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Abstract. A black-box secret sharing scheme (BBSSS) for a given access
structure works in exactly the same way over any finite Abelian group,
as it only requires black-box access to group operations and to random
group elements. In particular, there is no dependence on e.g. the structure
of the group or its order. The expansion factor of a BBSSS is the length
of a vector of shares (the number of group elements in it) divided by the
number of players n.
At CRYPTS 2002 Cramer and Fehr proposed a threshold BBSSS with
an asymptotically minimal expansion factor Θ(log n).
In this paper we propose a BBSSS that is based on a new paradigm,
namely, primitive sets in algebraic number fields. This leads to a new
BBSSS with an expansion factor that is absolutely minimal up to an ad-
ditive term of at most 2, which is an improvement by a constant additive
factor.
We provide good evidence that our scheme is considerably more efficient
in terms of the computational resources it requires. Indeed, the number
of group operations to be performed is Õ(n2) instead of Õ(n3) for sharing
and Õ(n1.6) instead of Õ(n2.6) for reconstruction.
Finally, we show that our scheme, as well as that of Cramer and Fehr,
has asymptotically optimal randomness efficiency.

1 Introduction

The concept of secret sharing was introduced independently by Shamir [12] and
by Blakley [1] as a means to protect a secret simultaneously from exposure and
from being lost. It allows to share the secret among a set of n participants, in such
a way that any coalitions of at least t+1 participants can reconstruct the secret
(completeness) while any t or fewer participants have no information about it
(privacy). The work of Shamir and Blakley spawned a tremendous amount of
research [15].
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ECRYPT.



Of particular interest to us is black-box secret sharing, introduced by Desmedt
and Frankel [4]. A black-box secret sharing scheme is distinguished in that it
works over any finite Abelian group and requires only black-box access to the
group operations and to random group elements. The distribution matrix and
the reconstruction vectors are defined independently of the group from which
the secret is sampled, and completeness and privacy are guaranteed to hold
regardless of which group is chosen. Simple cases are t = 0 where each participant
is given a copy of the secret, and t = n − 1 where a straightforward additive
sharing suffices. We will henceforth assume that 0 < t < n− 1 to exclude these
trivial cases.

The original motivation for looking at black-box secret sharing was their ap-
plicability to threshold RSA. Although threshold RSA can nowadays be much
more conveniently dealt with using Shoup’s threshold RSA technique [13] (or
in the proactive case using the techniques of Frankel et al. [7]), black-box se-
cret sharing still remains a useful primitive with several applications such as
black-box ring multiparty computation [3] or threshold RSA with small pub-
lic exponent (in which case Shoup’s technique fails), and it may very well be
relevant to new distributed cryptographic schemes, for instance based on class
groups. Furthermore, this problem has turned into an interesting cryptographic
problem in its own right.

The average number of group elements handed out to a participant in order
to share a single group element is known as the expansion factor. The expan-
sion factor expresses the bandwidth taken up by the scheme and is therefore an
important property of the scheme. Desmedt and Frankel [4] proposed a scheme
with expansion factor linear in the number n of participants. Their scheme is
based on finding an invertible Vandermonde determinant over a cyclotomic num-
ber field. In subsequent works some improvements to the expansion factor were
made, but all within a constant factor [5, 10].

At Crypto 2002, Cramer and Fehr [2] used a new approach based on finding
pairs of co-prime Vandermonde determinants over low degree integral extensions
of Z. This results in black-box secret sharing schemes with logarithmic expansion
factor. They also show that this is asymptotically optimal by proving a tight
lower bound. In fact, they prove that the expansion factor of their scheme is
minimal up to an additive term of at most three.1

We improve these results on black-box secret sharing in several ways. We
describe a novel technique for constructing black-box secret sharing schemes, by
in a way combining the advantages of both approaches. Briefly, our approach re-
quires to find one primitive Vandermonde determinant over a low degree integral
extension of Z. A Vandermonde determinant is primitive in an integral extension
if its only rational integer divisors are −1,+1. This allows us to further reduce
the gap between the expansion factor and the lower bound by one. By using a

1 Note that Fehr [6, Corollary 4.1] incorrectly claims an additive term of at most two.



slight tweak which applies very generally to Shamir-like schemes, the expansion
factor drops one more in case the number of participants is a power of two.2

We also give evidence that the new approach not only leads to a scheme with
(slightly) improved bandwidth, but also with significantly improved computa-
tional complexity. Indeed, it appears, and we can confirm this for all practical
values of n, that sharing a group element with our scheme requires Õ(n2) and
reconstructing the secret from the shares Õ(n1.6) group operations, in contrast
to Õ(n3) respectively Õ(n2.6) or more for previous schemes. At present there is
no such proof for general n.

