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Abstract. The MQV protocol of Law, Menezes, Qu, Solinas and Van-
stone is possibly the most efficient of all known authenticated Diffie-
Hellman protocols based on public-key authentication. In addition to
great performance, the protocol has been designed to achieve a remark-
able list of security properties. As a result MQV has been widely stan-
dardized, and has recently been chosen by the NSA as the key exchange
mechanism underlying “the next generation cryptography to protect US

government information”.

One question that had not been settled so far is whether the protocol can
be proven secure in a rigorous model of key-exchange security. In order
to provide an answer to this question we analyze the MQV protocol in
the Canetti-Krawczyk formal model of key exchange. Disappointingly, we
show (by presenting explicit attacks) that virtually none of the stated
security goals of MQV is actually satisfied in this model.

On the basis of these findings, we present HMQV, a carefully designed
variant of MQV, that provides with the same superb performance and
functionality of the original protocol but for which all the MQV’s security
goals can be formally proven to hold in the random oracle model under
the computational Diffie-Hellman assumption.

We base the design and proof of HMQV in a new form of “challenge-
response signatures” that have the property that both the challenger and
signer can compute the same signature; the former by having chosen the
challenge and the latter by knowing the private signature key. Hence, by
simply exchanging challenges (in the form of DH values), two parties can
compute the same signature from which a common authenticated key is
then derived.

1 Introduction

The classic Diffie-Hellman (DH) key-exchange protocol that marked the birth of
modern cryptography has since been one of the main pillars of both theory and
practice of cryptography. While the basic protocol as originally proposed (i.e.,
two parties Â and B̂ exchange values gx and gy, and compute a secret shared
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key as gxy) is believed to be secure against an eavesdropping-only attacker, the
quest for an “authenticated Diffie-Hellman” protocol that resists active, man-in-
the-middle, attacks has resulted in innumerable ad-hoc proposals, many of which
have been broken or shown to suffer from serious weaknesses. Fortunately, with
the development of rigorous security models for key exchange in the last years,
we are now in a much better position to judge the security of authenticated DH
protocols as well as to develop designs that provably withstand realistic active
attacks.

In addition to the need for sound security, the many practical applications of
key exchange have driven designers to improve on the performance cost associ-
ated with authentication mechanisms, especially those based on public key. One
ambitious line of investigation, initiated by Matsumoto, Takashima and Imai in
1986 [31], is to design DH protocols whose communication is identical to the
basic DH protocol (i.e., no explicit authentication added except for the possible
transmission of PK certificates), yet they are implicitly authenticated by the sole
ability of the parties to compute the resultant session key (i.e, rather than agree-
ing on the key gxy, the parties would agree on a key that combines gx, gy with
their public/private keys). Not only can this approach generate protocols that are
very efficient communication-wise, but the combination of authentication with
the key derivation procedure can potentially result in significant computational
savings. For these reasons, several of these “implicitly authenticated” protocols
have been standardized by major national and international security standards.

Of these protocols, the most famous, most efficient and most standardized
is the MQV protocol of Law, Menezes, Qu, Solinas and Vanstone [33, 30]. This
protocol has been standardized by many organizations, e.g. [2, 3, 19, 21, 35], and
has recently been announced by the US National Security Agency (NSA) as the
key exchange mechanism underlying “the next generation cryptography to pro-
tect US government information” [36]. Indeed, MQV appears to be a remarkable
protocol that not only is the most efficient and versatile authenticated DH pro-
tocol in existence, but it has also been designed to satisfy an impressive array
of security goals.

Yet, in spite of its attractiveness and success, MQV has so far eluded any
formal analysis in a well-defined model of key exchange. The present work was
initially motivated by the desire to provide such an analysis. Our findings, how-
ever, have been disappointing: we found that when formally studied virtually
none of the stated MQV goals can be shown to hold (specifically, we carried
this study in the computational key exchange model of Canetti and Krawczyk
[11]). This raises clear concerns about the security of the protocol and triggers
a natural question: Do we have a replacement for MQV with the same superb
performance and versatility but for which the MQV security goals can be guar-
anteed in a well analyzed, provable way?

The main contribution of this paper is in identifying the various analytical
shortcomings of the MQV design and proposing a “hashed variant”, which we
call HMQV, that provides the same (almost optimal) performance of MQV but



Key Computation in the MQV and HMQV Protocols

Both protocols: Â and B̂ exchange X = gx, Y = gy (via a basic DH run)

Â computes σÂ = (Y B
e)x+da, B̂ computes σB̂ = (XAd)y+eb

MQV: d = X̄, e = Ȳ , K = σÂ = σB̂ (X̄ and Ȳ are defined in the text)

HMQV: d = H̄(X, B̂), e = H̄(Y, Â), K = H(σÂ) = H(σB̂)

Fig. 1. Computation of the session key K in each of the two protocols
(A = ga and B = gb are Â’s and B̂’s public keys, respectively.)

also delivers, in a provable way, the original security goals of MQV (and even
more).

Organization. Due to space limitations most of this proceedings version is
devoted to a high-level informal description of our results (Sections 2 and 3).
The full version of the paper [28] contains a detailed presentation of our results
and their proofs. The only technical section in this extended abstract is Section 4
which presents XCR signatures, the main technical tool developed here as a basis
for the proof of the HMQV protocol (see the end of that section for a 1-paragraph
rationale of HMQV’s design). We end with some discussion of related work in
Section 5 and concluding remarks in Section 6.

Note on groups and notation. All the protocols and operations discussed in
this paper assume a cyclic group G of prime order q generated by a generator g.
We denote by |q| the bit length of q (i.e., |q| = dlog2 qe), and use this quantity
as an implicit security parameter. The parameters G, g and q are assumed to be
fixed and known in advance to the parties (this is usually the case in practice,
e.g., [20]; alternatively, one could include these values in certificates, etc.).
We use the multiplicative representation of group operations but our treatment
is equally applicable to additive (prime order) groups such as elliptic curves.
In our protocols, public keys (denoted by upper case letters) are elements in the
group G, and the private keys (denoted by the corresponding lower case letters)
are elements in Zq. For example, to a public key A = ga corresponds a private

key a. The party having A as its public key will be denoted by Â (in general,
the “hat notation” is used to denote the identities of parties in the protocol,
possibly including the party’s PK certificate).

