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Abstract. In this paper we formalize a general model of cryptana-
lytic time/memory tradeoffs for the inversion of a random function f :
{0, 1, . . . , N − 1} 7→ {0, 1, . . . , N − 1}. The model contains all the known
tradeoff techniques as special cases. It is based on a new notion of state-
ful random graphs. The evolution of a path in the stateful random graph
depends on a hidden state such as the color in the Rainbow scheme or the
table number in the classical Hellman scheme. We prove an upper bound
on the number of images y = f(x) for which f can be inverted, and de-
rive from it a lower bound on the number of hidden states. These bounds
hold for an overwhelming majority of the functions f , and their proofs are
based on a rigorous combinatorial analysis. With some additional natu-
ral assumptions on the behavior of the online phase of the scheme, we

prove a lower bound on its worst-case time complexity T = Ω( N2

M2 ln N
),

where M is the memory complexity. Finally, we describe new rainbow-
based time/memory/data tradeoffs, and a new method for improving the
time complexity of the online phase (by a small factor) by performing a
deeper analysis during preprocessing.
Keywords: Time/memory tradeoff, time/memory/data tradeoff, rigor-
ous, lower bound, hidden state, stateful random graph, Hellman, Rain-
bow, Cryptanalysis.

1 Introduction

In this paper we are interested in generic (“black-box”) schemes for the inversion
of one-way functions such as f(x) = Ex(0), where E is any encryption algorithm,
x is the key, and 0 is the fixed plaintext zero. For the sake of simplicity, we assume
that both x and f(x) are chosen from the set of N values {0, 1, . . . , N − 1}.

The simplest example of a generic scheme is exhaustive search, in which a
pre-image of f(x) is found by trying all the possible pre-images x′, and checking
whether f(x′) = f(x). The worst-case time complexity T (measured by the
number of applications of f) of exhaustive search is N , and the space complexity
M is negligible. Another extreme scheme is holding a huge table with all the
images (in increasing order), and for each image storing one of its pre-images.
This method requires a preprocessing phase whose time and space complexities
are about N , followed by an online inversion phase whose running time T is



negligible and space complexity M is about N . Cryptanalytic time/memory
tradeoffs deal with finding a compromise between these extreme schemes, in
the form of a tradeoff between the time and memory complexities of the online
phase (assuming that the preprocessing phase comes for free). Cryptanalytic
time/memory/data tradeoffs are a variant which accepts D inversion problems
and has to be successful in at least one of them. This scenario typically arises in
stream ciphers, when it suffices to invert the function that maps an internal state
to the output at one point to break the cipher. However, the scenario also arises
in block ciphers when the attacker needs to recover one key out of D different
encryptions with different keys of the same message [4, 5]. Note that for D = 1
the problem degenerates to the time/memory tradeoff discussed above.

1.1 Previous Work

The first and most famous cryptanalytic time/memory tradeoff was suggested
by Hellman in 1980 [11]. His tradeoff requires a preprocessing phase with a time
complexity of about N and allows a tradeoff curve of M

√
T = N . An interesting

point on this curve is M = T = N2/3. Since only values of T ≤ N are interesting,
this curve is restricted to M ≥

√
N . Hellman’s scheme consists of several tables,

where each table covers only a small fraction of the possible values of f(x) us-
ing chains of repeated applications of f . Hellman rigorously calculated a lower
bound on the expected coverage of images by a single table in his scheme. How-
ever, Hellman’s analysis of the coverage of images by the full scheme was highly
heuristic, and in particular it made the formally unjustifiable assumption that
many simple variants of f are independent of each other. Under this analysis,
the success rate of Hellman’s tradeoff for a random f is about 55%, which was
verified using computer simulations. Shamir and Spencer proved in a rigorous
way (in an unpublished manuscript from 1981) that for an overwhelming major-
ity of the functions f , even the best Hellman table (with chains of unbounded
length created from the best collection of start points, which are chosen using
an unlimited preprocessing phase) has essentially the same coverage of images
as a random Hellman table (up to a multiplicative logarithmic factor). However,
they could not rigorously deal with the full (multi-table) Hellman scheme.

In 1982, Rivest noted that in practice, the time complexity is dominated by
the number of disk accesses (random access to disk can be many orders of mag-
nitude slower than the evaluation of f). He suggested to use distinguished points
to reduce the number of disk accesses to about

√
T . The idea of distinguished

points was described in detail and analyzed in 1998 by Borst, Preneel, and Van-
dewalle [8], and by Standaert, Rouvroy, Quisquater, and Legat in 2002 [15].

In 1996, Kusuda and Matsumoto [13] described how to find an optimal choice
of the tradeoff parameters in order to find the optimal cost of an inversion ma-
chine. Kim and Matsumoto [12] showed in 1999 how to increase the precompu-
tation time to allow a slightly higher success probability. In 2000, Biryukov and
Shamir [6] generalized time/memory tradeoffs to time/memory/data tradeoffs,
and discussed specific applications of these tradeoffs to stream ciphers.

A new time/memory tradeoff scheme was suggested by Oechslin [14] in 2003.
It claims to save a factor 2 in the worst-case time complexity compared to



Hellman’s original scheme (see Section 6.1 for a discussion of this point). Another
interesting work on time/memory tradeoffs was performed by Fiat and Naor [9,
10] in 1991. They introduce a rigorous time/memory tradeoff for inverting any
function. Their tradeoff curve is less favorable compared to Hellman’s tradeoff,
but it can be used to invert any function rather than a random function.

A question which naturally arises is what is the best tradeoff curve possible
for cryptanalytic time/memory tradeoffs? Yao [16] showed that T = Ω(N log N

M )
is a lower bound on the time complexity, regardless of the structure of the algo-
rithm, where M is measured in bits. This bound is essentially tight in case f is
a single-cycle permutation.3 However, the question remains open for functions
which are not single-cycle permutations. Can there be a better cryptanalytic
time/memory tradeoff than what is known today?