Finally, we address the randomness complexity of black-box secret sharing,
i.e., the number of random group elements that need to be sampled to share a
group element. We prove the lower bound Ω(t · lg n), which meets the random-
ness complexity of our (as well as the scheme from [2]) black-box secret sharing
scheme and hence shows that these schemes are also optimal with respect to
their randomness complexity. We would like to point out that recently a sim-
ilar lower bound has been proven in [9]. However, the proof given seems a bit
vague as it makes use of a better lower bound result on the expansion factor of
black-box secret sharing schemes than what can be proven.

The paper is organized as follows. In the following Section 2, we give some
definitions and known results regarding black-box secret sharing, and in Section 3
we describe a framework on which previous as well as our new black-box secret
sharing scheme are based. In Section 4, we then briefly describe the schemes
from [4] and [2], before we discuss our new approach in Section 5. Section 6 is
dedicated to the lower bound on the randomness complexity before we conclude
in Section 7.

2 Definitions and Known Results

Throughout this section let n and t < n be non-negative integers. Informally,
in a black-box secret sharing scheme the shares are computed from the secret
and from random group elements by solely using the group operations addition
and subtraction (considering the group to be additive), i.e., by taking Z-linear
combinations of the secret and random group elements. Similarly, the secret is
reconstructed by taking an appropriate Z-linear combination of the shares. Addi-
tionally, the coefficients for these linear combinations are designed independently
of and correctness and privacy hold regardless of the group to which the scheme
is applied. This leads to the following formal definition due to [2].

We first introduce the notion of a labeled matrix. A labeled matrix consists of
a matrix M ∈ Rd×e over some given ring R, together with a surjective function
ψ : {1, . . . , d} → {1, . . . , n}. We say that the j-th row ofM is labeled by ψ(j). For
∅ 6= A ⊆ {1, . . . , n},MA ∈ RdA×e denotes the restriction ofM to those rows that

2 This tweak is interesting in its own right: it allows one to do a Shamir-like secret
sharing over a field F of size |F | ≥ n, rather than |F | > n. Yet—although we are
not aware of it being mentioned elsewhere in the literature—we dare not claim its
novelty.



are labeled by an i ∈ A. Similarly, for an arbitrary d-vector x = (x1, . . . , xd) (over
a possibly different domain), xA denotes the restriction of x to those coordinates
xj with ψ(j) ∈ A. In order to simplify notation, we write Mi and xi instead of
MA and xA in case A = {i}, and we typically do not make ψ explicit.

Definition 1 (Black-Box Secret Sharing). A labeled matrix M ∈ Zd×e over
the integers is a black-box secret sharing scheme for n and t if the following holds.
For an arbitrary finite Abelian group G and an arbitrarily distributed s ∈ G let
g = (g1, . . . , ge)

T ∈ Ge be drawn uniformly at random subject to g1 = s only.
Define the share vector as s = Mg (where si is given to the i-th participant).
Then, for any nonempty subset A ⊆ {1, . . . , n}:
i. (Completeness) If |A| > t then there exists λ(A) ∈ ZdA , only depending on

M and A, such that sTA · λ(A) = s with probability 1.
ii. (Privacy) If |A| ≤ t then sA contains no Shannon information on s.

Note that a black-box secret sharing scheme is linear by definition (essentially
because a black-box group allows only linear operations).

Definition 2 (Expansion Factor and Randomness Complexity). The ex-
pansion factor η of a black-box secret sharing scheme M ∈ Zd×e for n and t is
defined by η = d/n, and the randomness complexity ρ by ρ = e− 1.

The expansion factor of a black-box secret sharing scheme measures the average
number of group elements each participant receives (and need not be integral).
For the trivial cases t = 0 and t = n− 1 the expansion factor 1 can be achieved.
The randomness complexity determines the number of random group elements
that need to be sampled to share a secret. The number of group operations
during dealing and reconstructing depends both on d and e and on the size of
the elements in the matrix M (optimizing the number of group operations given
M is essentially an addition chain problem).

Theorem 1 ([2]). Let M ∈ Zd×e be a labeled matrix. Define ε = (1, 0, . . . , 0) ∈
Ze. Then M is a black-box secret sharing scheme for n and t if and only if for
every nonempty A ⊆ {1, . . . , n} the following holds.
i. (Completeness) If |A| > t then ε ∈ im(MT

A ).
ii. (Privacy) If |A| ≤ t then there exists κ = (κ1, . . . , κe)

T ∈ ker(MA) with
κ1 = 1.

