded by this number. On the
other hand, it can be seen that the space E(1, . . . , k) contains a subspace of
multiplications, whose dimension is now to be computed.

Dimension of the multiplications space. For a multiplication Nξ, thanks to
equation (2), the coordinates of SNξ

are guaranteed to be linear combinations of
the coordinates of DP , whose coefficients Λ(L(ξ)) are linear in ξ + ξqθ

. Setting
ζ = ξ + ξqθ

, the first k linear combinations are given by the k linear forms

Λi(ζ) = Πi ◦ T ◦Mζ ◦ T−1

for i = 1, . . . , k where Πi is the projection on the ith coordinate. Note that
Λi : ζ 7→ Λi(ζ) are linear bijections from Fqn to (Fn

q )∗, the vector space of linear
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forms over Fn
q . Indeed, the kernel of Λi consists of the elements ζ such that the

ith row of T ◦Mζ ◦ T−1 is zero. Since T ◦Mζ ◦ T−1 is invertible for ζ 6= 0, the
kernel of Λi must be trivial. This implies that Λi is a linear bijection, and we will
use this property. Note that this is the converse of the assumption underlying
the attack in [1], and in this sense, our new attack and the old attack can be
seen as complementary.

Let us consider the subspace L′ of (Fn
q )∗ generated by the first (n− r) coor-

dinate projections. In this case, the k conditions Πi ◦ SNξ
∈ VΠ become

Λi(L(ξ)) ∈ L′, ∀i = 1, . . . , k (3)

which means that Λi(L(ξ)) only depends on the (n − r) first rows of DP , i.e.
only on the known DPΠ .

Consequently, when searching for a multiplication by ξ for which equation (3)
holds, we get the following set of conditions on ζ = L(ξ) = ξ + ξqθ

:

(i) ζ ∈ Im(L)
(ii) Λi(ζ) ∈ L′ for i = 1, . . . , k

Since ζ = ξ+ξqθ

and gcd(n, θ) = 1, ζ is non-zero unless ξ = 0 or 1. This means
that the kernel of L has dimension 1, hence ζ ranges over a space of dimension
n− 1. Condition (i) corresponds to a single linear relation over the coordinates
of L(ξ), since dim Im(L) = n − 1. Also, since Λi is a linear bijection and L′

is of codimension r, each of the conditions in (ii) corresponds to r additional
linear relations. Altogether, this means that we have kr + 1 linear equations.
Furthermore, since we are interested in the space of Nξ’s and not in the space
of Mζ ’s, the dimension is n − kr − 1 + 1 = n − kr since the kernel of L is of
dimension 1. This implies that whenever we add a condition (i.e. increase k by
1), we add about n2/2 linear equations on the full space of linear maps, but
their effect on the subspace of multiplications is to reduce its dimension only by
r. Finally, the space of multiplications in E(1, . . . , k) includes at least one non-
trivial multiplication, i.e. a multiplication by an element outside Fq whenever

n ≥ kr + 2. (4)

Consequently, the dimension of E(1, . . . , k) is

max
{

n2 − k

(
n(n− 1)

2
− (n− r)

)
, n− kr, 1

}
.

Figure 1 describes the expected evolution of the dimension of the space of
all linear maps and of the dimension of the subspace of multiplications for two
different choices of r. The intuition behind our attack is that initially there are
many “useless maps” and few multiplications. However, the number of useless
maps drops rapidly as we add more equations, whereas the number of multi-
plications drops slowly (since many of the equations are linearly related on the
subspace of multiplications). This leads to an elimination race, and we hope to
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Fig. 1. Evolution of the dimensions of the overall linear maps and their subspace of
multiplications when r < n/3 (left figure) and when r ≥ n/3 (right figure), as we add
more linear equations.

get rid of all the “bad maps” before we inadvertantly kill off all the “good maps”
by imposing too many conditions.

Taking k = 3, it can be seen that the first expression of the max is not
positive. This seems to indicate that E(1, . . . , k) consists entirely of multiplica-
tions. This is demonstrated in the left figure. This subspace contains non-trivial
multiplications, whenever n− 3r > 1. Therefore, the attack is expected to work
for values of r up to (n − 2)/3. The right figure shows a case in which r is too
large, and thus the “good maps” are eliminated before the “bad maps”. We will
see in section 6 how to improve the attack and deal with values of r up to about
n/2. Note that even without this improvement, our technique is already suffi-
cient to recover non-trivial multiplications for the recommended parameters of
SFLASHv2 and SFLASHv3, since r = 11 is smaller than both 35/3 and 65/3.
Of course, the argument that was offered is only heuristic. However, it was con-
firmed by a large number of experiments, in which the attack always behaved as
expected by our heuristic analysis, and signatures were successfully forged.