2 The MQV Protocol and its Security Shortcomings

The communication in the MQV protocol is identical to the basic unauthenti-
cated DH protocol except that the identities Â, B̂ may include a public-key cer-
tificate. The computation of the session key is shown in Figure 1 where: party Â
possesses a long-term private key a ∈ Zq and corresponding public key A = ga,

B̂’s private/public key pair is (b,B = gb), and the ephemeral DH values ex-
changed in the protocol are X = gx, Y = gy (x, y chosen by Â, B̂, respectively).



The computation of the session key also uses the values d = X̄ and e = Ȳ , where
X̄ =2`+ (X mod 2`) and Ȳ =2`+ (Y mod 2`) for ` = |q|/2. The computation of
the session key by Â (and similarly by B̂) involves the exponentiations X = gx,
Be, and (Y Be)x+da. Note, however, that e is of length |q|/2 and hence Be counts
as “half exponentiation” (i.e. half the number of modular multiplication relative
to a regular exponentiation of g). Also, note that X = gx can be pre-computed.
This sums up to an impressive performance: same communication as the basic
DH protocol and just half exponentiation more than the basic protocol, i.e. a
mere 25% increase in computation to achieve an authenticated exchange! This
is significantly better than any of the proven DH protocols that rely on digital
signatures or public key encryption for authentication (which involve more ex-
pensive operations and increased bandwidth), and is also the most efficient of
the implicitly-authenticated DH protocols (the closest are the “Unified Model”
protocols [8, 23] that require three full exponentiations and offer substantially
less security features – see Section 5).

2.1 Stated Security Goals of the MQV Protocol

The designers of MQV clearly, albeit informally, stated the security goals be-
hind the MQV design (see [33, 30] and related publications). This includes the
resistance to a variety of explicit attack strategies such as guessing attacks, im-
personation attacks, known-key attacks, key-compromise impersonation (KCI)
attacks, and the provision of perfect forward secrecy (PFS).

While resistance to guessing attacks (in which the attacker learns information
about a key exchanged between honest parties) and impersonation attacks are
basic and obvious security requirements, it is worth expanding on the meaning
of the other attacks. They all represent realizations of the same fundamental
security principle: a good security system is not one that denies the possibility
of failures but rather one designed to confine the adverse effects of such failures
to the possible minimum.

In the case of known key attacks, one is concerned with the realistic possibility
that some session-specific information, such as a session key (or the ephemeral
secrets that led to the computation of that key), will leak to an attacker. This can
happen in a variety of ways ranging from the simple mishandling of information
to a temporary break-in into a computer system or the malicious action of an
insider. In this case, one does not expect the exposed session to remain secure,
but a well-designed key-exchange protocol needs to guarantee that such a failure
will only affect the specific compromised session. Other sessions, by the same or
other parties, should not be endangered by this leakage. The resistance to known-
key attacks enforces other basic security principles as well; most importantly,
that keys from different sessions should be fully “computationally independent”
(meaning that from learning one session key nothing can be implied about the
value of other session keys).

The properties of PFS and KCI resistance are also concerned with limiting
the effects of eventual failures, in this case the disclosure of long-term keys.
Clearly, the discovery by an attacker M of the long-term authentication key of



party Â allows M to impersonate Â and establish its own sessions in the name
of Â. A protocol is said to have PFS if session keys established (and deleted from
memory) before the compromise of the long-term key cannot be recovered (even
with the use of this key). In the case of KCI, the question is whether the knowl-
edge of Â’s private key allows M not only to impersonate Â to others but also
to impersonate other, uncorrupted, parties to Â. A protocol that prevents this
form of “reverse impersonation” is said to resist KCI attacks. In other words,
in such a protocol the only way M can take advantage of the knowledge of Â’s
private key is by active impersonation of Â. Any session established by Â, with-
out being actively controlled by M, remains secure. Resistance to KCI attacks
is a very significant security property that has added much to the attractiveness
of MQV as it is not offered by other implicitly-authenticated protocols, such as
the unified-model protocols of [8, 23] (see Section 5), that use the static DH key
gab for authentication (this key functions as a long-term shared key and hence
cannot resist a KCI attack).

2.2 Weaknesses of the MQV Protocol

In spite of the ambitious security goals described above, it turns out that when
casting these goals in a well-defined formal setting as the one in [11], the MQV
protocol falls short of delivering the intended security. We point out to analytical
shortcomings ranging from basic authentication failures due to non-standard
group representations to the vulnerability of the protocol to combined KCI and
known-key attacks. Due to page limitations we only present a summary of these
findings here; please refer to [28] for a detailed account (which also includes a
succinct description of the formal model from [11]).

Group representation attacks. We first observe that MQV’s security is strongly
susceptible to the specific way the group elements are represented in the protocol.
We show how some representations render the protocol totally insecure. While
ordinary group representations may not have such an extreme effect on the
security of the protocol, this result shows that any attempt at proving MQV
would need to involve restricted group representations. Moreover, the inherent
weaknesses of the protocol discussed below show that the protocol cannot be
proven secure even for specific groups.

UKS attacks. We study the vulnerability of the protocol to “unknown key share”
(UKS) attacks which were also listed as a security consideration in MQV. A
successful UKS attack [16] is one in which two parties compute the same session
key but have different views of who the peer to the exchange was (this attack
represents both an authentication failure as well as a vulnerability to known-key
attacks). Originally, it was thought that MQV (at least when the registrants of
public keys are required to prove “possession” of the corresponding private keys)
was immune to these attacks; later it was shown by Kaliski [24] that even with
such proofs of possession MQV fails to a UKS attack. Since then it has been
believed that augmenting the protocol with a “key confirmation” step (which
adds a third message to the protocol) would solve the problem. Here we show



that this is not the case. Indeed, the 3-message variant of MQV is still vulnerable
to this form of attack if the attacker can access ephemeral secret session-state
information for sessions different than the session attacked.