Note the difference between this definition and that of monotone span programs
(which is equivalent with linear secret sharing over finite fields). Whereas in the
latter case the completeness condition and the privacy condition are character-
ized by “to span or not to span”, over Z and in the context of blackbox secret
sharing this is slightly more subtle. See [2].

In [2] the above theorem is used to prove a lower bound on the expansion
factor by looking at an instantiation of any given black-box secret sharing scheme
over the group F2 and borrowing arguments from Karchmer and Wigderson [8].
The upper bound in the theorem below follows from the explicit construction of
a black-box secret sharing scheme in [2].



Theorem 2 ([2]). The minimal expansion factor η of a black-box secret sharing
scheme for n and t with 0 < t < n− 1 satisfies

blg nc − 1 < lg
n+ 3

2
≤ η ≤ dlg(n+ 1)e+ 1 = blg nc+ 2 .

If t = 1 then it even holds that η ≥ lg n.

3 Integral Extensions andWeak Black-Box Secret Sharing

Let R be a ring of the form R = Z[X]/(f) where f is a monic irreducible
polynomial in Z[X] of degree m. We call such a ring an integral extension (of
degree m).3 Note that R is a free Z-module4 with basis 1̄, X̄, . . . , X̄m−1 (the
residue classes of 1, X, . . . ,Xm−1 modulo f(X)). Furthermore, let G be a finite
Abelian (additive) group. Such a group is naturally a Z-module. The fact is that
the m-fold direct sum Gm = G⊕· · ·⊕G can be regarded as an R-module. Indeed,
as a group, respectively as Z-module, Gm is isomorphic to the tensor product
R⊗Z G (with isomorphism (g1, g2, . . . , gm) 7→ 1̄⊗g1+X̄⊗g2+ · · ·+X̄m−1⊗gm);
the latter though, sometimes referred to as the extension of G over R [11], is an
R-module by “multiplication into the R-component”.

Now, since Gm is an R-module, polynomials with coefficients in Gm can be
evaluated over R. This allows us to perform a version of Shamir secret shar-
ing [12]: Given the parameters n and t as well as the secret s ∈ G, the dealer
picks uniformly at random a sharing polynomial

g(x) = r0 + · · ·+ rt−1x
t−1 + ŝxt ∈ Gm[x]

of degree t with coefficients in Gm such that its leading coefficient equals ŝ =
(s, 0, . . . , 0) ∈ Gm (we need to embed the secret s into Gm). Given n pairwise
different evaluation points αi ∈ R, known to everyone, the dealer hands out
share si = g(αi) ∈ Gm to participant i for i = 1, . . . , n.

We would like to point out that by fixing the basis 1̄, X̄, . . . , X̄m−1 for R
over Z and using standard techniques this candidate black-box secret sharing
scheme can be described by a labeled integer matrix M and thus fits into the
framework of our formal Definition 1; although, as discussed below, correctness
holds only in a weak sense. The expansion factor is obviously η = m: each share
is an element in Gm, and the randomness complexity is ρ = t ·m: the randomness
is enclosed by the t non-leading coefficients of g ∈ Gm[x].

Jointly, any t+1 participants know t+1 points on a polynomial of degree t.
Normally, when working over a field, this would allow them to reconstruct the
entire polynomial using Lagrange interpolation. In our setting, where divisions
cannot necessarily be done (in R), we will have to settle with a multiple∆·ŝ ∈ Gm

3 Using standard terminology from algebraic number theory, R is an example of an
order.

4 Loosely speaking, a module is a vector space over a ring rather than over a field, and
it is called free if it allows for a basis (which is not granted for general modules).



of the secret, where ∆ ∈ R is some common multiple of the denominators of
the Lagrange coefficients. A possible generic choice for ∆ is the Vandermonde
determinant

∆(α1, . . . , αn) =
∏

1≤i<j≤n

(αi − αj) .

Reconstruction by a set A of t+1 participants can be expressed in the following
formula:

∆ · ŝ =
∑

i∈A

(

∆ ·
∏

j∈A
j 6=i

1

αi − αj

)

si .

Putting the secret into the leading coefficient as we do (rather than into the
constant coefficient) of the sharing polynomial immediately leads to privacy. Es-
sentially, for any A ⊂ {1, . . . , n} with |A| ≤ t, privacy follows from the existence
of the polynomial κ =

∏

i∈A(x − αi) ∈ R[x] of degree at most t with leading
coefficient 1 and with κ(αi) = 0 for all i ∈ A. Indeed, for any secrets s, s′ ∈ G

and any sharing polynomial g ∈ Gm[x] for s, the participants in A cannot dis-
tinguish between a sharing of s with sharing polynomial g and a sharing of s′

with sharing polynomial g′ = g + (s′ − s)κ.
Introducing the notion of a δ-weak black-box secret sharing scheme for δ ∈ R,

to be understood in that the correctness condition of a black-box secret sharing
scheme (Definition 1) only holds in that δ · ŝ (rather than s) can be reconstructed
while the privacy condition holds fully, we can summarize the observations of
this section as follows.

