
On Forward-Secure Storage?

Extended Abstract

Stefan Dziembowski

Institute of Informatics, Warsaw University
and

Institute for Informatics and Telematics, CNR Pisa

Abstract. We study a problem of secure data storage in a recently
introduced Limited Communication Model. We propose a new crypto-
graphic primitive that we call a Forward-Secure Storage (FSS). This
primitive is a special kind of an encryption scheme, which produces huge
(5 GB, say) ciphertexts, even from small plaintexts, and has the follow-
ing non-standard security property. Suppose an adversary gets access to
a ciphertext C = E(K, M) and he is allowed to compute any function h
of C, with the restriction that |h(C)| � |C| (say: |h(C)| = 1 GB). We
require that h(C) should give the adversary no information about M ,
even if he later learns K.
A practical application of this concept is as follows. Suppose a ciphertext
C is stored on a machine on which an adversary can install a virus. In
many cases it is completely infeasible for the virus to retrieve 1 GB of
data from the infected machine. So if the adversary (at some point later)
learns K, then M remains secret.
We provide a formal definition of the FSS, propose some FSS schemes,
and show that FSS can be composed sequentially in a secure way. We
also show connections of the FSS to the theory of compressibility of
NP-instances (recently developed by Harnik and Naor).

1 Introduction

One of the main problems in the practical data security are the attacks of mal-
ware like Internet worms, Trojan horses or viruses. For an average user it is
quite common that his PC gets from time to time infected by some malicious
program. Once installed, such a program can take full control over the infected
machine, and it may steal some confidential message M that is stored on the
machine. A natural solution for this problem is to use encryption and to store
only a ciphertext C = E(K, M), where K is some secret key. Clearly, for the
security of this method we need to assume that the key K is stored outside of
? Part of this work was carried out during the tenure of an ERCIM fellowship. An-

other part of this work was done when the author was employed at the Institute of
Mathematics of the Polish Academy of Sciences. This work was partly supported by
the EU project IST-3-016004-IP-09 Sensoria the Polish KBN grant Nr: 4 T11C 042
25.



the machine: in user’s memory or on some other safe device. If the key K leaks
to the adversary, then it may seem that all the security is inevitably lost, since
the adversary that knows C and K can decrypt M .

In this paper we show how to limit the bad consequences of the key leakage.
We will use the methods of a newly-introduced [12] Limited Communication
Model (LCM)1. The main idea is as follows. Of course, if the intruder knows K
at the moment when he got access to C then he can easily decrypt M . But what
if he learned K after he got access to C? Clearly, if C is small then the intruder
can simply retrieve C and wait until he learns K. So what if C is large (e.g.
5 GB)? In this case retrieving the entire C from the infected machine may be
much harder. So, suppose that the adversary got access to the machine on which
C is stored (and for the moment he has no information about K). Assume that
he can perform some arbitrary computation on C and that he may retrieve the
result h(C). Clearly, if |h(C)| = |C| then he may simply set h(C) = C, so let us
assume that |h(C)| � |C| (e.g. |h(C)| = 1 GB and |C| = 5 GB). Suppose that
later the adversary learns K. Clearly, if E is some standard encryption scheme,
then the knowledge of h(C) and K allows the adversary to obtain some partial
information on M .

We propose a special type of encryption schemes that guarantee that the
adversary that knows h(C) and K does not get any substantial information on
M . We call this new primitive a Forward-Secure Storage (FSS). We define its
security, propose implementations, and show connections to the theory of the
compressibility of NP-instances [16] that was recently developed by Harnik and
Naor (see Sect. 2), the Bounded Storage Model and the Hybrid Bounded Storage
Model (see Sect. 3).

Some proofs and details are omitted because of the page limit and appear in
an extended version of this paper [13].

1.1 How Realistic Is Our Scenario?

We believe that FSS is an interesting notion just from the theoretical point of
view. Still, it may also find some practical applications. Let us now consider the
question how realistic is the assumption that the key K leaks after the adversary
lost access to C. Here we list the cases when this can happen.

1. If the key K is stored on some safe device (a floppy-disc, say) then this device
may be physically stolen. The key K may also leak to the adversary if the
floppy-disc is inserted in some compromised device (this can happen if the
user uses the same key to encrypt data on several machines).

2. If the key K is a human-memorized password, then the adversary can crack
the password by trying all possible passwords in the dictionary. While this
operation may be hard to perform in an unnoticeable way directly on the vic-
tim’s machine, it is usually doable if the attacker downloads C = E(K, M),
and then performs the dictionary attack on his own machine. This scenario
was already considered in [9] in a weaker model (see Sect. 2). Note that it is

1 This name was proposed in [5].



unclear how to formally model the fact that the adversary can crack pass-
words on his own machine, but he cannot do it on the victim’s machine. We
discuss it is Sect. 8.

3. Even if the key K is cryptographically strong and it does not leak, the
adversary may still hope that at some point in the future he can break it,
when new cryptanalytic methods, or more computing power are available.

Practicality of the Assumptions Note that the current storage prices are
extremely low. Today’s price of one blank DVD (which has almost 5 GB of
storage) is around 50 cents, and new HD-DVD and Blu-Ray technologies (which
allow to store up to 50 GB on one disc) are entering the market right now. At the
same time, downloading a 1 GB from an average PC connected to the Internet
can still take considerable time. Also, observe that in many cases the adversary
will not perform the attack if he can be traced down, and it may be quite hard to
download 1 GB in an untraceable way (unlike downloading 1 KB of data, which
can be posted e.g. on a Usenet newsgroup). One can also consider limiting the
possible amount of retrieved data by constructing devices with artificially slow
memory access (this was considered in [20]).

1.2 Our Contribution

We define the notion of the Forward-Secure Storage (Sect. 4), distinguishing
between three levels of security: information-theoretic, computational, and hy-
brid (which is a mix of the former two). We show constructions of FSS schemes
(Sect. 6). We prove that FSS is secure if composed sequentially (Sect. 7) and
show how FSS can be used to protect encrypted data with a human-memorized
key (Sect. 8). We show the connections with the theory of compressibility of
NP-instances (Sect. 5). Note that (except of Sect. 8) we do not use the Random
Oracle Assumption [2].

2 Related Work

The Work of [9] Consider the scenario in Point 2 in Sect. 1.1 (i.e. K is a
human-memorized password). This was studied already in [9]. The difference
between our model and theirs is that they do not allow the intruder to perform
arbitrary computation on the victim’s machine. The only thing that the adver-
sary can do is to retrieve some individual bits (Ci1 , . . . , Cis

) of the ciphertext
C = (C1, . . . , Ct). This may seem unrealistic, since the malicious programs can
easily perform computations on the victim’s data. In this model they propose
an efficient solution (a system called VAST ) for the problem of secure storage.
Their solutions assumes the Random Oracle Model. We will later refer to the
model of [9] as a Bounded-Retrieval Model. This term was introduced in [7].