KCI attacks. We demonstrate that MQV does not provide resistance to KCI
attacks by showing how an attacker M can use the knowledge of the private
key of a party Â to learn the value of a session s established between Â and
an uncorrupted peer B̂, withoutM having to ever control or actively imperson-
ate Â (the attack uses a known-key attack against a session, different than s,
established between B̂ and the attacker M).

Lack of PFS. MQV does not provide Perfect Forward Secrecy (PFS). This,
however, is not just a failure of MQV but it’s an inherent limitation of implicitly-
authenticated 2-message protocols based on public-key authentication. Indeed no
such protocol can provide PFS. We present a generic attack against any such
protocol where an active attacker M causes the establishment of a session key
K at party Â with peer B̂ such that a later corruption of B̂ (even after K was
erased) allows M to find K.

Vulnerability to leaked ephemeral DH exponents. Another important question
regarding any DH protocol, in particular MQV, is the vulnerability of the proto-
col to attacks that use the knowledge of the secret exponent x of an ephemeral
(session-specific) DH value X = gx. This is particularly significant since one of
the computational advantages of these protocols is that the ephemeral (x,X)
pairs can be computed off-line; but in this case these stored pairs are more vul-
nerable to leakage than long-term static secrets (the latter may be stored in a
hardware-protected area while the ephemeral pairs will be typically stored on
disk and hence more available to a temporary break or to a malicious user of
the system). Also here we show that MQV fails to provide sufficient defense by
demonstrating how the leakage of an exponent x can compromise the security
of sessions that do not even use X.

Prime-order checks. Our description in Figure 1 omitted an element from the
session-key computation in MQV: In case where the group G generated by g
is a subgroup of a larger group G′ (which is the case in typical mod p and
elliptic curve groups), MQV specifies that the key be computed as K = (σÂ)

h =
(σB̂)h where h is the co-factor |G′|/|G|. This measure is used to ensure that the
key K belongs to the group G, and has been added to MQV as a safeguard
against potential attacks resulting from the lack of explicit authentication of
the DH values, e.g., small-group attacks. We note, however, that this addition
is of no help against the vulnerabilities mentioned above (and as we will see
is not needed to provide security in HMQV). Moreover, lacking a proof that
the above counter-measure really works, several standards defining MQV, as
well as various descriptions of the protocol in the literature, often specify (or at
least recommend) that the parties to MQV explicitly check that the DH value
presented by the peer is of prime order q. This adds a costly extra exponentiation
to each peer and takes significantly from the almost-optimal performance of
MQV. As we will see, HMQV “provably dispenses” of the need for this costly
check.



3 The HMQV Protocol and its Proven Security

The HMQV protocol (“H” is for Hash) is a simple but powerful variant of MQV.
As in MQV, its communication is identical to the basic DH exchange with the
possible addition of certificates. The computation of the session key (Figure 1)
differs from MQV’s in two ways: (i) the computation of d and e involves the
hashing of the party’s own DH value and the peer’s identity, and (ii) the output
key is computed by hashing the value σÂ = σB̂ . The output of the hash in (i)
is ` = |q|/2 bits while in (ii) it is of the length, denoted k, of the desired key.
We denote the hash function with ` bits of output by H̄ and the one with k
bits by H. In practice the same hash function can be used with different output
lengths. (As a mnemonics, note that the bar in H̄ indicates that the output of
the function is used as an exponent).

From this description one can see that HMQV preserves the outstanding
performance of MQV (both in terms of communication and computation). At
the same time, HMQV overcomes all the mentioned security shortcomings of
MQV to the largest possible extent in a 2-message protocol. We prove that in the
random oracle model [5], and under the Computational Diffie-Hellman (CDH)
assumption [15], the protocol is secure in the Canetti-Krawczyk security model
[11]. In particular, this establishes the security of the protocol against imperson-
ation attacks, known-key attacks, and UKS attacks. We also prove the resistance
of HMQV to KCI attacks (which we formally define) as well as its resistance to
the exposure of ephemeral secret DH exponents (see Section 5 for comparison
to other work). For this latter property, and only for it, we need to resort to
two strong assumptions: Gap Diffie-Hellman [37] and Knowledge of Exponent
(KEA1) [14, 18, 4]; in return we get a guarantee that not even the session key
computed using the exposed exponent is compromised by this leakage.

Another important performance gain ensured by our analysis of HMQV is
the avoidance of costly prime-order tests on the DH values transmitted in the
protocol; our proof shows that the only way an attacker can benefit from the
choice of rogue DH values is by choosing these to be zero, and thus a simple
non-zero check is all is required (hence, there is no need for prime-order tests or
for the co-factor h used in MQV).

Regarding forward secrecy, we said earlier that PFS cannot be achieved by
any implicitly authenticated 2-message protocol, including HMQV. Yet, the fol-
lowing limited forward secrecy property holds for HMQV: any session key estab-
lished without the active intervention of the attacker (except for eavesdropping
the communication) is guaranteed to be irrecoverable by the attacker once the
session key is erased from memory. (This is the case even if the attacker knew
the private keys of both peers when the session was established.)

For applications that require full PFS we present a 3-message variant of
HMQV which adds a third message and a MAC computation by each party
and guarantees full PFS. This 3-message protocol, called HMQV-C, also provides
“key confirmation” to both parties, i.e., the assurance that the assumed peer
indeed participated in the protocol and that it computed the same session key.
Another advantage of HMQV-C is that it can be proven secure in the stronger



universally composable (UC) KE security model of [13] which ensures the security
of key-exchange protocols when run concurrently with other applications. We
note that while HMQV-C requires an extra message, its computational cost is
essentially the same as HMQV as the MAC computation is negligible relative to
the exponentiation cost. On the other hand, [23] note that 2-message symmetric
protocols such as the basic HMQV allow for simultaneous initiation of a session
by both Â and B̂, a desirable property in some network settings.