1.2 The Contribution of This Paper

In this paper we formalize a general model of cryptanalytic time/memory trade-
offs, which includes all the known schemes (and many new schemes). In this
model, the preprocessing phase is used to create a matrix whose rows are long
chains (where each link of a chain includes one oracle access to f), but only the
start points and end points of the chains are stored in a table, which is passed
to the online phase (the chains in the matrix need not be of the same length).

The main new concept in our model is that of a hidden state, which can affect
the evolution of a chain. Typical examples of hidden states are the table number
in Hellman’s scheme and the color in a Rainbow scheme. The hidden state is an
important ingredient of time/memory tradeoffs. Without it, the chains are paths
in a single random graph, and the number of images that these chains can cover
is extremely small (as shown heuristically in [11] and rigorously by Shamir and
Spencer). We observe that in existing schemes, almost all of the online running
time is spent on discovering the value of the hidden state (hence the name
hidden state), which means that it is advisable to keep the number of hidden
states minimal. Once the correct hidden state is found, the online phase needs
to spend only about a square root of the running time to complete the inversion.

The main effect of the hidden state is that it increases the number of nodes
in the graph from N to NS, where S is the number of values that the hidden
state can assume. The new larger graph is called the stateful random graph, and
the chains we create are paths in this graph. Two nodes in the stateful random
graph defined by a particular f are connected by an edge:

yi si −→ yi+1 si+1 ,

if (yi+1, si+1) is the (unique) successor of (yi, si) defined by a deterministic tran-
sition function, where yi and yi+1 are the outputs of the f function in the two
consecutive steps, and si, si+1 are the respective values of the hidden state dur-
ing the creation of yi and yi+1 (see Figure 1). The evolution of the y values
along a path in the stateful random graph is “somewhat random” since it is
3 In [11] and in the rest of this paper, M represents the number of start points, rather

than the number of bits used to represent them.



determined by the random function f applied to a possibly non-random input.
However, the evolution of the hidden state (si and si+1) can be totally controlled
by the designer of the scheme.

The larger number of nodes is what allows chains to cover a larger number
of images y, by reducing the probability of collisions. We rigorously prove that
for any time/memory scheme and for an overwhelming majority of the functions
f , the number of images that can be covered by any collection of M chains is
bounded from above by 2

√
SNM ln (SN), where M = Nα for any 0 < α < 1.

Intuitively it might seem that making S larger at the expense of N should cause
the coverage to be larger (as S can be made to behave more like a permutation).
Surprisingly, S and N play the same role in the bound. The product SN (which
is the number of nodes in the stateful random graph) remains unchanged if we
enlarge S at the expense of N or vice versa. Note that

√
SNM is about the cover-

age that is expected with the Hellman or Rainbow schemes, and thus even for the
best choice of start points and path lengths (found with unlimited preprocessing
time), there is only a small factor of at most 2

√
lnSN that can be gained in the

coverage. We use the above upper bound to derive a lower bound on the number
S of hidden states required to cover at least half of the images by the matrix.

Under some additional natural assumptions on the behavior of the online
phase, we give a lower bound on the worst-case time complexity:

T ≥ 1
1024 ln N

N2

M2
,

where the success probability is at least 1/2.4 Therefore, either there are no fun-
damentally better schemes, or their structure will have to violate our assump-
tions. Finally we show a similar lower bound for time/memory/data tradeoffs:

T ≥ 1
1024 ln N

N2

D2M2
.

1.3 Structure of the Paper
The model is formally defined in Section 2, and in Section 3 we prove the rigorous
upper bound on the coverage of M chains in a stateful random graph. Section 4
uses this bound to derive a lower bound on the number of hidden states. The
lower bound on the time complexity (under additional assumptions) is given in
Section 5. Additional observations and notes appear in Section 6, and the paper
is summarized in Section 7. Appendix A contains an extension of the bound of
Section 3 to a special case needed in Section 5. We refer the reader to [11, 14] for
the details of previous tradeoffs schemes, or see a summary in [3, Appendix A.3].

2 The Stateful Random Graph Model

The class of time/memory tradeoffs that we consider in this paper can be seen
as the following game: An adversary commits to a generic scheme with oracle
4 We use constants rather than big O notation to demonstrate that no huge constants

are involved; however, we do not claim that these constants are tight.



si

y2 f
xi

h

U

yiyi−1f
x1

h

U

y0 y1

s0 s1

f
x2

h

U
s2

· · ·

si−1

· · ·

Fig. 1. A Typical Chain — A Path in the Stateful Random Graph

accesses to a function f , which is supposed to invert f on most images y. Then,
the actual choice of f is revealed to the adversary, who is allowed to perform an
unbounded precomputation phase to construct the best collection of M chains.
The chains are not necessarily of the same length, and the collection of the M
chains is called the matrix. Then, during the online phase, a value y is given
to the adversary, who should find x such that f(x) = y using the scheme it
committed to. We are interested in the time/memory complexities of schemes
for which the algorithm succeeds to invert y with probability of at least 1/2 for
an overwhelming majority of random functions f .

In the model that we consider, we are generous to the adversary by not
counting the size of the memory that is needed to represent the scheme that
it has committed to. Having been generous, we cannot allow the adversary to
choose the scheme after f is revealed, as the adversary can use his knowledge
to avoid collisions during the chain creation processes, and thus cover almost all
the images using a single Hellman table.5

We do not impose any restrictions on the behavior of the preprocessing al-
gorithm, but we require that it performs all oracle accesses to f through a
sub-algorithm. When the preprocessing algorithm performs a series of oracle ac-
cesses to f , in which each oracle access can depend on the result of previous
oracle accesses in the series, it is required to use the sub-algorithm. We call such
a series of oracle accesses a chain. The hidden state is the internal state of the
sub-algorithm (without the input/output of f).