Theorem 3. Let R be an integral extension of degree m, and let α1, . . . , αn ∈ R
be pairwise different. Then there exists a ∆(α1, . . . , αn)-weak black-box secret
sharing scheme for n and t with expansion factor η = m and randomness com-
plexity ρ = t ·m.

Note that an additional advantage of putting the secret into the leading
coefficient of the sharing polynomial (rather than into the constant coefficient)
is that 0 may be used as evaluation point. This extra evaluation point is relevant
for the expansion factor if the number of participants is a power of 2. This
“swapping” trick, putting the secret in the leading coefficient instead of in the
constant term, is not exploited in [4] nor in [2], but it applies to their schemes
as well.

4 Previous Schemes

Based on the common framework just described, we can summarize previous
research. It all boils down to reconstructing s given ∆ · ŝ and the restriction the
scheme poses on ∆ for the reconstruction to be possible.



4.1 Using an Invertible ∆

Desmedt and Frankel [4] provide a solution for black-box secret sharing with
expansion factor O(n). They achieve this by selecting the polynomial f in such
a way that ∆ can be chosen to be a unit in R = Z[X]/(f). A necessary and
sufficient condition for this is that there exist n evaluation points in the ring
whose differences are all units in the ring.5 In this case, all divisions required
for Lagrange interpolation can in fact take place in the ring R, so ∆ can be
forgotten altogether.

The maximal cardinality of a subset of R such that all differences are units
is called the Lenstra constant of the ring R. If we set R = Z[X]/(f(X)), where
f(X) ∈ Z[X] is the p-th cyclotomic polynomial, we have a ring of degree p−1 and
with Lenstra constant p. So if we take p as the smallest prime greater than n, we
have black-box secret sharing scheme with expansion factor O(n) for n players.
Finding integral extensions for which the Lenstra constant is exponential (or
super-linear) in the degree of the ring is part of an open problem in number
theory, as far as we know

4.2 Using Two Relatively Co-Prime ∆’s

Cramer and Fehr [2] propose scheme which has expansion factor blg nc+2. In a
nutshell, it shares the secret twice using weak secret sharing schemes with two
different sets, say α = (α1, . . . , αn) and β = (β1, . . . , βn), of evaluation points.
This allows to reconstruct two different multiples of the secret: ∆(α) · ŝ and
∆(β) · ŝ. By ensuring that ∆(α) and ∆(β) are co-prime, standard Euclidean
techniques can be used to recover ŝ and the real secret s: let a and b be such
that a ·∆(α) + b ·∆(β) = 1, then a ·∆(α)ŝ+ b ·∆(β)ŝ = ŝ = (s, 0, . . . , 0).

A small expansion factor can then be obtained by picking the αi’s in the
integers and the βi’s in a suitable integral extension R = Z[X]/(f). A necessary
and sufficient condition for the existence of β such that ∆(α) and ∆(β) are
co-prime is that for all primes p the lowest irreducible polynomial dividing f
modulo p has degree dp such that n ≤ pdp . This can be satisfied by certain
polynomials f of degree m = dlg(n+1)e = blg nc+1, and thus results in a total
expansion factor blg nc+ 2.

In [2] polynomials f of degree blg nc + 1 are considered that are irreducible
modulo all the primes p ≤ n. It is then possible to set αi = i and βi to the
(residue class modulo f of the) unique polynomial of degree less than m with
coefficients in {0, 1} that evaluates to i in the point 2, in other words, whose
coefficient vector is the binary representation of i. (Note that the “swapping”
trick allows us to use a polynomial of degree m = dlg ne instead of blg nc + 1,
although there is only a difference if n is a power of two.)

5 If the secret is embedded in the constant term, the evaluation points need to be
units themselves as well and evaluation in zero is prohibited.