Intrusion Resilience of [12] The model that we consider in this paper was
proposed in [12]2. It is shown in [12] that in this model one can implement pro-
tocols for the entity authentication and the session-key generation. The security
2 Some of the ideas of [12] were also independently discovered in [5].



of the protocols in [12] is proven in the Random Oracle Model. This assumption
was later removed in [5]. We will refer to the model of [12] (and of our paper)
as the Limited Communication Model.

The Theory of [16] One of our main inspirations is the theory of the com-
pressibility of NP-instances recently developed by Harnik and Naor [16] (see also
[11]). Suppose that we are given an NP-language L ⊆ {0, 1}∗. We say that L
is π-compressible (to another NP-language L′) if there exists a polynomial-time
π-compressing algorithm C : {0, 1}∗ → {0, 1}∗ such that (1) x ∈ L if and only if
C(x) ∈ L′, and (2) for every x ∈ {0, 1}∗, we have |C(x)| ≤ π(|x|). We say that L
is compressible (to L′) if π is polynomial in log |x| and in w(x), where w(x) is
the maximal size of the witness for the instances of length |x| (otherwise we say
that it is incompressible).

A compressing algorithm is witness-retrievable if there exists a polynomial-
time algorithm W such that if v is an NP-witness for x ∈ L, then W (v) is an
NP-witness for C(x).

Showing that there exists an incompressible NP-language (under the stan-
dard cryptographic assumptions) is currently an open problem. In an updated
version of [16]3 the authors show, however, that if one-way functions exist then
there does not exist a witness-retrievable compressing algorithm for SAT.

All-Or-Nothing Transform A scenario similar to ours was consider in [27]
(and in several subsequent papers), where the notion of the All-Or-Nothing
Transform was introduced. Namely, [27] proposes an encryption method where
it is hard to get any information on M , given K and most (but not all) of the
bits of C = E(K, M). Note that the fundamental difference between [27] and
our work is that [27] assumes that the adversary knows some individual bits of
C (like in the Bounded Retrieval Model, described above), while in our model
the adversary can compute an arbitrary function h of C (with |h(C)| � |C|).
See also Sect. 9.

3 Tools

Bounded-Storage Model We will use the results from the Bounded-Storage
Model (BSM), introduced by Maurer in [24]. This model was studied in the
context of information-theoretically secure encryption [1, 15, 23, 28], key-agree-
ment [4, 14], oblivious transfer [3, 10] and time-stamping [25]. In this model one
assumes that a random string R ∈ {0, 1}tBSM (called a randomizer) is either
temporarily available to the public or broadcast by one of the legitimate parties.
The honest users, Alice and Bob share a short secret initial key K ∈ {0, 1}mBSM ,
selected uniformly at random, and they apply a known key-expansion function
f : {0, 1}mBSM × {0, 1}tBSM → {0, 1}nBSM to compute the derived string X =
f(K, R) ∈ {0, 1}nBSM (usually nBSM � mBSM). Later X can be used, e.g.,
as a key for the one-time pad encryption. The function f must be efficiently
3 Available at http://www.cs.technion.ac.il/˜harnik.



computable and based on only a very small portion of the bits of R, so that
Alice and Bob need not read the entire string R.

We assume that the adversary ABSM (that is a computationally-unbounded
Turing Machine) can compute an arbitrary function h of R, with the sole re-
striction that the output U = h(R) of this computation has a limited size:
U ∈ {0, 1}sBSM , where sBSM � tBSM. The adversary is allowed to store in his
memory only U . After R disappears, the adversary should have essentially no
information about X, even if he learns K. To define the security more formally,
we consider the following game:
BSM - distinguishing game
Phase 1 R is generated randomly and passed to the adversary. The adver-

sary can perform arbitrary computations and he can store some value U =
h(R) ∈ {0, 1}sBSM . He is not allowed to store any other information. Then,
the randomizer disappears.

Phase 2 The adversary learns K. Let b ∈ {0, 1} be chosen uniformly at random.
Define

X̂ :=
{

f(K, R) if b = 0
a random element of {0, 1}nBSM otherwise.

and send X̂ to the adversary. The adversary has to guess b.

We say that the adversary ABSM breaks the BSM scheme f with an advantage ε if
his chances of guessing b correctly are 0.5+ε. To reason about the security in the
asymptotic way, let us introduce a security parameter k which is an additional
input of f and of the adversary. Let us assume that the parameters mBSM, nBSM

and tBSM are functions of k. For a function σ : IN → IN we say that function
f is σ-secure in the bounded-storage model if any adversary with memory at
most s = σ(k) breaks the scheme f with a negligible4 advantage. Several key
expansion functions [1, 15, 23, 28] were proven secure in the past couple of years.5

Observe that in some sense the assumptions in the BSM are opposite to the
assumptions in the Limited Communication Model, since in the BSM we assume
that transmission of large amount of data is cheaper than storing it. Nevertheless
(as observed already in [12]), it turns out that the theorems proven in BSM are
useful in the LCM.

Hybrid Bounded-Storage Model The Hybrid Bounded-Storage Model [14] is
defined as follows. Suppose that K is generated by a computationally-secure key-
agreement protocol. Clearly, an infinitely-powerful adversary can break such a
key-agreement. Therefore, assume that the computational power of the adversary
is restricted (to polynomial time) until the randomizer disappears (at the end

4 A function ε : IN → R is negligible (in k) if for every c ≥ 1 there exists k0 such that
for every k ≥ k0 we have |ε(k)| ≤ k−c.

5 In these papers security of a BSM function is defined in a slightly different way.
Namely, it is required that the distribution of X is statistically close to uniform
from the point of view of the adversary (who knows K and U). It is easy to see that
these definitions are in fact equivalent.



of Phase 1). Of course, when the adversary later gains the unlimited computing
power, he can compute K (if he recorded the transcript of the key-agreement),
but this should not be dangerous, since in the BSM the security holds even when
the initial key K is given to the adversary (in Phase 2). In [14] it was shown that
this reasoning is not correct. Namely, they show an example of a (very artificial,
but computationally-secure under the standard assumptions) key agreement that
cannot be safely used in this context. For more details see [14] or [17], where
this model was recently formalized and generalized.

Private Information Retrieval A PIR [6, 21] scheme (U ,D) is a protocol for
two parties, a user U and a database D, allowing the user to access database
entries in a way that D cannot learn which information U requested. More pre-
cisely, the database content can be modeled as a string x = (x1, . . . , xl) ∈ {0, 1}l,
and U wants to access some bits xi1 , . . . , xiq

of x, such that D does not learn
I := i1, . . . , iq. It is not relevant whether U learns more than xi1 , . . . , xiq . A
typical PIR protocol proceeds in three stages. First, U sends a query, depending
on I. Let Q(I) denote the query for indices in I. Second, D computes the reply
R(Q(I), x) and sends it to U . Third, U extracts xi1 , . . . , xiq

from R(Q(I), x).
The scheme is computationally private if no efficient distinguisher can distin-
guish Q(I) from Q(I ′), for any I and I ′ such that |I| = |I ′|. To avoid trivial
solutions, we require that |R(Q(I), x)| < l.