A typical chain of the sub-algorithm is depicted in Figure 1, where by U we
denote the function that updates the internal state of the sub-algorithm and
prepares the next input for f , and by h we denote the entire complex of U to-
gether with the oracle access to f (i.e., an application of h corresponds to a single
computation step of the sub-algorithm). We denote by si the hidden state which
accompanies the output yi of f in the sub-algorithm. The choice of U by the ad-
versary together with f defines the stateful random graph, and h can be seen as
the function that takes us from one node (yi−1, si−1) in the stateful random graph

5 In the auxiliary memory variant of the model, we can allow the scheme to depend
on an additional collection of M log2 N bits, which the adversary chooses during
the preprocessing. Thus, the adversary can customize his scheme to the specific
function f by giving it a free advice of limited size. This variant includes schemes
such as the one presented in [10]. Analysis (briefly given in Appendix A) shows that
this variant is stronger than the regular model only by a small constant factor, and
thus, we restrict our discussion to the regular model without loss of generality.



D. A Rainbow stateful random graph
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Fig. 2. Four Examples of Stateful Random Graphs

to the next node (yi, si). U is assumed to be deterministic (if a non-deterministic
U is desired, then the randomness can be given as part of the first hidden state
s0), and thus each node in the stateful random graph has an out-degree of 1.

Choosing U such that si = si−1+1 (mod N) and xi = si−1 creates a stateful
random graph that goes over all the possible images of f in a single-cycle (de-
picted in Figure 2.A), and thus represents exhaustive search (note that the yi−1

is ignored by U and thus all its N values with the same hidden state si−1 con-
verge to the same node (f(si−1), si−1+1)). Such a cycle is very easy to cover even
with a single path, but at the heavy price of using N hidden states. At the other
extreme, we can construct a stateful random graph (see Figure 2.B) that requires
a full lookup table to cover all images of f by choosing U as: if si−1 = 1 then
xi = yi−1 and si = 0, else xi = si = 0. In this function, each (yi−1, 1) is mapped
by h to (f(yi−1), 0), and all these values are mapped to the same node (f(0), 0).

As another example consider the mapping xi = yi−1 and si = g(si−1), where
g is some function. This mapping creates a stateful random graph which is the
direct product of the random graph induced by f , and the graph induced by g
(this graph is not shown in Figure 2). We can implement Hellman’s scheme by
setting xi = yi−1 + si (mod N) and si = si−1, where si represents the table
number to which the chain belongs. This stateful random graph (see Figure 2.C)
consists of S disconnected components, where each component is defined by
h and a single hidden state. Finally, we can implement a Rainbow scheme by
setting xi = yi−1 + si−1 (mod N) and si = si−1 + 1 (mod S), where S is the
number of colors in the scheme. This stateful random graph (see Figure 2.D)
looks like a layered graph with S columns and random connections between
adjacent columns (including wrap-around links).

The preprocessing algorithm can stop the sub-algorithm at any point, using
any strategy that may or may not depend on the value of the hidden states



and the results of the oracle accesses, and it can use unbounded amount of
additional space during its execution. For example, in Hellman’s original method,
the chain is stopped after t applications of f . Therefore, the internal state of the
preprocessing algorithm must contain a counter that counts the length of the
chain. However, the length of the chain does not affect the way the next link
is computed, and therefore this counter can be part of the internal state of
the preprocessing algorithm rather than the hidden state of the sub-algorithm.
As a result, only the table number has to be included in the hidden state of
Hellman’s scheme. In the Rainbow scheme, however, the current location in the
chain determines the way the next link is computed, and thus the index of the
link in the chain must be part of the hidden state. The two kinds of states affect
the development of chains in completely different ways: the hidden state can
actually affect the values in the chain (as U depends on the hidden state), while
any state which is not included in the hidden state can only stop the development
of the chain, but not affect its values. As shown later, the number of hidden states
strongly affects the success probability and the running time of the online phase.

The preprocessing algorithm can store in a table only the start points and
end points of up to M chains, which are used by the online algorithm. Note
that the requirement of passing information from the preprocessing phase to
the online phase only in the form of chains does not restrict our model in any
way, as the sub-algorithm that creates the chains can be designed to perform any
computation. Moreover, the preprocessing algorithm can encode any information
as a collection of start points, which the online algorithm can decode to receive
the information. Also note that this model of a single table can accommodate
multiple tables (for example, Hellman’s multiple tables) by including with each
start point and end point the respective value of the hidden-state.

The input of the online algorithm is y that is to be inverted, and the table
generated by the preprocessing algorithm. We require that the online algorithm
performs all oracle accesses to f (including chain creation) through the same sub-
algorithm used during the preprocessing. In the variant of time/memory/data
tradeoffs, the input of the online algorithm consists of D values y1, y2, . . . , yD

and the table, and it suffices that the algorithm succeeds in inverting one image.
This concludes the definition of our model.

In existing time/memory tradeoffs, the online algorithm assumes that the
given y = f(x) is covered by the chains in the table. Therefore, y appears with
some hidden state si, which is unfortunately unknown. The algorithm sequen-
tially tries all the values that si can assume, and for each one of them it initializes
the sub-algorithm on (y, si). The sub-algorithm is executed a certain number of
steps (for example, until an end point condition has been reached). Once an
end point that is stored in the table has been found, the start point is fetched,
and the chain is reconstructed to reveal the xi such that y = f(xi).6 Existing

6 Note that the fact that an end point is found does not guarantee a successful inversion
of y. Such a failure in inversion is called a false alarm, and it can be caused, for
example, when the chain that is recreated from y merges with a chain (of the matrix)
that does not contain y.



time/memory/data tradeoffs work in a similar way, and the process is repeated
for each one of the D given images.

2.1 Coverage Types and Collision of Paths in the Stateful Random
Graph

A Table with M rows induces a certain coverage of the stateful random graph.
Each row in the table contains a start point and an end point. For each such
pair, the matrix associated with the table contains the chain of points spanned
between the start point and the end point in the stateful random graph. The
set of all the points (yi, si) on all these chains is called the gross coverage of the
stateful random graph that is induced by the table.

The gross coverage of the M paths is strongly affected by collisions of paths.
Two paths in a graph collide once they reach a common node in the graph, i.e.,
two links in two different chains have the same yi value and the same hidden
state si. From this point on, the evolution of the paths is identical (but, the end
points, which can be chosen arbitrarily on the path, might be different). As a
result, the joint coverage of the two paths might be greatly reduced (compared
to paths that do not collide). It is important to note that during the evolution
of the paths, it is possible that the same value yi repeats under different hidden
states. However, such a repetition does not cause a collision of the paths.