5 The New Black-Box Secret Sharing Scheme

5.1 The New Scheme: Using a Primitive ∆

As an example, consider the case t = 1, where only two participants are needed
to reconstruct the secret (for any number of participants n). If we use R =
Z[X]/(f) with any (monic and irreducible) f of degree at least dlg ne, and
the same {0, 1}-polynomial evaluation points βi as described in Section 4.2,
then any pair (i, j), i 6= j can reconstruct (βi − βj)ŝ. For concreteness, suppose
deg f = 4 and that βi − βj equals 1̄ − X̄ + X̄3. In this case we know that
(βi − βj)ŝ = (s,−s, 0, s). Indeed, as discussed in Section 3, (βi − βj)ŝ is com-
puted by associating ŝ = (s, 0, . . . , 0) with 1̄⊗ s, computing (βi − βj) · (1̄⊗ s) =
(βi − βj) ⊗ s = 1̄ ⊗ s + X̄ ⊗ (−s) + X̄3 ⊗ s, and reading out the “coefficients”.
So, (βi − βj)ŝ already contains s as a coordinate! There is no need for a second
sharing or βi − βj being a unit in R. Our choice of βi − βj is inconsequential
in this argument. If the βi’s are defined as they are as non-zero polynomials of
degree smaller than m with coefficients in {0, 1} (regardless of f), then (βi−βj)ŝ
contains at least one copy of the secret or its negative.

In general, using the weak black-box secret sharing scheme the participants
can reconstruct ∆ · ŝ. Since ŝ = (s, 0, . . . , 0), this module scalar-multiplication

equals∆·ŝ = (∆0 ·s, . . . ,∆m−1 ·s) with integer∆i’s such that∆ =
∑m−1

i=0 ∆i ·X̄i.
The secret s can be reconstructed from the ∆i’s if and only if the ∆i’s are co-
prime, by using the extended Euclidean algorithm. In essence, the ideas of [4]
(using a single weak black-box secret sharing scheme) and of [2] (recovering s
from co-prime multiples) are combined. Contrary to the scheme from [2], we do
not need a second sharing. This is where our improvement and lower expansion
factor stem from.

A prime p ∈ Z is a divisor of all ∆i’s if and only if ∆ ≡ 0 mod pR. A sufficient
and necessary condition on the set of interpolation points is that it is a primitive
set in the integral extension R, as defined below.

Definition 3 (Primitive Elements and Sets). Let R be an integral exten-
sion. Then δ ∈ R is primitive if its only rational integer divisors are 1 and −1,
i.e., if δ 6≡ 0 mod pR for all primes p ∈ Z. A set {α1, . . . , αn} in R is called
primitive if its Vandermonde determinant ∆(α1, . . . , αn) is primitive.

For an arbitrary Z-basis of R, p ∈ Z dividing δ ∈ R is equivalent to p dividing
all the rational integer coordinates of δ with respect to that basis. Therefore,
δ ∈ R is primitive if and only if its coordinates have no non-trivial common
factor in Z. Note also that the required property is stronger than requiring the
αi’s to be pairwise different modulo every prime p, since not every prime p ∈ Z
is necessarily also prime in R.

For f(X) ∈ Z[X] and for a prime p ∈ Z, define fp(X) ∈ Fp[X] as f taken

modp, and write fp = f
εp,1

p,1 · · · f
εp,`p

p,`p
for its factorization into powers of distinct

irreducible polynomials in Fp[X]. The degree of such fp,i is denoted dp,i. Also
define d̄p = max1≤i≤`p

dp,i.



Theorem 4. Let R = Z[X]/(f) be an integral extension of degree m > 1. If
n ≤ pd̄p for every prime p ∈ Z, then there exists a primitive set in R with
cardinality n.

This implies the existence of an integral extension of degree dlg(n)e with a prim-
itive set of size n, by taking f such that fp is irreducible for all primes p with
2 ≤ p ≤ n. Such f can for instance be constructed using the Chinese Remainder
Theorem, see also [2].

Corollary 1. For any t, n ∈ Z with 0 < t < n− 1 there exists a black-box secret
sharing schemeM with expansion factor η = dlg(n)e and randomness complexity
ρ = t · dlg(n)e.

The computational efficiency of the scheme is discussed in Section 5.4.

5.2 Proof of Theorem 4

Let p ∈ Z be a prime. Then we have

R/pR ' Fp[X]/(f
εp,1

p,1 · · · f
εp,̀ p

p,`p
) ' Fp[X]/(f

εp,1

p,1 )× · · · × Fp[X]/(f
εp,̀ p

p,`p
)

and thus we have the canonical projection

R/pR→ Fp[X]/(fp,1)× · · · × Fp[X]/(fp,`p
) ' Fpdp,1 × · · · × F

p
dp,`p

where (for any prime power q) Fq denotes the field with q elements. Hence, if

n ≤ pd̄p , then there clearly exist α1, . . . , αn ∈ R such that ∆(α1, . . . , αn) 6≡
0 mod pR: choose n distinct elements from F

pd̄p and lift them arbitrarily to
elements in R. Furthermore, different solutions modulo a finite set of different
primes p can be combined to a solution modulo all primes from that set by
the Chinese Remainder Theorem. However, we are after a solution that holds
modulo all primes simultaneously.