Several PIR schemes were proven secure under different intractability as-
sumptions. For example the scheme proposed in [21] is based on the computa-
tional difficulty of the quadratic residuosity problem, and in [22] it was shown
how to construct a PIR protocol from any one-way trapdoor permutation. In [8]
it was shown that the assumption that PIR exists implies the existence of the
Oblivious Transfer.

Symmetric Encryption A symmetric encryption scheme is a pair (E,D) of
polynomial-time algorithms. Algorithm E takes as input a security parameter
1k, a key K ∈ {0, 1}msym , and a message M ∈ {0, 1}nsym and outputs a ci-
phertext C = E(K, M) ∈ {0, 1}lsym (we will assume that msym, nsym and lsym

are functions of k). Algorithm D takes as input 1k, K and C and outputs M ′.
We require that always D(K, E(K, M)) = M . The security of an encryption
scheme is defined as follows. Consider an adversary Aenc that is a probabilistic
polynomial-time machine that can specify two messages M0 and M1 (of the
same length). Later, he receives C = E(K, M c) for a random key K and a
random bit c ∈ {0, 1}, and he has to guess c. If Aenc guesses c correctly with
probability 0.5 + ε we will say that he breaks (E,D) with advantage ε. We say
that (E,D) is computationally secure if any Aenc breaks (E,D) with advantage
that is negligible in k.

Pseudorandom Generators A pseudorandom generator (PRG) is a polyno-
mial-time algorithm G that takes as input a security parameter 1k, and a
seed K ∈ {0, 1}mPRG(k) and outputs a much longer string G(K). A PRG G



is computationally-secure if any polynomial-time adversary is not able to distin-
guish G(K) from a truly random string (with a non-negligible advantage). This
can be formalized in a similar way as the symmetric encryption in the definition
above. It was shown in [18] that a pseudorandom generator can be built from
any one-way function.

Oblivious Transfer An Oblivious Transfer (OT) is a protocol between a Sender
S (that takes as an input (b0, b1) ∈ {0, 1}2 and a security parameter 1k) and a
Receiver R (with an input c ∈ {0, 1} and the security parameter 1k). After the ex-
ecution of the protocol, the Receiver should know bc (we allow a negligible proba-
bility of error). This property is called correctness of the protocol. Moreover: (1)
the Receiver should have essentially no information on b1−c (this is called privacy
of the Sender) and (2) the Sender should have essentially no information on c
(this is called privacy of the Receiver). In this paper we assume that the security
holds in the honest-but-curious setting (i.e. even the corrupted parties follow the
protocol). More formally, the security is defined as follows, let OT(c; b0, b1; 1k)
denote the execution of the OT protocol (with the inputs c, b0, b1 and 1k). To
define the privacy of the Sender we require that any polynomial-time Receiver
should not be able to distinguish between OT(0; b, 0; 1k) and OT(0; b, 1; 1k), and
between OT(1; 0, b; 1k) and OT(1; 1, b; 1k) (for b ∈ {0, 1}). Similarly, to define the
privacy of the Receiver we require that any polynomial-time Sender should not
be able to distinguish (with a non-negligible advantage) between OT(0; b0, b1; 1k)
and OT(1; b0, b1; 1k) (for b0, b1 ∈ {0, 1}).

An infinitely-often Oblivious Transfer (ioOT) is an Oblivious-Transfer pro-
tocol for whose correctness holds only for infinitely many values k0, k1, . . . of the
security parameter k. For all values not in {k0, k1, . . .} the Receiver instead of
learning bc gets ⊥, except with negligible probability.

An Oblivious-Transfer with an inefficient algorithm for the Receiver is an OT
protocol where the running time of the algorithm for the Receiver is not limited,
and where the privacy of the Sender holds when the Receiver is computationally-
unbounded. This notion is non-standard (we are not aware of any previous use
of it) and we need it for purely theoretical purposes (in Sect 6.3). Clearly, such
a protocol itself has no practical significance, as the security of the Receiver is
still protected only computationally, and thus the honest Receiver is assumed to
have more commutating power than the dishonest Sender.

4 Definition of the Forward-Secure Storage

The main idea of the Forward-Secure Storage is as follows. It can be viewed
as a randomized symmetric encryption scheme, where the encryption algorithm
Encr produces (for a given secret key K and a message M ∈ {0, 1}sFSS) a huge
ciphertext C = Encr(K, M) ∈ {0, 1}tFSS . One can imagine that C is stored on a
machine which can be attacked by an adversary. Once the adversary gets access
to the infected machine, he can perform an arbitrary computation on C, with the
restriction that the output U has to be of size at most s � t. Once the adversary



learned U , he looses access to C. Then, we assume that the key leaks, i.e. the
adversary is given K. We require that (U,K) should not give him any significant
information about M . We model it in a standard indistinguishability-style, i.e.
we assume that the adversary knows in advance (i.e. before he got access to
C) that the message M is a random member of a (chosen by him) two-element
set

{
M0,M1

}
and his task is to find out whether M = M0 or M = M1. This

reflects the fact that the adversary may have already some a priori information
about M .

Formally, a Forward-Secure Storage (FSS) scheme is a pair of polynomial-
time randomized Turing Machines Φ = (Encr,Decr). The machine Encr takes
as input a security parameter 1k, a key K ∈ {0, 1}mFSS and a plaintext M ∈
{0, 1}nFSS and outputs a ciphertext C ∈ {0, 1}tFSS . The algorithm Decr takes
as input a security parameter 1k, a key K ∈ {0, 1}mFSS , and a ciphertext
C ∈ {0, 1}tFSS , and it outputs a string M ′ ∈ {0, 1}nFSS .6 We will assume that
mFSS, nFSS and tFSS are some functions of k. The following correctness property
has to be satisfied with probability 1: Decr(1k,K,Encr(1k, K,M)) = M . We
will sometimes drop the parameter 1k. To define the security of an FSS scheme
take a function σ : IN → IN and consider a σ-adversary AFSS (that we model as
a randomized Turing Machine), that plays the following game against an oracle
ΩΦ

FSS(c) (where the challenge bit c ∈ {0, 1} is random), for some fixed value of
the security parameter k.

FSS - distinguishing game

1. The adversary gets 1k, produces two messages M0,M1 ∈ {0, 1}nFSS(k) and
sends them to ΩΦ

FSS(c).
2. ΩΦ

FSS(c) selects a random key K ∈ {0, 1}mFSS(k) and computes C = Encr(1k,
K, M c).

3. The adversary gets access to C and can compute an arbitrary value U ∈
{0, 1}σ(k). The adversary can store U , but he is not allowed to store any
other information (i.e. the entire description of the internal state of AFSS

has to be included in U).
4. The adversary learns K and has to guess c.