To analyze the behavior of the online algorithm, we are interested in the net
coverage, which is the number of different yi values that appear during the evolu-
tion of the M paths, regardless of the hidden state they appear with, as this num-
ber represents the total number of images that can be inverted. Clearly, the gross
coverage of the M paths is larger than or equal to the net coverage of the paths.

When we ask what is the maximum gross or net coverage that can be gained
from a given start point, we can ignore the end point and allow the path to be of
unbounded length, since eventually the path loops (as the graph is finite). Once
the path loops, the coverage cannot grow further. An equivalent way of achieving
the maximum coverage of M paths is by choosing the end point of each path to
be the point (yi, si) along the path whose successor is the first point seen for the
second time along this path.

3 A Rigorous Upper Bound on the Net Coverage of M
Chains in a Stateful Random Graph

In this section we formally prove the following upper bound on the net coverage:

Theorem 1. Let A =
√

SNM ln (SN), where M = Nα, for any 0 < α < 1.
For any U with S hidden states, with overwhelming probability over the choice of
f : {0, 1, . . . , N − 1} 7→ {0, 1, . . . , N − 1}, the net coverage of images (y = f(x))
values) on any collection of M paths of any length in the resulting stateful random
graph is bounded from above by 2A.

This theorem shows that even though stateful random graphs can have many
possible shapes, the images of f they contain can only be significantly covered
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Fig. 3. A Table W denoting for each function fi whether the net coverage obtained
from the set of start points Mj is larger (1) or smaller (0) than 2A

by using many paths or many hidden states (or both), as defined by the implied
tradeoff formula above. Without loss of generality, we can assume that S < N ,
since otherwise the claimed bound is larger than N , and clearly, the net coverage
can never exceed N .

3.1 Reducing the Best Choice of Start Points to the Average Case

In the first phase of the proof, we reduce the problem of bounding the best
coverage (gained by the best collection of M start points) to the problem of
bounding the coverage defined by a random set of start points and a random f .
We do it by constructing a huge table W (as shown in Figure 3) which contains
a row for each possible function f , and a column for each possible set of M start
points. In entry Wi,j of the table we write 1 if the net coverage obtained by the
set Mj of start points for function fi (extended into paths of unbounded length)
is larger than our bound (2A), and we write 0 otherwise. Therefore, a row i with
all zeros means that there is no set of start points for the function fi that can
achieve a net coverage larger than 2A.

To prove the theorem, it suffices to show that the number of 1’s in the table,
which we denote by #1, is much smaller than the number of rows, which we
denote by #r (i.e., #1 � #r). From counting considerations, the vast majority
of rows contain only zeros, and the correctness of the theorem follows.

We can express the number of 1’s in the table by the number of entries
multiplied by the probability that a random entry in the table contains 1, and
require that the product is much smaller than #r, i.e., #1 = Prob(Wi,j =
1) ·#c ·#r � #r, where #c is the number of columns in the table. Therefore,
it suffices to show that for a random choice of the function f and a random set
of start points, Prob(Wi,j = 1) ·#c is very close to zero. We have thus reduced
the problem of proving that the coverage in the best case is smaller than 2A, to
bounding the number of columns multiplied by the probability that the average
case is larger than 2A. This is proven in the next few subsections.

3.2 Bounding Prob(Wi,j = 1)

We bound Prob(Wi,j = 1) by constructing an algorithm that counts the net
coverage of a given function f and a given set of M start points, and analyz-
ing the probability that the coverage is larger than 2A. During this analysis,
we would like to consider each output of f as a new and independent coin flip,
as Prob(Wi,j = 1) is taken over a uniform choice of the function f . However,
this assumption is justified only when xi does not appear as an input to f on



1. For i ∈ {1, . . . , S} Bucketi = LowerFreshBucketi = UpperFreshBucketi = φ.
2. NetCoverage = SeenX = φ.

3. Apply h to the first start point to generate the first event
xi−→(yi, si).

4. If yi appears in Bucketsi
Jump to Step 7 (Collision is detected). Otherwise:

5. Add yi to Bucketsi
.

6. If xi does not appear in SeenX (i.e., xi is fresh):
(a) If yi does not appear in NetCoverage, add it to NetCoverage.
(b) If |LowerFreshBucketsi

| < A/S, add yi to LowerFreshBucketsi
,

otherwise, add yi to UpperFreshBucketsi
.

7. Move to the next event:
– Add xi to SeenX (i.e., mark that xi is no longer fresh)
– If a collision was detected in Step 4, apply h to the next start point

(stop if there are no unprocessed start points). Otherwise:
generate the next event by applying h to (yi, si).

8. Jump to Step 4.

Legend:

– SeenX is used to determine freshness by storing all the values of x that have been seen by now.
This is the only set that stores input values of f . All the other sets store output values of f .

– Bucketi stores the all the y’s that have been seen along with hidden state i (used for collision
detection).

– NetCoverage stores all the y’s that have been seen from all chains considered so far, but
without repetitions caused by different hidden states.

– For fresh values of x, LowerFreshBucketi stores the first A/S values of y = f(x) seen
with hidden state i (note that the x is fresh, but the y could have already appeared in other
Buckets).

– For fresh values of x, UpperFreshBucketi stores the values of y after the first A/S values
were seen with hidden state i (again, such a y could have already appeared in other Buckets).

Fig. 4. A Particular Algorithm for Counting the Net Coverage

any previously considered point. In this case we say that xi is fresh, and this
freshness is a sufficient condition for f ’s output to be random and independent
of any previous event.

Denote by xi−→(yi, si) the event of reaching the point (yi, si), where xi is the
input of f during the application of h, i.e., yi = f(xi). When we view the points
(yi = f(xi), si) as nodes in the stateful random graph, the value xi is a property
of the edge that enters (yi, si), rather than a property of the node itself, since
the same (yi, si) might be reached from several preimages. The freshness of xi

(at a certain point in time) depends on the order in which we evolve the paths
(the xi is fresh the first time it is seen, and later occurrences of xi are not fresh),
but it should be clear that the net coverage of a set of paths is independent of
the order in which the paths are considered.