Instead, we construct a primitive set of size n by induction: as long as the
upperbound on n as stated in the theorem is satisfied, then, given a primitive set
{α1, . . . , αn−1} ⊂ R, we can construct αn ∈ R such that {α1, . . . , αn−1, αn} ⊂ R
is a primitive set as well. For technical reasons to become clear later on, the actual
induction hypothesis corresponds to a slightly stronger claim, but we suppress
this at this point in the exposition.

Assume we are given a primitive set {α1, . . . , αn−1} ⊂ R. Consider the poly-
nomial

∆(α1, . . . , αn−1, X) = ∆(α1, . . . , αn−1) ·
∏

i<n

(αi −X) ∈ R[X] .

Let e1 . . . , em be some fixed Z-basis of R, wherem is the degree of f(X). Clearly,
there exist polynomials F1, . . . , Fm ∈ Z[X1, . . . , Xm] such that

d = (F1(x1, . . . , xm), . . . , Fm(x1, . . . , xm)) ∈ Zm



represents the coordinate-vector (w.r.t. the chosen basis) of∆(α1, . . . , αn−1, x) ∈
R for an arbitrary x = x1e1 + · · ·+ xmem ∈ R (x1, . . . , xm ∈ Z).

Now suppose that the intersection between the ideal Î = (F1, . . . , Fm) ·
Z[X1, . . . , Xm] and Z[X1] contains a non-zero polynomial g(X1). In other words,
there exist polynomials µ1, . . . , µm ∈ Z[X1, . . . , Xm] such that

g(X1) =

m
∑

i=1

µi(X1, . . . , Xm) · Fi(X1, . . . , Xm).

Therefore, if we choose x1 ∈ Z such that g(x1) 6= 0, then, no matter how
x2, . . . , xm ∈ Z are chosen, it will be the case that a given prime p ∈ Z does not
divide all Fi(x1, . . . , xm) ∈ Z, or equivalently, ∆(α1, . . . , αn−1, x) 6≡ 0 mod pR,
unless perhaps when p divides g(x1).

Based on these observations the proof of the theorem essentially consists of
two main steps. First, we show the existence of g(X1). Second, with a proper
choice of x1 ∈ Z such that g(x1) 6= 0, we select for each prime p ∈ Z that divides
g(x1) an element an,p ∈ R such that its first coordinate is equal to x1 mod p and
such that ∆(α1, . . . , αn−1, an,p) 6≡ 0 mod pR.

The proof is then easily completed by constructing the desired αn ∈ R such
that its first coordinate is x1 and such that αn ≡ αn,p mod pR for each of those
finitely many primes p. This is by simple coordinate-wise application of the CRT.
More precisely, let αn = x1e1 + x2e2 + · · · + xmem, where x1 is as above, and
for each i ≥ 2, xi ∈ Z is such that xi is equivalent to the i-coordinate of an,p
modulo each those primes p.

We now start with the existence of g(X1). The argument utilizes the following
well-known theorem from algebraic geometry (see e.g. [11]), which we state for
convenience below.

Theorem 5 (Hilbert’s Nullstellensatz). Let K be an algebraically closed
field, let I ⊂ K[X1, . . . , Xr] be an ideal, and let Z(I) ⊂ Kr denote the algebraic
variety {(z1, . . . , zr) ∈ Kr | g(z1, . . . , zr) = 0 ∀ g ∈ I}. If h ∈ K[X1, . . . , Xr]
satisfies h(z1, . . . , zr) = 0 for every (z1, . . . , zr) ∈ Z(I), i.e., it vanishes on the
variety, then there exists a positive integer k such that hk ∈ I.

Let Q̄ denote the algebraic closure of Q, i.e., the field of all algebraic num-
bers, and let I denote the ideal (F1, . . . , Fm) · Q̄[X1, . . . , Xm]. We claim that
the algebraic variety Z(I) is finite. This is argued in two steps. Consider the
tensor-product Q̄⊗ZR, which has a natural ring structure. First, Z(I) is in one-
to-one correspondence with the solutions to the univariate polynomial equation
∆(α1, . . . , αn−1, x) = 0 with x ∈ Q̄⊗ZR, which we show below. Second, as a ring,
Q̄⊗ZR is isomorphic to a finite product of fields.6 Therefore, the univariate poly-
nomial equation has at most a finite number of solutions, and the claim follows.
One-to-one correspondence is argued as follows. The elements of Q̄⊗ZR uniquely