We say that an adversary AFSS breaks the scheme Φ with an advantage ε if
his probability of winning the game is 0.5 + ε. We say that an FSS scheme Φ
is σ-computationally-secure if every probabilistic polynomial-time AFSS breaks
Φ with advantage that is negligible in k. We say that an FSS scheme is σ-
information-theoretically (IT)-secure if is secure even against an adversary that
is computationally unbounded. Recall that one of the possible applications of
FSS is the protection against the situation when the key K is broken because
more computing power is available (see Sect. 1.1, Point 3). One can model it by
assuming that the adversary gets infinite computing power, after he retrieved
6 For some applications (e.g. when we expect that the ciphertext will be decrypted

often) we may prefer schemes where the algorithm Decr needs to look only on a
small number of the bits in C (if the plaintext is small). Actually, the schemes that
we construct in this paper have this property.



U .7 Such an adversary will be called a hybrid adversary. If an FSS scheme is
secure against a hybrid σ-adversary, we will say that it is σ-secure in the hybrid
model. Observe that this model is very closely related to the Hybrid BSM (see
Section 3).

5 Connections with the Theory of [16]

In this section we discuss the connections of the theory of FSS to the theory
of compressibility of NP-instances [16] (see Sect. 2). The lemmas that we show
in this section have a cryptanalytic nature, i.e. we show implications of the
form: if a certain language is compressible then a certain FSS scheme can be
broken. This is because the theory of [16] concerns the worst-case complexity.
To prove implications in the opposite direction, one would need to develop a
theory of problems which are incompressible on average (this notion was recently
defined in [11]). Let Φ = (Encr,Decr) be an FSS scheme with the parameters
mFSS, nFSS, and tFSS as before. Define an NP-language LΦ := {(M,C) : ∃K.M =
Decr(K, C)}.

Lemma 1. Suppose Φ is such that the length nFSS of the encrypted message is
longer than the length mFSS of the key. For a function σ : IN → IN let π be such
that π(nFSS(k) + tFSS(k)) = σ(k) (for every k ∈ IN). We have the following:

1. if LΦ is π-compressible then Φ can be broken by a hybrid σ-adversary, and
2. if LΦ is π-compressible with witness retrievability, then Φ can be broken by

a computational σ-adversary.

Proof. Let us first consider Point 1. Let C be the algorithm that compresses LΦ

to some language L′. We construct an adversary AFSS that breaks Φ. First, the
adversaryAFSS produces two random messages M0 and M1. When he gets access
to C (which is equal to Encr(K, M c), for random K and c), he retrieves U =
C(M0, C) (clearly |U | ≤ σ(|C|)). Later, when he gets infinite computing power,
he checks if (M0, C) ∈ LΦ (by the properties of the compression algorithm, he
can do it by checking if U ∈ L′). If (M0, C) ∈ LΦ then the adversary guesses
“c = 0”, otherwise he guesses “c = 1”. Clearly, if c = 0 (which happens with
probability 0.5) then his guess is correct with probability 1. If c = 1 then his
guess may be incorrect (i.e. he may guess “c = 0”). But this happens only if
there exist K ′ such that M0 = Decr(K ′, C) (for C = Encr(K, M1)). Clearly
the number of messages M0 such that M0 = Decr(K ′, C) is at most equal to
the number 2mFSS of the keys K ′. Thus (since the total number of messages is
2nFSS ≥ 2 · 2mFSS), the probability that for a random M0 there exists K ′ such
that M0 = Decr(K ′, C) is at most 0.5. Therefore, the total probability that
AFSS guesses c correctly is at least 0.5 · (1 + 0.5) = 0.75.

7 Note that in this case it would make sense to consider a slightly weaker model, where
the adversary does not receive K in Step 4 (and has to recover it using his unlimited
computing power). For simplicity we assume that the adversary receives K anyway.



Essentially the same adversary can be used for the proof of Point 2. The
only difference is that in order the determine if U ∈ L′ the (computationally-
bounded) adversary obtains K and checks if W (K) is a witness for U (where W
is the algorithm for retrieving the witness). ut

Lemma 2. Let Φ be an FSS scheme whose length nFSS of the ciphertext is
polynomial in the security parameter. Moreover, suppose that the output of the
algorithm Decr depends only on a polynomial number of the bits of the ciphertext.
If SAT is compressible, then Φ can be broken by a hybrid σ-adversary, where σ
is a polynomial.

Clearly, the statement of the lemma has any practical meaning only if we can
show candidates for FSS schemes whose length tFSS of the ciphertext is super-
polynomial in k (and the other parameters are polynomial in k). Such a candidate
can, e.g., be the scheme ΦG

c2 that we will construct Sect. 6.3. The scheme ΦG
c2 will

be constructed from a BSM-secure function f , and the length of the ciphertext
will be equal to tBSM + nBSM (where tBSM is the length of the randomizer, and
nBSM is the length of the plaintext). Therefore, it is enough to show a BSM-
secure function with a superpolynomial length of the randomizer. An example of
such a function is the function of [15] (for an appropriate choice of the parame-
ters). Observe that Lemma 2 implies that if ΦG

c2 is secure against an adversary
with memory of a polynomial size (assuming that one-way functions exits, say),
then SAT is incompressible.

Proof (of Lemma 2, sketch). We will show that if SAT is compressible, then LΦ

is compressible. By Lemma 1 this will suffice. It is enough to show a polynomial-
time algorithm, that given an input (M,C) produces a Boolean formula φM,C(x1,
. . . , xq) (where x1, . . . , xq are free variables) such that: (1) φM,C is satisfiable if
and only if (M,C) ∈ LΦ, and (2) the number q of the free variables is polynomial
in K and log |(M,C)|.8 Such a formula can be constructed in essentially the same
way as the formula in the proof of Lemma 2.14 of [16]. The details appear in
[13]. ut

Algorithm Encr Has to be Randomized Further exploring the analogies
between the theory of [16] and FSS, we show how the method developed in [16]
can be used to prove that the algorithm Encr has to be randomized. This in
particular means that algorithm Encr cannot use part of its own key K as a
seed for a PRG and obtain the necessary randomness this way. Intuitively, it is
quite obvious. Here we give a formal proof.

Observation 1 Any FSS scheme with deterministic encryption can be broken
by a computational σ-adversary where σ(k) = k.

Proof (sketch). This method is taken from [16] (Claim 2.3). The adversary selects
a random hash function H : {0, 1}tFSS(k) → {0, 1}k from a family of pairwise-
independent hash functions. Then, he chooses two arbitrary distinct messages
8 In [16] this is called a W-reduction.



M0 and M1. When he obtains C = Encr(K, M i) he computes U = H(C) and
retrieves it. Later (when he receives K), he can test if i = 0 or i = 1 by finding
i for which

H(Encr(K, M i) = U). (1)

By the pairwise independence of H the probability that 1 holds for both i = 0
and i = 1 is equal to 2−k, and hence it is negligible. ut

Clearly, the statement of the lemma holds also for the FSS schemes that are
allowed to have a random input r of a logarithmic length (i.e. |r| = log k). This
is because in this case a polynomial-time adversary can simply test if (1) holds
by examining all possible random inputs r ∈ {0, 1}log(k).