Another variant of HMQV is a one-pass authenticated key-exchange protocol
in which Â sends a single message to B̂ after which both parties share a secret
key. We show also this protocol to be secure (under CDH and in the random
oracle model) in a security model adapted from [11] to one-pass protocols (the
only difference is that we cannot prevent the adversarial replay of a message from
Â to B̂ and, of course, cannot provide PFS). In particular, this one-pass protocol
provides the functionality of public-key based deniable authentication as well as
an authenticated CCA encryption scheme (in the random oracle model) in a
more efficient way than existing alternatives.

We end by noting an important property of our analysis: all results in this
paper hold under a strong adversarial model in which the attacker is allowed to
register arbitrary public key for all corrupted parties (and at any time during the
protocol). This may include a public key that is identical, or related, to the public
key of another (possibly uncorrupted) party; in particular, the attacker may
not know the private key corresponding to the public key it chose. In practical
terms this means that the security of our protocols does not depend on the
certification authority requiring registrants of public keys to prove knowledge
of the corresponding private keys. This is important since in many practical
settings such “proofs of possession” are not required or performed by the CA
(for contrast, see the comparison with [23] in Section 5).

4 Exponential Challenge-Response Signatures

Here we introduce the Exponential Challenge-Response (XCR) Signature Scheme
which is the main building block used in the design and analysis of the HMQV
protocol. As in a regular digital signature scheme, in a challenge-response signa-
ture scheme a signer has a pair of private and public keys used for generation
and verification, respectively, of signatures. However, in contrast to regular sig-
natures, challenge-response signatures are inherently interactive and require the
recipient (i.e., the verifier) of a signature to issue a challenge to the signer before
the latter can generate the signature on a given message. A secure challenge-
response signature scheme needs to guarantee that no one other than the legit-
imate signer be able to generate a signature that will convince the challenger
to accept it as valid (in particular, a signature is not only message-specific but
also challenge-specific). On the other hand, we are only interested to ensure ver-
ifiability of the signature by the challenger, and thus we make no assumptions
or requirements regarding the transferability, or verifiability by a third party, of
the signature. Moreover, in the scheme described below the party that chooses



the challenge can always generate a signature, on any message, which is valid
with respect to that particular challenge. What is even more important for our
application (and differentiates our scheme from other interactive signatures) is
the fact that the verifier can compute, using the challenge, the same signature
string as the signer.

While the above description may serve as a basis for a general definition of
challenge-response signatures, we omit here such a general treatment in favor of
a more focused description of the specific challenge-response signature used in
this work. In particular, the definition of security is simplified by tailoring it to
this specific scheme.

As before, we use g to denote a generator of a group G of prime order q,
and H̄ to denote a hash function that outputs ` = |q|/2 bits. Our results require
the following assumption (our treatment of polynomial-time, asymptotics, etc.
is very informal, and uses |q| as an implicit security parameter).

The CDH Assumption. For two elements U = gu, V = gv in G we denote
by CDH(U, V ) the result of applying the Diffie-Hellman computation (wrt to
generator g) to U and V , i.e., CDH(U, V ) = guv. An algorithm is called a CDH
solver for G if it takes as input pairs of elements (U, V ) in G and a generator g
of G and outputs the Diffie-Hellman result CDH(U, V ) wrt g. We say that the
Computational Diffie-Hellman (CDH) assumption holds in the group G = 〈g〉 if
for all probabilistic polynomial-time CDH solvers for G, the probability that on
a pair (U, V ), for U, V ∈R G, the solver computes the correct value CDHg(U, V )
is negligible.

4.1 Definition of the XCR Signature Scheme

Definition 1. The exponential challenge-response (XCR) signature scheme. The
signer in a XCR scheme, denoted by B̂, possesses a private key b ∈R Zq and a

public key B = gb. A verifier (or challenger), denoted Â, provides a message m
for signature by B̂ together with a challenge X which Â computes as X = gx for
x ∈R Zq (x is chosen, and kept secret, by Â). The signature of B̂ on m using

challenge X is defined as a pair (Y,Xy+H̄(Y,m)b), where Y = gy and y ∈R Zq is

chosen by B̂. The verifier Â accepts a signature pair (Y, σ) as valid (for message
m and with respect to challenge X = gx) if and only if it holds that Y 6= 0 and
(Y BH̄(Y,m))x = σ).

Notation: For messagem, challenge X, and value Y we define XSIGB̂(Y,m,X)
def
=

Xy+H̄(Y,m)b (i.e., XSIGB̂ denotes the second element in an XCR signature pair).

Relation between XCR and Schnorr’s scheme. The main motivation for
introducing the XCR scheme comes from its use in our design and analysis of
the HMQV protocol [28]. By now, however, it may be illustrative to motivate
this scheme via its relation to the Schnorr’s identification scheme from which
the XCR scheme is derived. We sketch this relation next. Schnorr’s (interactive)
identification scheme consists of a proof of knowledge of the discrete logarithm b
for a given input B = gb. Let B̂ denote the prover in this scheme (that possesses



b) and Â the verifier (that is given the inputB). The basic Schnorr’s identification
consists of three messages: (i) B̂ chooses y ∈R Zq and sends Y = gy to Â; (ii) Â

responds with a random value e ∈R Zq; and (iii) B̂ sends Â the value s = y+ eb.

Â accepts if and only if gs = Y Be holds. This protocol is a Arthur-Merlin zero-
knowledge proof of knowledge (of b) for an honest verifier Â (i.e., one that chooses
e uniformly at random). Therefore, it can be transformed via the Fiat-Shamir
methodology into a signature scheme, namely sigB̂(m) = (Y, y+H̄(Y,m)b), that
is provably secure in the random oracle model [38].