The algorithm is described in Figure 4. It refers to the ratio A/S, which for
the sake of simplicity we treat as an integer. Note that A/S ≥ 2

√
M ln(NS)

(as S < N), and A/S � 1 (as N grows to infinity) since M = Nα. Thus, the
rounding of A/S to the nearest integer causes only a negligible effect.

Lemma 1. At the end of the algorithm |NetCoverage| is the size of the net
coverage.

Proof We observe that the algorithm processes all the points (yi, si) that are
in the coverage of the chains originating from the M start points, since it only
stops a path when it encounters a collision.



A necessary condition for a yi = f(xi) to be counted in the net coverage
is that yi appears in an event xi−→(yi, si) that is not a collision and in which xi

is fresh. If this condition holds, the algorithm reaches Step 6a, and adds yi to
NetCoverage only if the sufficient condition yi 6∈ NetCoverage holds.

At the end of the algorithm NetCoverage = ∪S
i=1(LowerFreshBucketi ∪

UpperFreshBucketi), and thus

|NetCoverage| ≤
S∑

i=1

(|LowerFreshBucketi|+ |UpperFreshBucketi|),

since each time a yi value is added to NetCoverage (in Step 6a) it is also added
to either LowerFreshBucket or UpperFreshBucket in Step 6b. We use this
inequality to upper bound |NetCoverage|.

Bounding
∑S

i=1 |LowerFreshBucketi| is easy, as the condition in Step 6b
assures that for each i, |LowerFreshBucketi| ≤ A/S, and thus their sum is at
most A. Bounding

∑S
i=1 |UpperFreshBucketi| requires more effort, and we do

it with a series of observations and lemmas.
Our main observation on the algorithm is that during the processing of an

event xi−→(yi, si), the value yi is added to UpperFreshBucketsi
if and only if:

1. xi is fresh (Step 6); and
2. LowerFreshBucketsi

contains exactly A/S values (Step 6b); and
3. (yi, si) does not collide with a previous point placed in the same bucket

(Step 4).

Definition 1. An event xi−→(yi, si) is called a coin toss if the first two conditions
hold for the event.

Therefore, a yi is added to UpperFreshBucketsi
only if xi−→(yi, si) is a coin toss

(but not vice versa), and thus the number of coin tosses serves as an upper
bound on

∑S
i=1 |UpperFreshBucketi|.

Our aim is to upper bound the net coverage (number of images in the cover-
age) by the number of different x values in the coverage (which is equal to the
number of fresh x’s), and to bound the number of fresh x’s by A (for lower fresh
buckets) plus the number of coin tosses (upper fresh buckets).

Definition 2. A coin toss xi−→(yi, si) is called successful if before the coin toss
yi ∈ LowerFreshBucketsi

.

Observe that a successful coin toss causes a collision, as LowerFreshBucketsi
⊆

Bucketsi
at any point in time, i.e., a successful coin toss means that the node

(yi, si) in the graph was already visited at some previous time (the collision is
detected at Step 4). Note that a collision can also be caused by events other than
a successful coin toss (and these events are not interesting in the context of the
proof): For example, a coin toss might cause a collision in case yi ∈ Bucketsi

(but yi 6∈ UpperFreshBucketsi

⋃
LowerFreshBucketsi

) before the coin toss.



Another example is when xi is not fresh, and therefore, xi−→(yi, si) is not a coin
toss, but yi ∈ Bucketsi

before the event (xi was marked as seen in an event of
a hidden state different than si).

Since each chain ends with the first collision that is seen, the algorithm stops
after encountering exactly M collisions, one per path. As a successful coin toss
causes a collision, there can be at most M successful coin tosses in the coverage.

Note that the choice of some of the probabilistic events as coin tosses can de-
pend on the outcome of previous events (for example, LowerFreshBuckets must
contain A/S points before a coin toss can occur for hidden state s), but not on the
current outcome. Therefore, once an event is designated as a coin toss we have:

Lemma 2. A coin toss is successful with probability of exactly A/(SN), and the
success (or failure) is independent of any earlier probabilistic event.

Proof As xi is fresh, yi = f(xi) is truly random (i.e., chosen with uniform dis-
tribution and independently of previous probabilistic events). There are exactly
A/S different values in LowerFreshBucketsi , and thus the probability that yi

collides with one of them is exactly A/S
N = A

SN . As all the other coin tosses have
an xi value different from this one, the value of f(xi) is independent of theirs.

It is important to note that the independence of the outcomes of the coin tosses
is crucial to the correctness of the proof.

What is the probability that the number of coin tosses in the M paths is
larger than A? It is smaller than or equal to the probability that among the first
A coin tosses there were fewer than M successful tosses, i.e., it is bounded by

Prob (B (A, q) < M) ,

where q = A/(SN) and B(A, q) is a random variable distributed according to
the binomial distribution, namely, the number of successful coin tosses out of A
independent coin tosses with success probability q for each coin toss.

Note that choosing A too large would result in a looser bound. On the other
hand, choosing A too small might increase our bound for Prob (Wi,j = 1) too
much. We choose A such that the expected number of successes Aq in A coin
tosses with probability of success q satisfies Aq = M ln(SN). This explains our
choice of A =

√
SNM ln (SN).

It follows that:

Prob (Wi,j = 1) = Prob (|NetCoverage| > 2A)

≤ Prob

(
S∑

i=1

(|LowerFreshBucketi|+ |UpperFreshBucketi|) > 2A

)

≤ Prob

(
A +

S∑
i=1

(|UpperFreshBucketi|) > 2A

)

= Prob

(
S∑

i=1

(|UpperFreshBucketi|) > A

)
≤ Prob (B (A, q) < M) .



The first inequality holds due to the fact that
∑S

i=1(|LowerFreshBucketi| +
|UpperFreshBucketi|) > |NetCoverage|. The last inequality holds as the num-
ber of coin tosses upper bounds

∑S
i=1(|UpperFreshBucketi|).