6 Construction of FSS Schemes

In this section we construct an IT-secure FSS scheme ΦIT (Sect. 6.2) and an FSS
scheme Φc1 (Sect. 6.1), that is computationally secure, assuming that one-way
functions exist. The advantage of Φc1 is that it allows to encrypt messages that
are much longer than the key (which, by Shannon Theorem, cannot be the case
if the IT security is required).

The main drawback of the scheme Φc1 is that it can be trivially broken in the
hybrid model. A natural question to ask is whether there exists an FSS scheme
that is secure in the hybrid model. We propose a construction of an FSS scheme
ΦG

c2 (from a pseudorandom generator G) about which we conjecture that it is
secure in the hybrid model. We are able to prove neither the hybrid nor even the
computational security of ΦG

c2 from the assumption that G is a computationally-
secure PRG. We argue about the security of ΦG

c2 in a non-standard way (see
Sect. 6.3). Our results are summarized in the following table:

scheme IT-security hybrid security computational security

ΦIT secure secure secure

ΦG
c2 not secure conjectured secure conjectured secure

Φc1 not secure not secure secure if one-way functions exist

In our constructions we will use a function f that is σ-secure in the BSM. Let
us now fix such a function (one could take e.g. the function of [15], or any other
function that was proven secure in the BSM), and let mBSM, nBSM and tBSM be
the parameters defined in Sect. 3.

6.1 Computationally-Secure FSS

Let (E,D) be a symmetric encryption scheme with the parameters msym, nsym

and lsym defined as in Sect. 3. In this section we construct a computationally-
secure FSS scheme Φc1 = (Encrc1,Decrc1). Fix some security parameter k. The
key of Φc1 is interpreted as a pair (K, W ), where K ∈ {0, 1}mBSM is the initial
key of f and W ∈ {0, 1}nBSM . Hence, the length mc1 of the key of Φc1 is equal
to mBSM + nBSM. We also assume that the length nBSM of the string derived



by the BSM function f is equal to the length of the key for the encryption
scheme (E,D). The length nc1 of the plaintext is equal to the length nsym of the
plaintext of (E,D). The length tc1 of the ciphertext is equal to tBSM + lsym.

Encrc1((K, W ),M)

1. Generate a random string R ∈ {0, 1}tBSM .
2. Let K ′ := f(K, R)⊕W .
3. Output C = (R,E(K ′,M)).

Decrc1((K, W ), C)

1. Parse C as (R,X).
2. Let K ′ := f(K, R)⊕W .
3. Output D(K ′, X).

Lemma 3. If f is σ-secure in the BSM and (E,D) is a computationally-secure
symmetric encryption scheme, then Φc1 is a σ-computationally-secure FSS sche-
me.

Proof. Let Acomp be an adversary that for a security parameter k breaks Φc1

with an advantage ε = ε(k). We are going to construct adversaries: ABSM and
Aenc, such that either ABSM breaks the BSM scheme f (using memory of size
σ(k)), or Aenc breaks the encryption scheme (E,D). The running time of these
adversaries will be polynomial in the running time of Acomp. Let εBSM denote the
advantage of ABSM in breaking f , and let εenc denote the advantage of Aenc in
breaking (E,D). The adversary ABSM simulates the adversary Acomp as follows.

ABSM

1. StartAcomp and pass the security parameter 1k toAcomp. Obtain fromAcomp

the messages M0 and M1.
2. During Phase 1 of the distinguishing game (see Sect. 3) do the following.

Input the randomizer R ∈ {0, 1}tBSM . Select a random bit c ∈ {0, 1} and
a random string K ′ ∈ {0, 1}nBSM . Send (R,E(K ′,M c)) to Acomp. Store in
your memory the value U ∈ {0, 1}σ(k) that Acomp stores.

3. In Phase 2 receive K and X̂, compute W = X̂ ⊕ K ′ and pass (K, W ) to
Acomp. If Acomp guesses c correctly, then output “b = 0” (i.e. guess that
X̂ = f(K, R)). Otherwise output “b = 1” (i.e. guess that X̂ is random).

The adversary Aenc simulates the adversary Acomp in the following way.

Aenc

1. StartAcomp and pass the security parameter 1k toAcomp. Obtain fromAcomp

the messages M0 and M1. Output them.
2. Select randomly R ∈ {0, 1}tBSM ,K ∈ {0, 1}mBSM and W ∈ {0, 1}nBSM . When

you receive C (recall that C = E(K ′,M c), for a random K ′ and c, and the
goal of Aenc is to guess c), pass (R,C) to Acomp.

3. Pass (K, W ) to Acomp. Output the bit c that Acomp outputs.

Let us now look at the adversaryABSM defined above. If b = 0 then X̂ = f(K, R),
and hence K ′ = f(K, R) ⊕ W . Therefore in this case ABSM simply simulated
the normal execution of Acomp against the FSS scheme Φf

c1 with the challenge
bit c. Thus, in this case Acomp guesses c correctly with probability 0.5 + ε.



If b = 1 then K ′ is independent of the variable (R,K,W ). Hence, ABSM

simulated Acomp in exactly the same way as Aenc. Thus, the probability that
Acomp guesses c correctly is 0.5 + εenc. Therefore, the probability 0.5 + εBSM,
that ABSM guesses b correctly is equal to

1
2 · P (ABSM outputs “b = 0”|b = 0) + 1

2 · P (ABSM outputs “b = 1”|b = 1)
= (0.5 + ε)/2 + (0.5− εenc)/2 = (1 + ε− εenc)/2

Therefore, we get that ε = εBSM + εenc. Thus, if ε is non-negligible, then one
of εBSM and εenc has to be non-negligible. Therefore, if Φc1 is not secure, then
either f of (E,D) is not secure either. ut

Since the existence of one-way functions implies the existence of symmetric en-
cryption schemes [18] (where the length of the plaintext is an arbitrary polyno-
mial of the security parameter), we get the following.

Theorem 1. If one way-functions exist, then there exists a σ-computationally-
secure FSS scheme with parameters σ, mc1 and tc1 as above, where the length nc1

of the encrypted message is an arbitrary polynomial of the security parameter.

6.2 IT-Secure FSS

The IT-secure FSS scheme ΦIT can be constructed by substituting (in the con-
struction from Sect. 6.1) the computationally-secure encryption scheme (E,D)
with the one-time pad encryption. Clearly, in this case the length nIT of the
plaintext is equal to nBSM, the length mIT of the key is equal to mBSM + nBSM

(and hence it is greater than the length of the plaintext) and the length tFSS of
the ciphertext is equal to tBSM + nBSM. The security of this construction can
be proven by essentially repeating the proof of Lemma 3. Therefore, get the
following.

Theorem 2. There exists a σ-IT-secure FSS scheme with the parameters σ,
mIT, nIT and tIT as above.