Now consider the following 4-message variant of Schnorr’s protocol in which
a first message from Â to B̂ is added. In this first message Â sends to B̂ a
value X = gx. Then the 3 messages from Schnorr’s scheme follow, except that in
message (iii) (the fourth message in the modified protocol) rather than sending
s = y + eb to Â, B̂ sends S = Xs. Â accepts if and only if S = (Y Be)x. It
can be shown that this protocol is a proof of the “ability” of B̂ to compute
CDH(B,X) for any value X ∈ G. Moreover, the protocol is zero-knowledge
against a verifier Â that chooses e at random (whileX may be chosen arbitrarily).
Now, note that applying the Fiat-Shamir transformation to this protocol one
obtains the challenge-response signature XCR.1 This also explains why we use
the term “exponential” in naming the XCR scheme: it refers to the replacement
of s = y+ eb in the Schnorr scheme with Xs in the last message of the protocol.

Next we establish our security requirement from the XCR scheme.

Definition 2. Security of the XCR signature scheme. We say that the XCR
challenge-response signature scheme is secure if no polynomial-time machine
F can win the game in Figure 2 with non-negligible probability.

Remarks on Definition 2.

1. Note that in order to be successful the forger has to use the input X0 in
its forgery. This captures the fact that XCR signatures are only unforgeable
with respect to a challenge not chosen by the attacker.

2. According to our definition, if B̂ outputs a signature (Y, σ) on a message m
wrt challenge X, and the forger can find a signature (Y ′, σ′) for the same m
wrt the same challenge X but with Y ′ 6= Y , then we consider F successful
(namely, finding a second signature for the same message is considered a
valid forgery). In some sense, we look at these signatures as signing both m
and Y . This property may not be essential in other applications of challenge-
response signatures but it is crucial for the application to HMQV security
in this paper.

3. We do not ask that F will always output good forgeries; it can output “fail”
or even invalid triples. The only requirement is that with non-negligible

1 Note that if in Schnorr’s protocol one chooses e in {0, 1}` (rather than from Zq)
the protocol remains valid except that the soundness is limited by 2−`. This is the
basis for our choice of ` = |q|/2 as the output length of H̄(Y,m), namely, a trade-off
between efficiency and security. See Remark 1 for a more accurate discussion.



Forger F in Definition 2

1. F is given values B,X0 where B,X0 ∈R G.
2. F is given access to a signing oracle B̂ (representing a signer B̂ with
private key b and public key B) which on query (X,m) outputs a pair
(Y,XSIGB̂(Y,m,X)) where Y = gy, y ∈R Zq, is chosen by B̂ afresh with
each query.

3. F is allowed a polynomial number of queries to B̂ where the queries are
chosen (possibly adaptively) by F .

4. F halts with output “fail” or with a guess in the form of a triple
(Y0,m0, σ).

F ’s guess is called a (successful) forgery if the following two conditions
hold:
(a) The pair (Y0, σ) is a valid XCR signature of B̂ on message m0 with

respect to challenge X0 (i.e., Y0 6= 0 and σ = XSIGB̂(Y0,m0, X0);
also note that the value of X0 is the one received by F as input).

(b) The pair (Y0,m0) did not appear in any of the responses of B̂ to
F ’s queries.

We say that F wins the game (or simply forges) if it outputs a successful
forgery.

Fig. 2. Forgery Game for XCR Signatures

probability (over the distribution of inputs to F , the choices by the random
oracle H̄, the coins of F , and the coins of B̂) F output a successful forgery.

4. Note that we only restricted Y0 to be non-zero. In particular, we require no
check that Y0 be of prime order q (only that it represents a non-zero element
for which the group operation is defined). This is an important aspect of XCR
signatures. In particular, the requirement to run a prime-order test would
translate into an additional exponentiation for each party in the HMQV
protocol, thus degrading significantly the “almost optimal” performance of
the protocol.

4.2 Proof of Unforgeability for the XCR Signature Scheme

The following theorem states the security of the XCR scheme in the random
oracle model under the CDH assumption; it constitutes the basis for the proof
of security of protocol HMQV.

Theorem 1. Under the CDH assumption, the XCR signature scheme is secure
(according to Definition 2) in the random oracle model.

Proof. Given an efficient and successful forger F against the XCR signature
scheme (i.e., F wins the forgery game from Definition 2 with non-negligible
probability), we build an efficient solver C for the CDH problem, namely, C gets
as input a pair of random elements U, V in G, and outputs the value CDH(U, V )
with non-negligible probability. Unsuccessful runs of C may end with “fail” or
just the wrong value of CDH(U, V ). Using results by Maurer and Wolf [32]



and Shoup [40] such a “faulty CDH solver” can be transformed, using the self-
reducibility properties of the CDH problem, into an efficient algorithm that
solves CDH for every input U, V with only negligible probability of error.

Algorithm C is presented in Figure 3, and it follows a mostly standard ar-
gument for Fiat-Shamir type signatures. The idea is that if F can succeed in
forging a signature with a pair (Y0,m0) and a given value H̄(Y0,m0) output
by the function H̄, then F is likely to succeed also when H̄(Y0,m0) is set to
a different random value. Using this property, we construct C such that after
running F twice, C obtains (with non-negligible probability) two forgeries with
the same pair (Y0,m0) but different values of H̄(Y0,m0). Now, using these two
forgeries C is able to compute CDH(U, V ).

Examining the specification of C in more detail, first note that in the run of
F by C all queries to the signer B̂ are answered by C without knowledge of the
private key b, and without access to an actual signing oracle for B̂. Instead all
these answers are simulated by C in steps S1-S3. It is easy to see that this is a
perfect simulation of the XCR signature generation algorithm under private key
b except for the following deviation that happens with negligible probability: In
step S3 of the simulation, C does not complete the run of F if the value (Y,m)
was queried earlier from H̄. However, since the value Y , as generated by C, is
distributed uniformly over G and chosen independently of previous values in the
protocol, then the probability that the point (Y,m) was queried earlier from H̄
is at most Q/q where Q is an upper bound on the number of queries to H̄ that
occur in a run of C.