5 Recovering a Full C∗ Public Key

The final part of the attack is to recover a set P ′
Π of additional equations which

are independent of the first system PΠ . If the rank of the concatenation of the
original PΠ and the newly computed r equations of P ′

Π is full, then Patarin’s
attack on MI [8] can be mounted, although we do not necessarily reconstruct the
r original equations of the full public key. This idea is the same as in [1].

Recovering a full rank system. To reconstruct a full rank system, we note
that the action of the final linear map T is to compute different linear combina-
tions of the full (i.e. non-truncated) internal quadratic polynomials F ◦U . Con-
sequently, if we were able to mix by some linear mapping the internal quadratic
coordinates F ◦ U before the action of TΠ , then we will be able to create new
quadratic polynomials which could replace the r missing ones.
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When we compose the multiplication Nξ = U−1 ◦Mξ ◦ U (which was found
in the previous part of the attack) with the truncated public key PΠ , the inputs
of the internal quadratic mapping F (x) = xqθ+1 are multiplied by ξ. Indeed,

PΠ ◦Nξ = TΠ ◦ F ◦Mξ ◦ U

since PΠ ◦ Nξ(x) = TΠ ◦ F ◦ U ◦ U−1 ◦ Mξ(U(x)) = TΠ(F (Mξ(U(x)))). Let us
denote this new system by P ′

Π . We can show that the outputs of the internal
quadratic equations F ◦ U are multiplied by ξqθ+1. Indeed, TΠ ◦ F (ξ · U(x)) =
TΠ((ξ · U(x))qθ+1) = TΠ(ξqθ+1 · F (U(x))), and so :

P ′
Π = PΠ ◦Nξ = TΠ ◦Mξqθ+1 ◦ F ◦ U

Let us consider the special case ξ ∈ Fqn \ Fq. In this situation, we say that
Nξ is non-trivial. Since F is a permutation and thus F (Fq) = Fq, ξqθ+1 is not in
Fq either. Thus, the multiplication by M

ξqθ +1 is non-trivial, i.e. corresponds in
particular to a non-diagonal matrix.

Therefore, in the sets PΠ and P ′
Π the internal quadratic coordinates of F ◦U

are mixed with two different linear combinations, TΠ and TΠ ◦Mξqθ +1. We hope
that for some value ξ ∈ Fqn \ Fq, r equations in the set P ′

Π together with PΠ

will form a full rank system. This special case is not necessary since we could
use different values of ξ to add r different quadratic forms to the (n− r) public
ones. However, in our experiments it was always sufficient to use one ξ, and then
Patarin’s attack could be applied to forge actual signatures.

In practice, to determine if the new system of n equations is of full rank,
we simply tested whether Patarin’s attack succeeded. If not, another set of r
equations was chosen amongst the (n− r) equations of P ′

Π . For each choice of
r equations, the success probability was approximately 1− 1/q, which is close to
1 for q = 27

If ξ ∈ Fq (i.e. the multiplication is trivial), P ′
Π is simply PΠ where each

coordinate has been multiplied by the same element of Fq, since F (Fq) = Fq and
multiplication by an element of Fq is a diagonal matrix. Thus, such trivial ξ are
not interesting for our attack and this is the reason why they were discarded
from our search for appropriate Nξ in the previous section.

Practical results. We carried our experiments on a 2GHz AMD Opteron PC
using different parameters. The following table provides the time to recover a
non-trivial multiplication and the time to recover an independent set of equations
which form a full rank system. This computation has to be done only once per
public key. Then Patarin’s attack requires about one second to forge an actual
signature for any given message. All these operations can be carried out by
solving various systems of linear equations with a relatively small number of
variables (O(n2) or O(n), depending on the operation).

The two columns in bold font represent the time to attack SFLASHv2 and
SFLASHv3. The notation ’s’ is for seconds and ’m’ is for minutes.
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n 37 37 67 67 131
θ 11 11 33 33 33
q 2 128 2 128 2
r 11 11 11 11 11

Nξ Recovery 4s 70s 1m 50m 35m
C∗ Recovery 7.5s 22s 2m 10m 7m

Forgery 0.01s 0.5s 0.02s 2s 0.1s

6 Breaking SFLASH when the Number of Deleted
Quadratic Equations r is up to n/2

In this section, we deal with this problem by a technique which we call distil-
lation, since it allows to gradually filter additional linear maps which are not
multiplications. When r ≤ (n − 2)/3, we can use three conditions to eliminate
all the useless linear maps, while retaining at least a two dimensional subspace
of multiplications (since we reduce the initial n coordinates three times by r).
When r > (n− 2)/3, this will usually kill all the multiplications along with the
useless linear maps.

Distillation is performed by relaxing the constraints, i.e. by forcing only two
coordinates of SM to be in VΠ . This will cancel a large fraction of useless linear
maps, but not all of them. To clarify the situation, we use in the rest of this
section angular brackets to demonstrate the stated number of dimensions for
the SFLASHv3 parameters of n = 67 and r = 11.