6.3 FSS Scheme With a Conjectured Hybrid Security

It is easy to see that the scheme Φc1 can be broken in the hybrid model: the
adversary can simply retrieve the second component (E(K ′,M)) of the cipher-
text, and then break it by the exhaustive key-search. In this section we show the
construction of an FSS scheme ΦG

c2 = (Encrc2,Decrc2), about which we conjec-
ture that it is secure in the hybrid model. The components for our construction
are: a pseudorandom generator G (see Sect. 3), and the σ-IT-secure scheme from
Sect. 6.2. The problem with this construction is that we are not able to base
(even the computational) security of ΦG

c2 on any standard assumption. We argue
about the security of ΦG

c2 in the following way. Informally speaking, we show that
if we are given a computational adversary that breaks ΦG

c2 (for some PRG G)
then one can construct an ioOT protocol (from this G). Although this does not



guarantee that ΦG
c2 is secure for any choice of G, it is an indication that for a ΦG

c2

is secure if G is some “standard” PRG (see discussion at the end of this section).
In case of the hybrid security we have a weaker security argument: we show that
if one can break ΦG

c2 in the computational model, then one can construct from
G an ioOT protocol with an inefficient algorithm for the Receiver (see Sect. 3).

Fix some security parameter k. Let G be a PRG with some short seed of
length mPRG. The length mc2 of the key of ΦG

c2 is equal to mPRG. The length
nc2 of the encrypted message is equal to nIT and the length tc2 of the cipher-
text is equal to tIT. The Encrc2 and Decrc2 (for a key K ∈ {0, 1}mc2 , and a
plaintext M ∈ {0, 1}nc2) are defined as: Encrc2(K, M) := EncrIT(G(K),M) and
Decrc2(K, C) := DecrIT(G(K), C). Clearly, Decrc2(K, Encrc2(K, M)) = M , so
it remains to argue about the security.

Computational Security of ΦG
c2 We start with considering the computa-

tional security of ΦG
c2. Suppose a polynomial-time σ-adversary Acomp breaks

(Encrc2,Decrc2) with a non-negligible advantage ε(k) and G is a pseudorandom
generator. We are going to construct an ioOT protocol (with an unconditional
privacy of the Sender and a computational privacy of the Receiver). Before going
to the construction let us present the intuition behind it. In [16] (Theorem 3.1) it
is shown that if there exists a witness-retrievable compression algorithm for SAT
then the existence of one-way functions implies existence of Oblivious Transfer.
This is proven by (1) constructing a PIR protocol from a compression algorithm
for SAT and then (2) using the result of [8] that PIR implies Oblivious Transfer.
We proceed in a similar way, in some sense combining the proofs (1) and (2)
into one. This is possible since, as we remarked before, an adversary that breaks
an FSS scheme can be viewed as an compression algorithm (see Sect. 5). Note
that in our proof we do not construct PIR from Acomp (which may be quite hard
in general). Note also that our method has some similarities with the one used
recently in [11].

The details of the construction are as follows. We are going to construct an
Oblivious Transfer protocol OT whose correctness holds only with probability
non-negligibly greater than 0.5 (i.e. the probability that the Receiver outputs
bc after the execution of OT(b; c0, c1; 1k) will be non-negligibly greater than 0.5,
for any choice of c0, c1 and b). This suffices to construct an ioOT protocol, since
by repeating the protocol polynomial number of times, the parties can reduce
the error probability to negligible, for infinitely many values of the security
parameter (the details can be found in [13]).

The main idea is that the Sender and the Receiver will simultaneously sim-
ulate the execution of Acomp, with the Sender holding the ciphertext C and the
Receiver receiving just U . The protocol goes as follows.

OT(c; b0, b1; 1k)

1. The Receiver selects a random seed K ∈ {0, 1}mPRG . Let Kc := G(K) and let
K1−c ∈ {0, 1}mFSS be random. The Receiver sends (K0,K1) to the Sender.

2. The Sender starts the adversary Acomp and passes the security parameter
1k to him. Let M0 and M1 be the messages produced by Acomp.



The Sender selects random bits d, x ∈ {0, 1} and computes C = Encrc2(Kd,
M bd⊕x)). 9 He passes this value to (his simulated copy of) Acomp. Let U be
the value that Acomp stores in his memory.
The Sender sends (U, d, x) and the random input of Acomp to the Receiver.

3. If d 6= c then the Receiver outputs a random bit.10 Otherwise the Receiver
simulates the execution of Acomp with the random input that he got from the
Sender. The Receiver sends U and K to (his copy of) the adversary Acomp.
Let B be the output of Acomp. The Receiver outputs B ⊕ x.

Lemma 4. The protocol OT protects the privacy of the Receiver.

Proof (sketch). This is quite straightforward, as the Sender that distinguishes c
from 1 − c should also be able to distinguish a uniformly random string from
a string produced by a PRG G. More formally, one can construct an adver-
sary that breaks the PRG G by simulating the algorithm that distinguishes
OT(c; b0, b1, 1k) from OT(1− c; b0, b1; 1k). The details appear in [13]. ut

Lemma 5. The protocol OT protects the privacy of the Sender.

Proof (sketch). We need to show that the Receiver has negligible advantage
in guessing b1−c. Clearly, the only value from which the Receiver could learn
anything about b1−c is U . If d = c then this value is independent of b1−c,
so we are done. Otherwise (when d 6= c), U is a function of the ciphertext
C = EncrIT(K1−c,M

bd⊕x) (where K1−c is uniformly random). To get some
non-negligible information about b1−c, the Receiver would need to distinguish
with non-negligible advantage between M0 and M1 (knowing U and K1−c).
This, however, would contradict the security of ΦIT. ut

It is easy to see that the privacy of the Sender is actually protected uncon-
ditionally.

Lemma 6. The OT protocol is an Oblivious Transfer protocol whose correctness
holds with probability non-negligibly greater than 0.5.

Proof. The privacy was proven in Lemmas 4 and 5. It suffices to show the cor-
rectness. Fix some security parameter 1k. Let ε = ε(k) be the advantage of
Acomp. If d 6= c (which happens with probability 0.5) the probability that R
outputs a correct value is clearly 0.5.

Otherwise (if d = c) observe that the Receiver and the Sender simply simu-

lated the execution of Acomp against an oracle Ω
ΦG

c2
FSS(bd⊕x) (see Sect. 4), where

bd⊕ x ∈ {0, 1} is random. Therefore, the probability that Acomp (and hence the
Receiver) outputs B = bc is 0.5 + ε(k). Thus, the total probability that Acomp

outputs bc is equal to 1
2 ·

1
2 + 0.5+ε

2 = 1
2 + ε

2 , which is clearly non-negligible. ut
9 The role of x is to guarantee that Mbd⊕x is chosen uniformly at random from the

set
{
M0, M1

}
, what is needed in the proof of Lemma 6.

10 This is because in this case the Receiver has no significant information about bc.
Alternatively, we could instruct him to output some default value ⊥.