Therefore, the probability of F outputting a successful forgery in the run un-
der C is the same, up to a negligible difference, as in a real run of F , and therefore
non-negligible. In particular, when such a successful forgery is output by F then
conditions F1 and F2 checked by C necessarily hold. Condition F3 also holds ex-
cept for probability 2−`, i.e., the probability that F ’s forgery is correct when it
did not query H̄(Y0,m0). To see this, note that if one fixes the pair (Y0,m0) and
the challenge X0, then the signature produced with e = H̄(Y0,m0) is necessarily
different than the signature produced with e′ = H̄(Y0,m0) if e 6= e′ (mod q).
Hence, the probability that F will guess the right signature without querying
H̄(Y0,m0) is at most as the probability of guessing the value of H̄(Y0,m0), i.e.,
2−`. Since conditions F1-F3 determine the run of the ”repeat experiment” then
in all we have that the simultaneous probability that F outputs a correct forgery
in a run under C AND that C executes the “repeat experiment” in that run is
non-negligible.

Now, using the Forking Lemma2 from [38] we obtain that the probability that
in the “repeat experiment” F will output a correct forgery for the pair (Y0,m0)
given that F did so in the first run is non-negligible. Moreover, in such a case

2 We note that the formulation of the Forking Lemma in [38] is very general and fits ex-
actly our application: namely, it applies to signatures of the form (m,Y, H̄(Y,m), σ)
derived via the Fiat-Shamir methodology, provided that the signer is simulatable
without knowledge of its private key (the use of the challenge X in our case does
not affect the validity of the Forking Lemma argument).



Building a CDH solver C from an XCR forger F

Setup. Given a successful XCR-forger F we build an algorithm C to solve
the CDH problem. The inputs to C are random values U = gu, V = gv in G.
C’s goal is to compute CDH(U, V ) = guv.

C’s actions. C sets B = V and X0 = U , and runs the forger F on input
(B,X0) against a signer B̂ with public key B. C provides F with a random
tape and provides random answers to the H̄ queries generated in the run (if
the same H̄ query is presented more than once C answers it with the same
response as in the first time).

Each time F queries B̂ for a signature on values (X,m) chosen by F ,
C answers the query for B̂ as follows (note that C does not know b):

S1. Chooses s ∈R Zq, e ∈R {0, 1}`.
S2. Sets Y = gs/Be.
S3. Sets H̄(Y,m) = e (if H̄(Y,m) was defined by a previous query to H̄,

C aborts its run and outputs “fail”).
C responds to F ’s query with the signature pair (Y,Xs)

When F halts C checks whether the three following conditions hold:

F1. F output a guess (Y0,m0, σ), Y0 6= 0.
F2. The pair (Y0,m0) was not used as the (Y,m) pair in any of the

signatures generated by B̂.
F3. The value H̄(Y0,m0) was queried from the random oracle H̄.

If the three conditions hold, then C proceeds to the “repeat experiment”
below; in all other cases C halts and outputs “fail”.

The repeat experiment. C runs F again for a second time under the same
input (B,X0) and using the same coins for both C and F . The difference
between the two runs is in the way in which C answers the H̄ queries during
the second run. Specifically, all queries to H̄ performed before the H̄(Y0,m0)
query are answered identically as in the first run. The query H̄(Y0,m0),
however, is answered with a new independent value e′ ∈R {0, 1}`. Subsequent
queries to H̄ are also answered at random from {0, 1}`, independently of the
responses provided in the first run.

Output. If at the end of the second run, F outputs a guess (Y0,m0, σ
′)

(with same (Y0,m0) as in the first run) and e 6= e′, then C computes the

value W = (σ/σ′)(e−e′)−1

and outputs W as its guess for CDH(U, V );
otherwise C outputs “fail”.

Fig. 3. Proof of Theorem 1: Reduction from CDH to XCR forgeries

we are guaranteed that the forgeries in the first and second runs use different
values e, e′ of H̄(Y0,m0).

We now proceed to show that in the case that both the first run and the
repeat experiment end up with two valid forgeries for the same pair (Y0,m0),
and e 6= e′ (which happens with probability 1−2−`), then the valueW computed
by C equals CDH(X0, B). Indeed, a simple computation shows that, if Y0 6= 0



as necessary for a valid forgery, then writing X0 = gx0 we have:

W =
( σ

σ′

)
1

e−e′

=

(

(Y Be)x0

(Y Be′)x0

)
1

e−e′

= (B(e−e′)x0)
1

e−e′ = Bx0 = CDH(X0, B).

Now, since X0 and B are, respectively, the inputs U and V provided to C, then
we get that in this case (which happens with non-negligible probability) C has
successfully computed CDH(U, V ). ut

Remark 1. (Number of bits in H̄(Y,m)). Let ` be the number of bits in the
output of H̄(Y,m). Clearly, the smaller ` the more efficient the signature scheme
is; on the other hand, a too small ` implies a bad security bound (since once
the exponent H̄(Y,m) is predictable the signature scheme is insecure). But how
large a ` do we need for security purposes? Here we see that setting ` = 1

2 |q|, as
we specified for XCR signatures (and for its application to the HMQV protocol),
provides the right performance-security trade-off. In order to assess the level of
security that ` provides to the XCR signatures (and consequently to HMQV), we
note that there are two places in the above proof where this parameter ` enters
the analysis. One is when bounding the probability that the attacker could forge
a signature with parameters (Y0,m0) without querying H̄ on this pair. As we
claimed the probability in this case is 2−` (or 1/

√
q using the fact that we

defined ` = |q|/2). The other use of ` is in the proof of the Forking Lemma by
Pointcheval and Stern [38]. When written in terms of XCR signatures Lemma
9 and Theorem 10 from [38] show that given a forger against XCR signatures
that works time T , performs Q queries to H̄ and forges with probability ε, one

can build a CDH solver that runs expected time cQ
ε
T provided that ε ≥ c′Q

2`

(c, c′ are constants). Now, since we know how to build CDH solvers that run
time

√
q (e.g., Shanks algorithm) then the above analysis tells us something

significant only when cQ
ε
T <<

√
q, in particular Q/ε <<

√
q. From this and

the condition ε ≥ c′Q/2` we get that we need Q/ε < min{√q, 2`}. Since this
is the only constraint on ` we see that choosing ` such that 2` >

√
q does not

add to the security of the scheme, and therefore setting ` = 1
2 |q| provides the

best trade-off between security and performance. (Note that the same length
consideration applies to the parameter e in the modified Schnorr’s identification
scheme described following Definition 1). We also comment, independently from
the above considerations on `, that the above constraintQ < ε

√
q also guarantees

that the simulation error in step S3 of Figure 3 (which we showed in the proof
of Theorem 1 to be at most Q/q) is no more than 1/

√
q.