6 Indeed, Q̄⊗Z R ' Q̄[X]/(f) '
∏m

i=1 Q̄. The first isomorphism is by a standard fact
that can be found e.g. in [11], and the second follows since f factors into distinct
linear polynomials.



correspond to the expressions of the form
∑m

i=1 qi⊗ei with the qi ∈ Q̄. Using sim-
ple rewriting properties of tensor-product, it follows that ∆(α1, . . . , αn−1, x) = 0
for x ∈ Q̄⊗Z R if and only if

∑m
i=1 Fi(q1, . . . , qm)⊗ ei = 0. This happens if and

only if all Fi(q1, . . . , qm) are 0, or equivalently, (q1, . . . , qm) ∈ Z(I). Note that
some of the properties of tensor product we have used above rely on the fact
that R has a Z-basis.

Finiteness of Z(I) implies the existence of a non-zero polynomial g̃(X1) in the
intersection of I and Q̄[X1]. Indeed, the polynomial

∏

z∈Z(I)(X1 − z1) ∈ Q̄[X1]

(where z1 denotes the first coordinate of z) clearly vanishes on Z(I), and by the
Nullstellensatz some power of this polynomial is in I. In turn this implies the
existence of a non-zero polynomial g(X1) in the intersection of Î and Z[X1], as
desired. This is an immediate consequence of basic field theory.7

With the existence of g(X1) settled, we proceed with the remainder of the
proof. As a matter of terminology, for β, γ ∈ R, we will say that β = γ within
Fdp,i
p if the canonical projections of β and γ coincide in that component. Similar

for Fp[X]/(f
εp,i

p,i ).

First we make the actual induction hypothesis precise. We assume there exists
a primitive set α1, . . . , αn−1 ∈ R such that additionally for every prime p ∈ Z
with 1 < p < n it holds that ∆(α1, . . . , αn−1) is non-zero within the largest field
F
pd̄p . The induction hypothesis is clearly satisfied in case of a single element

set. If n ≤ pd̄p for every prime p ∈ Z, then we construct αn ∈ R such that
{α1, . . . , αn−1, αn} is a primitive set and such that the additional requirement
is satisfied.

Instead of selecting x1 ∈ Z arbitrarily such that g(x1) 6= 0, we have to give
a special treatment to the primes p ∈ Z with 1 < p < n first, for reasons to
become clear later on. We start by choosing for every such prime p an an,p ∈ R
such that ∆(α1, . . . , αn−1, an,p) is non-zero within (the largest field) F

pd̄p . This
can be done by virtue of the induction hypothesis and using arguments as in the
beginning of the section. Then we choose x1 ∈ Z such that modulo every prime
p ∈ Z with 1 < p < n, x1 is congruent to the first coordinate of an,p, and such
that g(x1) is non-zero. Such x1 exists as g has only a finite number of zeroes.

Now fix any prime p ∈ Z with p ≥ n and p divides g(x1). We now select an,p
as required. We have∆(α1, . . . , αn−1) 6= 0 within at least one of the Fp[X]/(f

εp,i

p,i )
into which R/pR splits, by the induction hypothesis. Fix an index k for which
this is the case.

We first treat the case when fp(X) ∈ Fp[X] is irreducible (so `p = k = 1). In
this case R/pR ' Fp[X]/(fp) ' Fpm . Since p ≥ n, there are pm−1 ≥ n elements

7 It is given that g̃ =
∑m

i=1 λiFi for some λi ∈ Q̄[X1, . . . , Xm]. There exists θ ∈ Q̄
such that each of the coefficients of each of the λi’s is in Q(θ). Note that Q(θ)
is a Q-vectorspace with basis 1, θ, . . . , θe−1 for some e. Consider the fraction field
L = Q(X1, . . . , Xm). Similarly, L(θ) is an L-vectorspace with the same basis. Now
consider an arbitrary non-zero coordinate of g̃ w.r.t. that basis. Then we have g =
∑m

i=1 µiFi where g ∈ Q[X1], respectively, µi ∈ Q[X1, . . . , Xm], is this coordinate of
g̃, respectively, of λi. Clearing denominators gives the desired result.



in Fpm with first coordinate x1, and it is clearly possible to select an,p ∈ R as
required, i.e., its first coordinate is x1 and ∆(α1, . . . , αn−1, an,p) 6≡ 0 mod pR.