Hybrid Security of ΦG
c2 One can essentially repeat the same construction for

the hybrid adversary Ahybr (instead of the computational adversary Acomp). The
only difference is that, since we allow the adversary Ahybr (that attacks ΦG

c2) to
have infinite computing power (in the final stage), then we need to assume that
also the Receiver has infinite computing power (as otherwise he would not be
able to simulate Ahybr in Step 3). Thus, the resulting protocol has an inefficient
algorithm for the Receiver (see Sect. 3).

Discussion Let us start with discussing the meaning of the construction of
OT from a computational adversary Acomp. First, recall that constructing an
OT protocol from a PRG (or, equivalently, from a one-way function) is a major
open problem in cryptography. It was shown in [19] that such a construction
cannot be done in black-box way (observe that our construction is non-black-
box, as the adversary Acomp is allowed to use the internal structure of G) and
even constructing an ioOT from a one-way function would be a breakthrough.

A natural question is: which pseudorandom generators G are safe for the use
in the construction of Ahybr. A highly informal answer is: “those whose security
does not imply Oblivious Transfer”. We leave formalizing this property as an
open problem. Note that in principle there can exist (probably very artificial)
pseudorandom generators which cannot be safely used in Φc2. In the next section
we present an example that shows that something like this can happen if one
replaces a PRG in ΦG

c2 with a slightly more general primitive.
Observe that one can also view our result as a win-win situation: either we

win because we have FSS or we win because we have an ioOT from a one-way
function. (This is how a result of a similar nature is interpreted in [11].) Inter-
estingly, a similar reasoning was recently used also in [26] (using the language
of [26] we could say that ΦG

c2 is secure in Minicrypt).
The argument for the security of ΦG

c2 in the hybrid model is much weaker,
since we used a non-standard version on the OT protocol. Observe that (as
argued in Sect. 5) showing the security of ΦG

c2 implies that SAT is incompressible
(which may indicate that such a proof is difficult to find). In general, since there
are no known techniques of basing incompressibility of NP-instances on standard
assumptions, we conjecture that basing hybrid security of FSS schemes on such
assumptions may also be hard.

Intuitively, the scheme ΦG
c2 should be secure because a computationally-

limited adversary that has no (computational) information on G(K) (when he
has access to R) should not be stronger than a computationally-unlimited ad-
versary that attacks the scheme ΦIT (where the only difference is that instead
of G(K) we use a truly random key). This is a similar reasoning to the one
that was used to argue about the security of the Hybrid BSM (see Sect. 3). In
the next section we argue that in certain cases this intuition may be misleading
(by showing an example that is similar to the one shown for the Hybrid BSM
in [14]).

A Scheme ΦG,α
c2 A natural question to ask is whether there exist pseudorandom

generators that cannot be safely used in ΦG
c2. We leave this as an open problem.



What we can show, however, is that there exists a modification of the scheme
ΦG

c2 (denote it ΦG,α
c2 = (EncrG,α

c2 ,DecrG,α
c2 ), where α is defined below) that has

similar properties to Encrc2 (i.e. if one can break it, then one can construct an
ioOT protocol), but for some particular choice of G and α it can be broken. This
example shows that basing the security of ΦG

c2 on some standard assumptions
about G may be hard. Because of the lack of space we present just a sketch of
the construction. We concentrate here on the computational security; however,
the same example works for the hybrid security. In the construction of α we will
use a PIR scheme (U ,D) (see Sect. 3). The nature of this construction is similar
to the one of [14] (see also [17]).

Let ΦIT = (EncrIT,DecrIT) be the σ(k)-IT-secure scheme from Sect. 6.2.
The key of the scheme ΦG,α

c2 has the form K ′ = (K, ρ), where K is a seed
for a PRG G, and ρ is a random input of the PIR user U . Define Φ′c2 as
EncrG,α

c2 ((K, ρ),M) := (EncrIT(G(K),M), α(K, ρ)), where α is defined below.
Recall that the first component of EncrIT(G(K),M) is a randomizer R, and
the knowledge of a small number of bits of R (namely those that are used to
compute the value of f) suffices to decrypt M (if the key G(K) and the rest of
the ciphertext are known). Let I := i1, . . . , iq be the indices of those bits. We
can assume that q is much smaller than σ(k).

Suppose that we run the user U (with the input I and the random input ρ).
Let Q(I) be the query that U generates. We set α(K ′) := Q(I). Clearly, (by
the security of PIR) the knowledge of α(K ′) does not help a computationally-
bounded adversary in distinguishing G(K) from a random string. Hence, if there
exists a computational σ-adversary Acomp that breaks ΦG,α

c2 , then one can con-
struct an OT protocol (in essentially the same way as we constructed the OT
protocol).

Now, a computational σ-adversary can perform the following attack. He
treats R as a database and retrieves the reply U = R(Q(I), R) (by the proper-
ties of PIR we can assume that the length of this reply is much shorter than the
length of the ciphertext). Later, when the adversary learns ρ, he can simulate the
user (because K ′ includes the random input of the user), and use U = R(Q(I), x)
to compute Ri1 , . . . , Riq

. Hence, the adversary can compute M .

7 Sequential Composability

Here we argue that FSS is sequentially composable in the following sense. Take
some σ-computationally-secure scheme FSS Φ = (Encr,Decr), and let s = σ(k)
(for some fixed k). Consider the following procedure. Suppose we start with a
key K0 (that is stored on some machine M0) and we encrypt (using FSS) some
other key, K1, with K0 (and we store the ciphertext C1 = Encr(K0,K1) on a
machineM1, say). Then, we generate another key K2 and encrypt if with K1 (we
store the ciphertext C2 = Encr(K1,K2) on another machine M2), and so on (a
ciphertext Ci is stored on a machine Mi). At the end we encrypt some message
M with the key Kw−1 (let Cw = Encr(Kw,M) be the ciphertext). We show that
this procedure is safe in the following sense. Suppose an adversary can break in,



and take a temporary control over each of these machines (to simplify the model,
suppose that the adversary can control one machine at a time, and he cannot take
control over the same machine twice). Once the adversary broke into a machine
Mi, he can perform any computation on Ci and retrieve some value Ui ∈ {0, 1}s.
Let (Mi1 , . . . ,Miw+1) be the order in which the adversary was breaking into the
machines. We assume that the adversary is allowed to break into the machines in
an arbitrary order, except that the order (M0, . . . ,Mw) is not allowed. We say
that such a scheme is computationally secure if such an adversary has negligible
advantage in determining whether M = M0 or M = M1 (for some chosen by
him messages M0 and M1). It can be shown that this scheme is computationally
secure, assuming that the scheme Φ is computationally secure. (Observe that if
w = 1 then the security of this scheme is equivalent to the security of Φ.) The
same holds for the IT and the hybrid security. Because of the lack of space, the
formal definition of the sequential composition and the security proofs are given
in [13].