Remark 2. (A non-interactive XCR variant.) XCR signatures can be made non-
interactive, but verifier-specific, by putting X = A, where A is a public key of the
verifier. In this case the signature will be a pair (Y, t) where t is a MAC tag com-
puted on the signed message using a key derived by hashing XSIGÂ(Y, “Â”, A).
This provides for a very efficient non-interactive verifier-specific deniable au-
thentication mechanism. It does not provide for a universally-verifiable non-
repudiable signature.



Remark 3. (HCR and DSS signatures.) We do not know whether XCR signa-
tures remain secure if the exponent y corresponding to a value Y used by B̂ in
a signature is revealed to the forger (note that in this case the simulation steps
S1-S3 in Figure 3 do not work). On the other hand, if one modifies the definition
of XCR such that the XSIGB̂ component is replaced with a hash of this value
(note that the signature is still verifiable by the challenger) then one obtains a
signature scheme in which revealing y does not help the forger. More precisely,
in [28] we study these signatures, which we call HCR, in detail and show that
under the Gap Diffie-Hellman and KEA1 assumptions they are unforgeable in
the random oracle model even if y is revealed to the attacker. As a result, HCR
signatures provide for a more secure alternative to DSS signatures as they re-
solve the main DSS vulnerability by which the disclosure of a single ephemeral
exponent (i.e., k in the component r = gk of a DSS signature) suffices to reveal
the signature key. On the other hand, HCR signatures are verifier-specific and
require interaction (or the possession of a public key by the verifier as in Re-
mark 2), and do not provide for third-party verifiability (a property that may
be a bug or a feature of HCR depending on the application).

4.3 Dual XCR Signatures (DCR)

An important property of XCR signatures is that the challenger (having chosen
the challenge) can compute the signature by itself. Here we show how to take
advantage of this property in order to derive a related challenge-response signa-
ture scheme (which we call the “dual XCR scheme”, or DCR for short) with the
property that any two parties, Â, B̂, can interact with each other with the dual
roles of challenger and signer, and each produce a signature that no third party
can forge. Moreover, and this is what makes the scheme essential to the HMQV
protocol, the resultant signatures by Â and by B̂ have the same value. (More
precisely, they have the same XSIG component.)

Definition 3. The dual (exponential) challenge-response (DCR) signature scheme.
Let Â, B̂ be two parties with public keys A = ga, B = gb, respectively. Let
m1,m2 be two messages. The dual XCR signature (DCR for short) of Â and
B̂ on messages m1,m2, respectively, is defined as a triple of values: X, Y and

DSIGÂ,B̂(m1,m2, X, Y )
def
= g(x+da)(y+eb), where X = gx, Y = gy are challenges

chosen by Â and B̂, respectively, and the symbols d and e denote H̄(X,m1) and
H̄(Y,m2), respectively.

As said, a fundamental property of a DCR signature is that after exchanging
the values X and Y (with x and y chosen by Â and B̂, respectively), both Â and
B̂ can compute (and verify) the same signature DSIGÂ,B̂(m1,m2, X, Y ). This
can be seen from the identities:

DSIGÂ,B̂(m1,m2, X, Y ) = g(x+da)(y+eb) = (Y Be)x+da = (XAd)y+eb

Moreover, as shown next the attacker cannot feasibly compute this signature.

The security of DCR signatures. Roughly speaking, a dual signature is an
XCR signature by Â on message m1, under challenge Y B

e, and at the same time



an XCR signature by B̂ on message m2, under challenge XAd. More precisely,
since the values d and e are determined during the signature process (via the
possibly adversarial choice of messagesm1,m2), then we will say that a DCR sig-
nature of B̂ is secure (with respect to A) if no efficient attacker can win, with non-
negligible probability, the game of Figure 2 with the following modifications. In
step 2, the queries to B̂ are of the form (X,m,m1) and the signature by B̂ is the
pair (Y,XSIGB̂(Y,m,XAd)) where Y is chosen by B̂ and d = H̄(X,m1). A suc-
cessful forgery is a quadruple (Y0,m0,m1, σ) where σ = XSIGB̂(Y0,m0, X0A

d),
Y0 6= 0, the pair (Y0,m0) satisfies the validity requirement (b) from Figure 2,
and m1 is an arbitrary message chosen by F . We say that the dual signature of
B̂ is secure if it is secure with respect to any value A = ga not chosen by the
attacker.

Theorem 2. Let Â, B̂ be two parties with public keys A = ga, B = gb, resp.
Under the CDH assumption, the DCR signature of B̂ with respect to A is secure
even if the forger is given the private key a of Â (but not the private key of B̂).

Proof. The same proof of unforgeability of XCR (Theorem 1) works here with
a modified computation of W as specified below. First note that since the DCR
signature of B̂ now involves the value d = H̄(X0,m1), where m1 is a message
that F may choose at will, then the value of m1 chosen by F before the repeat
experiment may differ from the value ofm1 chosen during the repeat experiment.
In this case we get two different values, d, d′, used in the σ and σ′ signatures.
Also, note that even with a single value of d the specification of W in the proof
of Theorem 1 would result in the value (XAd)b rather than Xb (as required in
order to solve the CDH problem on inputs U = X,V = B). We deal with these
two issues by redefining W as follows (here we use the fact that a, the private
key of Â, is known to C):

W =

(

σ/(Y Be)da

σ′/(Y Be′)d′a

)

1

e−e′

(1)

The rest of the proof remains unchanged. ut

HMQV explained. The HMQV protocol consists of an exchange between
parties Â and B̂ of DH values X = gx and Y = gy that serve as challenges from
which both parties compute the dual XCR signature DSIGÂ,B̂(“Â”, “B̂”, X, Y ) =

g(x+da)(y+eb). The session key is then derived by hashing this value. In this way
the signature itself need not be transmitted: it is the uniqueness of the signature
that ensures a common derived value for the session key, and it is the ability
to compute the key (equivalently, the signature) that provides for a proof that
the exchange was carried by the alleged parties Â and B̂. Moreover, since the
messages m1,m2 on which the signature is computed are the identities of the
peers, both parties get assurance that the key they computed is uniquely bound
to the correct identities (this is essential to avoid some authentication failures
such as the UKS attacks). We end by noting that while the casting of the HMQV



design in terms of DCR signatures is the main conceptual contribution of our
work, showing that this idea indeed works for proving the security of the protocol
turns out to be technically challenging (see [28] for the gory details).