We bound Prob (B (A, q) < M) by M ·Prob (B (A, q) = M) because the bino-
mial distribution satisfies Prob(B(A, q) = b) ≥ Prob(B(A, q) = b− 1) as long as
b < (A+1)q, and in our case b ≤ M while (A+1)q = Aq+q = M ln(NS)+q > M
(as Aq = M ln(NS)). Therefore, we conclude that

Prob (Wi,j = 1) ≤ Prob (B (A, q) < M) ≤ M · Prob (B (A, q) = M) .

3.3 Concluding the Proof
To complete the proof we show that Prob(Wi,j = 1) ·#c is very close to zero by
bounding #c ·M · Prob (B (A, q) = M) .

In the following equations, we use the bound
(
x
y

)
≤ xy/y! ≤ (xe/y)y, since

from Stirling’s approximation y! ≥ (y/e)y. We bound (1 − q)−M by estimating

that q = A
SN =

√
M ln(SN)

SN =
√

ln(SN)
SN1−α is very close to 0, certainly lower than 0.5

(recall that M = Nα, and α < 1). Thus, 1 − q > 0.5, and (1− q)−M
< 2M .

Moreover, as q > 0 is very close to 0, we approximate (1− q)A as e−Aq.
Since each column in W is defined by a subset of M out of the NS start

points, #c =
(
NS
M

)
, and thus

#c·M · Prob (B (A, q) = M)

=
(

NS

M

)
M

(
A

M

)
(q)M · (1− q)A−M ≤ Me−Aq

(
2e2AqNS

M2

)M

and substitute Aq = M ln (SN)

=Me−M ln(NS)

(
2e2NSM ln(NS)

M2

)M

= M(NS)−M

(
2e2NS ln(NS)

M

)M

=M

(
2e2 ln(NS)

M

)M

= Nα

(
2e2 ln(NS)

Nα

)Nα

.

When N →∞ the expression converges to zero, which concludes the proof.

4 A Lower Bound for S

We now analyze the minimum S required by the scheme. By Section 3, the net
coverage of even the best set of M chains contains at most 2

√
SNM ln (SN)

distinct yi values. To make the success probability at least one half, we need a
net coverage of at least N/2. Therefore (recalling that S ≤ N),

N/2 ≤ 2
√

SNM ln (SN) ≤ 2
√

SNM ln(N2).

From this, we derive a rigorous lower bound on the number of hidden states in
any tradeoff scheme which covers at least half the images for almost all f :

S ≥ N

32M lnN
.



5 A Lower Bound on the Time Complexity

So far we bounded the net coverage of the matrix produced by the preprocessing
phase. In order to use this result to bound the running time of the online phase,
we have to make an assumption on the behavior of the online phase.

As a motivation for the assumption consider the following simplistic “proof”
for the lower bound on the time to invert an image y: As shown in the previous
section, the preprocessing phase uses at least S ≥ N

32M ln N hidden states for
the overwhelming majority of the functions. How much time is spent per hidden
state? The online algorithm assumes that y is covered by the table with some
hidden state, but it does not know with which. Therefore, for each hidden state
si, the algorithm tries y with si by repeatedly applying h on (y, si) until it can
rule out si as the correct hidden state. The expected number of applications of
h is at least the width of the matrix (i.e., N

2M ). Multiply the number of hidden
states by the expected running time per hidden state to receive the “bound”:

T ≥ N2

64M2 lnN
.

However, it should be clear that this proof is incorrect, since there can be a
correlation between the hidden state and the length of the path we have to
explore. One example of such a correlation is the Rainbow scheme, in which
some hidden states appear only near the end points. Moreover, there can be
more hidden states close to the end points than hidden states far from the end
points, which shifts the average run per hidden state towards the end points.

In the rest of the section we rigorously lower bound the running time in the
worst case, based only on the following assumption:

– Given y, the online algorithm works by sequentially trying the hidden states
(in any order). For each hidden state s, it applies h on (y, s) at least ts
times in case (y, s) does not appear in a chain in the matrix, where ts is
the largest distance from any point with hidden state s in the matrix to
its corresponding end point. In some cases (e.g., the Rainbow scheme) each
ts is a known constant. In other cases, the ts values can depend on the
specific matrix that results from the precomputation (and thus depend on
the function f). The algorithm might not know the exact value of ts, but
can use any upper bound on ts to limit the length of the chains it traverses,
and in this case, its running time will be longer than our bound.

The assumption can be seen as a combination of three smaller principles:
First, all the points in the precomputed matrix must be reachable by the online
algorithm (therefore, if a point (y, s) appears in the matrix in a column which
is ts steps away from the end point, the algorithm must develop the chain for
image y and hidden state s for at least ts links). Second, the algorithm cannot
tell one image from another (therefore, the algorithm must develop the chain for
at least ts links not only for that y, but also for all images tried with hidden
state s). Third, the algorithm cannot know if an image y is covered by the matrix



of the preprocessing, and assuming that it is covered, with which hidden state
(therefore, all hidden states must be tried).

As a preparation for the proof, shift the chains in the matrix until their end
points are aligned in the rightmost column. Consider the l = N

4M columns which
are adjacent to the end points. The sub-matrix which constitutes these l columns
contains at most N/4 different images f(x). We call this sub-matrix the right
sub-matrix, and the rest of the matrix the left sub-matrix. As M = Nα, l is large
enough so we can round it to the nearest integer (with negligible effect).

The worst case (with regards to the time complexity) is when the input y to
the algorithm is not an image under f , or y is an image under f but is not covered
by the matrix. Then, the time complexity is at least the sum of all the lengths
ts. We divide the hidden states into two categories: short hidden states for which
ts ≤ l, and long hidden states for which ts > l. We would like to show that the
number of long hidden states SL is large, and use the time complexity spent just
on the long hidden states as a lower bound on the total time complexity.