8 Human-Memorized Passwords

In this section we show how FSS can be used if the data is protected by a
password that is memorized by a human (see Sect. 1.1, Point 2). The main
problem here is how to model the fact that the adversary is not able to perform
a dictionary attack on the machine of the victim, but he can do it on his own
machine. Note that when defining FSS we did not differentiate between the
computational power of the adversary in different stages of the attack (except
of the hybrid model where we simply assumed that at a certain moment the
adversary gets an unlimited computing power). We will make use of a Random
Oracle Assumption [2]. Such an oracle ΩH can be viewed as a black-box which
contains a function H chosen uniformly at random from a set of functions of a
type {0, 1}p → {0, 1}mFSS . Normally one assumes that every party in the protocol
(including the adversary) has access to ΩH . Here (to model the fact that the
adversary cannot perform the dictionary attack on the victim’s machine) we
assume that the adversary can get access to ΩH only after he lost access to C.

We construct an FSS scheme (Encrpass ,Decrpass) that is secure if the secret
key is a human-memorized password. Let (Encr,Decr) be an computationally
secure FSS scheme with a key of length mFSS. Let π ∈ {0, 1}p be a password
of the user. Define Encrpass(π,M) := Encr(H(π),M) and Decrpass(π,M) :=
Decr(H(π),M). (Observe that in this case our protocol has actually many sim-
ilarities with the protocol of [9].) One can easily prove that if (Encr,Decr) is
σ-computationally-secure then also (Encrpass ,Decrpass) is secure against an ad-
versary that can retrieve σ(k) bits (in the model described above).

9 Open Problems

An interesting open problem is to determine if all computationally-secure pseudo-
random generators G can be safely used in the construction of ΦG

c2. If it turns out



that the answer is “no” (e.g. there exists examples similar to those that exists
for the scheme ΦG,α

c2 ), then another open problem is to propose new definitions
of computational indistinguishability, that would capture the fact that G can be
safely used in the scheme Φc2. Clearly, this questions may have different answers
for the computational and for the hybrid security.

The security argument for the hybrid security of ΦG
c2 is rather weak (since we

use the non-standard notion of OT with inefficient algorithm for the Receiver).
A natural open problem is to strengthen this argument, or to find alternative
constructions.

It would also be interesting to examine the possibility of using the theory
of All-or-Nothing transforms. Recall (see also Sect. 3) that the main difference
between our model and the model considered in that theory is that they do not
allow the adversary to perform arbitrary computations on the ciphertext. It may
well be, however, that some of their constructions are actually secure also in our
model (at least in the computational case). It is an open problem to prove it
(if proving it using the standard assumptions is hard, then maybe one could at
least use an argument similar to the one used in Sect. 6.3).

Note also that we did not provide any concrete examples of the parameters
in our schemes. Doing it remains an open task.

Acknowledgments I would like to thank Danny Harnik for pointing to me
an error in the previous version of this paper, and suggesting to me how to
repair it. I am also grateful to Krzysztof Pietrzak and Bartosz Przydatek for
helpful discussions, and to the anonymous CRYPTO reviewers, for lots of useful
comments.

References

1. Y. Aumann, Y. Z. Ding, and M. O. Rabin. Everlasting security in the Bounded
Storage Model. IEEE Transactions on Information Theory, 48(6):1668–1680, 2002.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

3. C. Cachin, C. Crepeau, and J. Marcil. Oblivious transfer with a memory-bounded
receiver. In 39th Annual Symposium on Foundations of Computer Science, pages
493–502, 1998.

4. C. Cachin and U. Maurer. Unconditional security against memory-bounded ad-
versaries. In CRYPTO’97, volume 1294 of LNCS, pages 292–306. Springer, 1997.

5. D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. Lipton, and S. Walfish. Intrusion-
resilient authentication in the Limited Communication Model. Cryptology ePrint
Archive, Report 2005/409, 2005. http://eprint.iacr.org/.

6. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private Information Re-
trieval. Journal of the ACM, 45(6):965–981, 1998.

7. G. Di Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password protocols
in the Bounded Retrieval Model. In Theory of Cryptography Conference’06, volume
3876 of LNCS, pages 225–244. Springer, 2006.



8. G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single Database Private Informa-
tion Retrieval implies Oblivious Transfer. In EUROCRYPT 2000, pages 122–138,
2000.

9. D. Dagon, W. Lee, and R. J. Lipton. Protecting secret data from insider attacks.
In Financial Cryptography and Data Security, pages 16–30, 2005.

10. Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant-Round Oblivious
Transfer in the Bounded Storage Model. In Theory of Cryptography Conference,
volume 2951 of LNCS, pages 446–472. Springer, 2004.

11. B. Dubrov and Y. Ishai. On the randomness complexity of efficient sampling. In
ACM Symposium on Theory of Computing, pages 711–720, 2006.

12. S. Dziembowski. Intrusion-resilience via the Bounded-Storage Model. In Theory of
Cryptography Conference, volume 3876 of LNCS, pages 207–224. Springer, 2006.

13. S. Dziembowski. On Forward-Secure Storage. Cryptology ePrint Archive, 2006.
http://eprint.iacr.org.

14. S. Dziembowski and U. Maurer. On generating the initial key in the Bounded-
Storage Model. In EUROCRYPT ’04, volume 3027 of LNCS, pages 126–137.
Springer, 2004.

15. S. Dziembowski and U. Maurer. Optimal randomizer efficiency in the Bounded-
Storage Model. Journal of Cryptology, 17(1):5–26, January 2004.

16. D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic
applications. Electronic Colloquium on Computational Complexity, Report TR06-
022, 2006.

17. D. Harnik and M. Naor. On everlasting security in the Hybrid Bounded Storage
Model, July 2006. accepted to the 33rd International Colloquium on Automata,
Languages and Programming.

18. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

19. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In ACM Symposium on Theory of Computing, pages 44–61, 1989.

20. J. Kelsey and B. Schneier. Authenticating secure tokens using slow memory access.
In USENIX Workshop on Smart Card Technology, pages 101–106, 1999.

21. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
Computationally-Private Information Retrieval. In 38th Annual Symposium on
Foundations of Computer Science, pages 364–373, 1997.

22. E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations are sufficient
for non-trivial single-server Private Information Retrieval. In EUROCRYPT, pages
104–121, 2000.

23. C.-J. Lu. Encryption against storage-bounded adversaries from on-line strong
extractors. Journal of Cryptology, 17(1):27–42, January 2004.

24. U. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher.
Journal of Cryptology, 5(1):53–66, 1992.

25. T. Moran, R. Shaltiel, and A. Ta-Shma. Non-interactive timestamping in the
Bounded Storage Model. In CRYPTO 2004, volume 3152 of LNCS, pages 460–
476. Springer, 2004.

26. K. Pietrzak. Composition implies adaptive security in Minicrypt, May 2006. ac-
cepted to EUROCRYPT 2006.

27. R. L. Rivest. All-or-nothing encryption and the package transform. In Fast Soft-
ware Encryption, volume 1267 of LNCS, pages 210–218. Springer, 1997.

28. S. P. Vadhan. Constructing locally computable extractors and cryptosystems in
the Bounded-Storage Model. Journal of Cryptology, 17(1):43–77, January 2004.