5 Related Work.

There is a large number of implicitly-authenticated DH protocols discussed in
the literature. See [9, 34, 7, 8] for some surveys which also include the discussion
of desirable security goals for these protocols as well as some of the weaknesses
of specific proposals. Two works that study such protocols in a formal model are
those of Blake-Wilson et al [8] and Jeong et al [23]. They both treat very similar
protocols referred to in the literature as “unified model”. In these protocols,
parties Â and B̂ use their corresponding public keys ga, gb to generate a shared
key gab that they then use to authenticate a DH exchange (as in [26]).

The variant studied in [8] is shown to be open to interleaving and known-key
attacks and hence insecure (unfortunately, this variant has been widely stan-
dardized [2, 3, 19]). One main flaw of this protocol is that it does not explicitly
authenticate (or includes under the key derivation) the ephemeral DH values
exchanged by the parties. [23] studies the version in which the DH values are
included under the key derivation and shows this protocol to be secure in the
random oracle model.3 However, the protocol does not provide resistance to KCI
and is open to a UKS attack if the CA does not enforce a proof-of-possession
check at the time of certificate issuance. Lack of KCI is one aspect of a more
substantial drawback of these protocols, namely, the use of the keys gab as long-
term shared keys between the parties; these keys become particularly vulnerable
when cached for efficiency.

In all, HMQV is a much stronger protocol which, in particular, does not use
gab as a long-term key, does not require (even for efficiency) to cache this value,
and even if the value of gab is ever learned by the attacker it is of no help for im-
personating either Â or B̂, or for learning anything about their session keys. On
top of all its security advantages (which hold without relying on proofs of posses-
sion performed by CAs or prime-order tests performed by the parties), HMQV
is more efficient than the unified model protocols that take 3 exponentiations
per-party.

Finally, we mention the works of Shoup [41] and Jeong et al [23] that present
2-message authenticated DH exchanges with explicit authentication (via signa-
tures and MAC, respectively) that they show to satisfy the security definitions
from [41, 6] in the standard (non-random-oracle) model. In these protocols, how-
ever, it is sufficient for the attacker to learn a single ephemeral exponent x of a
DH value gx, exchanged between parties Â and B̂, to be able to impersonate Â to

3 [23] claim their protocol to enjoy perfect forward secrecy (PFS), but what they
actually show is a weaker and non-standard notion (the same we outlined in Sec-
tion 3) where PFS holds only for sessions created without active intervention by
the attacker. As we pointed out, this is an inherent limitation of any 2-message
implicitly-authenticated DH exchange, including the one-round protocols from [23].



B̂ indefinitely, and without ever having to learn Â’s or B̂’s private keys. This is
a serious security weakness which violates the basic principle that the disclosure
of ephemeral session-specific information should not compromise other sessions
(see Section 2.2). The reason that these protocols could be proven secure in [41,
6] is that the models of key exchange security considered in these works do not
allow the attacker to find any session-specific information beyond the session key
itself. The above vulnerability, however, indicates that such models are insuffi-
cient to capture some realistic attack scenarios. In contrast, the model of [11],
used as the basis for our analysis, captures such attacks via state-reveal queries
(see [28]).

6 Concluding Remarks

The results in this paper show multiple vulnerabilities of MQV to known-key
and other attacks (in the case of the 3-message variant of MQV some of these
vulnerabilities depend on the ability of the attacker to access ephemeral state
information for incomplete sessions). The extent to which these weaknesses are
exploitable in practice depends of course on the application, the computing and
communication environment, threat model, etc. These results do not mean that
applications already using MQV are necessarily insecure in their specific environ-
ments. At the same time, the identified weaknesses should not be dismissed as
theoretical only, especially when considering that MQV has been (and is being)
standardized as a key-exchange protocol for use in heterogeneous and unknown
scenarios. This is particularly true when, as shown here, these weaknesses are
not inherent to the problem being solved nor to the formal analytical setting.

Indeed, HMQV provides the same functionality with the same (or even bet-
ter) performance of MQV while enjoying a full proof of security. Two caveats
regarding this proof are the use of the idealized random oracle methodology and
the significant (though polynomially bounded) reduction cost. Other proven pro-
tocols (such as SKEME [26], ISO [22, 11] and SIGMA [27, 12]), while less efficient,
enjoy less expensive reductions and do not directly require random oracles. We
note, however, that dispensing of random oracles in these protocols requires the
use of the more expensive (and seldom used in practice) signature and encryp-
tion schemes that do not rely on random oracles, and also requires the stronger
DDH assumption. Certainly, coming up with a protocol that offers the many
attractive security and performance properties of HMQV and does not rely on
the random oracle model in its analysis is an important open question.

We end by stressing that in spite of the weaknesses demonstrated here,
the MQV protocol contains some remarkable ideas without which the design
of HMQV would have not been possible. Nor would this design have been possi-
ble without the rigorous examination of these ideas in a formal framework such
as the one in [11]. The design of HMQV is a demonstration of the strength of
“proof-driven designs” which guide us in choosing the necessary design elements
of the protocol while dispensing of unnecessary “safety margins”. As a result,
one obtains solutions that are not only cryptographically sound but are also
more efficient
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