The net coverage of f(x) images in the left sub-matrix must be at least
N/4 images which do not appear in the right sub-matrix (since the total net
coverage is at least N/2). Note that all the N/4 images in the left sub-matrix
must be covered only by the SL long hidden states, as all the appearances of
short hidden states are concentrated in the right sub-matrix. In other words, the
left sub-matrix can be viewed as a particular coverage of at least N/4 images by
M continuous paths that contain only the SL long hidden states.

It is not difficult to adapt the coverage theorem to bound the coverage of the
left sub-matrix (using only long hidden states). The combinatorial heart of the
proof remains the same, but the definitions of the events are slightly changed.
For more details see Appendix A. The adapted coverage theorem implies that in
order to have a net coverage of at least N/4 images, the number of long hidden
states must satisfy

SL ≥
N

64M ln((SN)2)
≥ N

256 ln N

for an overwhelming majority of the functions. Since for each long hidden state
ts ≥ l, the total time complexity in the worst case is at least

T ≥ l · SL ≥
N

4M

N

256M lnN
≥ 1

1024 ln N

N2

M2
.

Note that we had to restrict the length of ts such that it includes all occur-
rences of the hidden state s in the matrix, as otherwise (and using the unlimited
preprocessing), each chain could start with a prefix consisting of all the values of
f(x), and thus any image in the rest of the chain (the suffix) cannot be a fresh
occurrence. The algorithm can potentially encode in the hidden state informa-
tion about the xi and f(xi) values seen in the prefix, in such a way that it can
change the probability of collision (and in particular, avoid collisions). Note that
the preprocessed chains in this case are very long, but the online phase can be
very fast if it covers only short suffixes of each path. As a result, we cannot use
the methods of our proof without making the assumption.



See [3, Appendix 5.9] for an algorithm that violates the assumption by spend-
ing less time on each one of the many wrong guesses of the hidden state compared
to the correct guess of the hidden state. The key idea is to use a new variant of
Hellman’s method with distinguished points: Let p be the probability of a point
to be distinguished. As a result, the expected chain length is about p−1, and
the standard deviation is also about p−1. The algorithm takes advantage of the
large variation in length by trying k times more start points than we need, and
storing in the table only the longest chains. The resulting matrices are called
stretched matrices. The gain in time is achieved due to two facts: First, we have
to search fewer tables (as each table covers more values due to the longer chains).
Second, we spend on average only p−1 applications of h on each wrong guess of
the hidden state (which is several times shorter than the average chain length
in the matrix). The marginal gain in time decreases fast as k grows larger (as
we gain from the tail of the distribution). A few experimental results show that
by trying four times as many start points (k = 4) during the preprocessing, we
can save a factor of about 4 in the time complexity of the online algorithm, and
with k = 8 we can save a factor of about 4.8. Note that these results are based
only on the expected size of the coverage, and ignore other issues such as the
time spent on false-alarms.

5.1 A Lower Bound on the Time Complexity of Cryptanalytic
Time/Memory/Data Tradeoffs

The common approach to construct a time/memory/data tradeoff is to use an
existing time/memory tradeoff, but reduce the coverage (as well as the prepro-
cessing) of the table by a factor of D. Thus, out of the D images, one is likely to
be covered by the table. The decreased coverage reduces the number of hidden
states, and thus the time complexity per image is reduced by a factor of D3.
However, the online algorithm is applied D times in the worst case (for the D
images), which results in an overall decrease in the time complexity by a fac-
tor of D2 (note that the D time/memory tradeoffs can be executed in parallel,
which can reduce the average time complexity in some cases). Using similar ar-
guments and assumptions to the ones in the case of time/memory tradeoff, and
assuming that the net coverage of the table is at least N/(2D), it follows that
the worst-case time complexity can be lower bounded by

T ′ ≥ D
1

1024D3 lnN

N2

M2
=

1
1024D2 lnN

N2

M2
.

Note that this analysis works for cases where D is not too large (and thus S is
larger than 1). Otherwise, a tighter bound can be reached as S cannot be lower
than 1 (but the bound itself is correct for all choices of D).

6 Notes on Rainbow-Like Schemes
6.1 A Note on the Rainbow Scheme



The worst-case time complexity of the original Rainbow scheme was claimed
to be half that of Hellman’s scheme. However, the reasoning behind the claim
estimates M by considering only the number of start points and end points,
and completely disregards the actual number of bits that are needed to repre-
sent these points. What [14] ignores is that the start points and end points in
Hellman’s scheme can be represented by half the number of bits required in the
Rainbow scheme. If we double M in Hellman’s scheme to get a fair comparison,
we can reduce T by a factor of four via the time/memory tradeoff, which ac-
tually outweights the claimed improvement by a factor of two in the Rainbow
scheme (ignoring issues such as the number of false alarms, which are difficult
to analyze). The basic idea is that the starts points need not be chosen at ran-
dom. For example in Hellman’s scheme (with T = M = N2/3), the first 1/3 of
the bits in a start point can be chosen to be zero. The second 1/3 of the bits
can be chosen to be identical to the table number, and the last 1/3 of the bits
can be chosen to be an index of the row. Only the last 1/3 of the bits have to
be actually stored in memory (i.e., we need only (log N)/3 bits for each start
point). In Rainbow tables by contrast, we can choose the first 1/3 of the bits
to be zero, but as there is only one table, the remaining 2/3 of the bits must
be the index. Thus, we have to store twice as many bits for each start point
compared to Hellman’s scheme. In both methods the number of bits that are
required to store end points is considerably smaller than the number of bits that
are required for the start points (and we therefore ignore it): The end points in
Hellman (and Rainbow) can be compressed by storing only a little more than the
last (log N)/3 bits (respectively, 2(log N)/3) bits). Moreover, as the end points
are sorted (and thus the difference between subsequent end points is expected to
be small), we can further compress the end points by storing only the differences
between subsequent end points.