After forcing the two conditions, the dimension of the space of linear maps
is reduced to

n2 − 2(n(n− 1)/2− (n− r)) = 3n− 2r 〈179〉

of the n2 〈4489〉 at the beginning, while the dimension of the good subspace
(i.e. the subspace of multipications) is n − 2r 〈45〉. Now, to find at least one
non-trivial multiplication, we need to eliminate all the remaining useless linear
maps. The new idea is that we can perform this process twice with different pairs
of coordinates, i.e. coordinates 1 and 2 for the first time and coordinates 3 and
4 for the second, and get two different sets of linear maps, say V S1 and V S2,
which contain both good and bad linear maps. Two random linear subspaces
of dimension m in a linear space of dimension t are likely to have a nonzero
intersection if and only if m > t/2, and then the dimension of the intersection
is expected to be 2m − t. We can apply this criterion separately to the space
of all linear maps (in which t = n2) and to the subspace of multiplications
(in which t = n). In our example V S1 ∩ V S2 is likely to contain non-trivial
multiplications since 〈45〉 > 〈67〉/2, but is not likely to contain other maps since
〈179〉 < 〈4489〉/2. More generally, we may have to replace each one of SV1

and SV2 by the sum of several such linear subspaces in order to build up the
dimension of the multiplications to more than n/2. For example, if each V Si

has only a 〈10〉-dimensional subspace of multiplications, we can replace it by the

9



sum of four such linear subspaces to get the expected dimension up to 〈40〉, and
the intersection of two such sums will have an expected dimension of 〈13〉, and
thus many non-trivial multiplications.

Asymptotic Analysis. We now show how to deal with any r < (1−ε)n/2 for a
fixed ε and large enough n. Note that our goal here is to simplify the description,
rather than to provide the most efficient construction or tightest analysis. Since
n − 2r > εn, we can impose pairs of conditions and create linear subspaces
V Si of total dimension O(n) which contain a subspace of multiplications of
dimension εn ≥ 2. If we add 1/ε such subspaces, the dimension of the subspace
of multiplications will increase to almost n, while the total dimension will remain
n/ε, which is much smaller than n2. Consequently, the intersection of two such
sums is likely to consist entirely of multiplications.

Experimentations. We get the following timing results when r is close to n/2
and ’s’, ’m’ and ’h’ respectively denotes seconds, minutes and hours.

n 37 37 67 67
θ 11 11 33 33
q 2 128 2 128
r 17 16 32 31

Nξ Recovery 8s 4m 3.5m 10h
C∗ Recovery 7.5s 22s 3m 10m

Forgery 0.01s 0.4s 0.02s 2s

7 Comparison with the Method of Dubois et al. [1]

In both attacks, the basic strategy is to recover additional independent equations
in order to apply Patarin’s attack [8]. They both use the differential of the public
key, but differ in the way the invariants of the differential are found. The method
of [1] can only deal with schemes where gcd(n, θ) > 1, which implies that the
kernel of L(ξ) = ξ + ξqθ

is of dimension strictly larger than 1.
To recover non-trivial multiplication in [1], skew-symmetric mappings with

respect to a bilinear form B are considered, i.e. linear maps M such that
B(M(a), x) = −B(a,M(x)). In fact, the authors show that skew-symmetric
mappings related to the symmetric bilinear forms of a C∗ public key are specific
multiplications in the extension Fqn by means of a suitable transformation de-
pending on the secret key, namely U−1 ◦Mξ ◦U where ξ ∈ Ker L. For such maps,
we get DP (M(a), x) + DP (a,M(x)) = 0. Since DP can be computed from the
public key, this equation defines linear equations in the unknowns of M . How-
ever, in the case considered in this paper, i.e. when dim KerL = 1 or equivalently
when gcd(n, θ) = 1, the only skew-symmetric maps are the trivial multiplications
which are useless to recover new independent quadratic equations.
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To recover non-trivial multiplications, we introduce here different and more
elaborate conditions related to the vector space generated by the various images
of the differential in public key coordinates. In this case, we are also able to
detect images of multiplications. However, the multiplications to be found are
not known in advance but are only shown to exist by counting arguments, and the
way we find them is by setting up an elimination race between the multiplications
and other linear maps.

8 Conclusion

Multivariate cryptographic schemes are very efficient but have a lot of exploitable
mathematical structure. Their security is not fully understood, and new attacks
against them are found on a regular basis. It would thus be prudent not to use
them in any security-critical applications.

One of the most interesting open problems is whether the new techniques
described in this paper can be applied to the HFE cryptosystem [9]. The main
attacks discovered so far against HFE are based on Gröbner bases [3], and are
very slow. So far, we could not find a way how to detect non-trivial multiplica-
tions in HFE, since it lacks the multiplicative property described in section 3,
but this is a very promising line of attack which should be pursued further.
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