6.2 Notes on Rainbow Time/Memory/Data Tradeoffs
The original Rainbow scheme does not provide a time/memory/data tradeoff,
but only a time/memory tradeoff. A possible adaptation of the Rainbow scheme
to time/memory/data tradeoffs is presented in [7], but the resulting tradeoff
curve of TM2D = N2 is far inferior to the TM2D2 = N2 curve presented in [6]
for the Hellman method. We suggest two new ways of implementing a Rainbow-
based time/memory/data tradeoff, with a curve similar to [6]. In both ways,
we reduce the number of colors in the table, but the colors are organized in
different ways along the chains. This section describes the key ideas of the new
methods; the full analysis (which was verified by computer simulations) can be
found in [3].

The first method is to reduce the number of colors to S by repeating the
series of colors t times:

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1,

we call the resulting matrix a thin-Rainbow matrix. The stateful random graph
can be described by xi = yi−1 + si−1 (mod N) and si = si−1 + 1 (mod S).



The resulting tradeoff7 is TM2D2 = N2, which is similar to the tradeoff in [6],
i.e., we lose the claimed improvement (by a factor of 2) of the original Rainbow
time/memory tradeoff. However, like the Rainbow scheme, this method still re-
quires twice as many bits to represent its start points, and thus it is slightly
inferior to [6]. In the online phase, each color is sequentially tried by continuing
the chain for at most tS links.

As a preliminary to the second method, consider a scheme in which we group
the colors together in groups of t, and thus a typical row looks like:

f0f0f0...f0︸ ︷︷ ︸
t times

f1f1f1...f1︸ ︷︷ ︸
t times

f2f2f2...f2︸ ︷︷ ︸
t times

... fS−1fS−1fS−1...fS−1︸ ︷︷ ︸
t times

,

we call the resulting matrix a thick-Rainbow matrix. Note, however, that during
the online phase the algorithm needs to guess not only the “flavor” i of fi, but
also the phase of fi among the other fi’s (except for the last fi). In fact, the hid-
den state is larger than S and includes the phase, as the phase affects the develop-
ment of the chain. Therefore, the number of hidden states is t(S−1)+1 (which is
almost identical to the number of hidden states in the original Rainbow scheme),
and we get an inferior tradeoff of TM2D = N2. On the other hand, in some cases
we retain the claimed savings of 2 in the time complexity. This example demon-
strates the difference between “flavors” of f and the concept of a hidden state.

We propose to implement a Rainbow-based time/memory/data tradeoff by
using the notion of distinguished points not only to determine the end of the
chain, but also to determine the points in which we switch from one flavor of f
to the next. In this case, the number of hidden states is equal to the number of
flavors, and does not have to include any additional information. We can specify
U as: xi = yi−1 + si−1 (mod N), and if yi−1 is special, then si = si−1 + 1
(mod S) else si = si−1, where yi−1 is special if its log2 t bits are zeros. We call
the resulting matrix a fuzzy-Rainbow matrix, as each hidden state appears in
slightly different locations in different rows of the matrix. In the online phase,
the colors are tried in the same order as in the Rainbow scheme. Analysis shows
that the tradeoff curve is 2TM2D2 = N2 + ND2M , with T ≥ D2. The factor
two savings is gained when N2 � ND2M ⇒ D2M � N (which happens when
T � D2). The number of disk accesses is about

√
2T , when D2M � N , but is

never more than in thin-Rainbow scheme for the same memory complexity.

7 Summary

In this paper, we proved that in our very general model, and under the natu-
ral assumption on the behavior of the online phase, there are no cryptanalytic
time/memory tradeoffs which are better than existing time/memory tradeoffs,
up to a logarithmic factor.
7 When we write a time/memory/data tradeoff curve, the relations between the pa-

rameters relate to the expected worst-case behavior when the algorithm fails to
invert y, and neglecting false-alarms.
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A The Extended Coverage Theorem

We can extend the coverage theorem to bound the net coverage that can be
obtained by M paths, where the paths contain only a subset of size S′ out of
the S ≥ S′ hidden states that U can use. In Section 5, the S′ hidden states we
are interested in (long hidden states) appear in the left sub-matrix, and the rest
of the hidden states (short hidden states) appear only in the right sub-matrix.

One way of viewing the proof of Theorem 1 is as an algorithm that constructs
the best possible coverage given an advice chosen from a set of #c =

(
NS
M

)
possible advices. The proof shows that for an overwhelming majority of the
functions f , even the best advice (which can depend on the specific choice of f)
cannot lead to a coverage which is larger than the bound. In the proof we did
not use any properties of the advice, except for the number of possible advices.
We can model the coverage of the left sub-matrix using a similar algorithm, only
now the advice is larger. It contains not only the set of M start points, but
also a termination point for each start point, and the number S′ of long hidden
states (1 ≤ S′ ≤ S) that the coverage includes. When the algorithm reaches a
termination point, it stops the development of the chain. Clearly, there are #c′ =
S
(
(NS)2

M

)
possible advices. To accommodate for the larger number of advices, we

update the values of q and A to q′ = A′/(S′N), where A′ =
√

S′NM ln (SN)2
(A′ is chosen such that A′q′ = M ln((SN)2) to deal with the effect of the larger
advice). The only remaining change compared to the original proof is that if
the algorithm encounters more than S′ hidden states it halts and sets its net
coverage to zero, as the advice is inconsistent.

Note that we can allow S > N , but the model would not be fair if we allow
S to be arbitrarily large, as too much information on f can be encoded by
every choice of the hidden state (and we do not count the memory complexity
of representing U). For example, if S = NN , then with S′ = 1 we can encode
all the information on f by the specific choice of single hidden state. However, a
huge amount of N log2 N bits are required just to represent that single hidden
state. Therefore, we are only interested in S ≤ Nk for some constant k. Then,
A′ ≤

√
S′NM ln (NkN)2 =

√
S′NM2(k + 1) lnN .

In the auxiliary memory model (described in a footnote in Section 2), the ad-
versary is allowed to customize U to the specific f using M log2 N bits of memory.
The proof of the coverage theorem in this case is very similar to the above proof,
only now there are #c′′ = NM

(
(NS)

M

)
possible advices. As a result, the coverage

theorem remains correct if we replace the original A by A′′ =
√

SNM ln (SN2),
which increase the bound by a small constant factor.