Second, suppose that the polynomial fp(X) ∈ Fp[X] is reducible. Since p ≥ n,
F
pdp,k (' Fp[X]/(fp,k)) has at least n elements. So it is possible to select an,p ∈ R

such that within F
pdp,k it differs from α1, . . . , αn−1. As a consequence all an,p−αj

are invertible within Fp[X]/(fp,k), and hence also within Fp[X]/(f
εp,k

p,k ). Thus,

∆(α1, . . . , αn−1, an,p) is non-zero within Fp[X]/(f
εp,k

p,k ), and therefore also non-
zero modulo pR.

It remains to argue that an,p may be chosen such that its first coordinate
equals x1. This is by adding a suitable rational integer multiple of a special
element δp ∈ R which has first coordinate 1 but that is 0 within F

pdp,k . We
construct it below, and this finishes the proof.

For convenience, take 1̄, X̄, . . . , X̄m−1 ∈ Z[X]/(f) as the Z-basis e1, . . . , em
for R introduced earlier on. Let c ∈ Fp \ {0} be the constant coefficient of
the irreducible polynomial fp,k ∈ Fp[X] and c−1 ∈ Fp its inverse. Let h(X) =
h0 + h1X + · · ·+ hdp,k

Xdp,k ∈ Z[X] have coefficients in {0, . . . , p− 1} such that
modulo p it equals c−1fp,k(X). Since fp is reducible, h has degree smaller than

m. Moreover it has constant coefficient h0 = 1. Then define δp as h(X) ∈ R.
Indeed, its first coordinate is 1 and δp is clearly 0 within F

pdp,k . ut

5.3 A Generalization of Theorem 4

It is possible to give a generalization of Theorem 4 that applies to arbitrary
orders (of non-zero discriminant), rather than only to integral extensions and
which shows that the lower bound on n is tight if we require that not only ∆ but
all powers of ∆ must have no non-trivial integral divisors. Consider for instance
f = X2 +1 so that R ' Z[i] (the Gaussian integers). Then Theorem 4 promises
a primitive set of size 2, while if fact there is a primitive set of size 3. Indeed,
∆(0, 1, i) = 1 + i has no non-trivial divisors; ∆(0, 1, i)2 = (1 + i)2 = 2i however
has.

Definition 4 (Radically Primitive Elements and Sets). A element δ in
an order R is called radically primitive if the only rational integer divisors of any
power of δ are 1 and −1, i.e., if δk 6≡ 0 modulo any prime p ∈ Z, for all k > 0.
And a set {α1, . . . , αn} in R is called radically primitive if its Vandermonde
determinant ∆(α1, . . . , αn) is radically primitive.

Using similar but more general arguments as in the proof of Theorem 4, the
following can be proved.

Theorem 6. Let R be an order with discriminant ∆R/Z 6= 0. For any prime
p ∈ Z let n(p) = maxp |R/p|, where p ranges over all prime ideals p ⊆ pR over p.
Then the maximal cardinality for a radically primitive set in R is minp prime n(p).



5.4 Computational Complexity

Apart from having a small expansion factor, we would also like to exhibit that
the number of black-box group operations is polynomial in the number of par-
ticipants. This requires that the entries of the sharing matrix M are small (if
we assume that d and e are sufficiently small as is the case for the constructions
above). For an integral extension R = Z[X]/(f) this requires small coefficients
of f and small coefficients of the evaluation points αi when expressed as poly-
nomials of minimal degree.

As mentioned in Section 4.2, for the scheme from [2] one method always
works, namely picking an irreducible polynomial modulo p for every prime p <
n and using the Chinese Remainder Theorem to get a polynomial f over the
integers. The coefficients of this polynomial are all smaller than

∏

p<n p, which
corresponds to a bitlength linear in n. We cannot hope to find polynomials with
coefficients that are much smaller than random CRT based polynomials and that
are still irreducible modulo p for all p < n. The evaluation points that are used
have minimal coefficients (either 0 or 1).

For our new construction, the set of suitable polynomials f is a proper su-
perset of those employed by [2]. This means that we could take f as constructed
above with coefficients whose sizes are linear in n. Unfortunately, the proof of
existence of a primitive set α1, . . . , αn for a suitable f does not guarantee any
reasonable bound on the size of the coefficients: the main problem in the proof
occurs around the place where Hilbert’s Nullstellensatz is invoked.

However, practical experiments indicate that f and the αi’s can in fact be
chosen in such a way that their coefficients are within {−1, 0, 1}, which makes
our scheme computationally more efficient by a factor n then the scheme from [2]
(and any other scheme). Indeed, Fig. 1 shows polynomials f of degree m up to
12, and thus suitable for n up to 212, that allow the following primitive sets:
choose α1, . . . , αn as (residue classes modulo f of) polynomials with coefficients
in {0, 1} and degree less than m such that αi evaluates to i−1 at point 2 (similar
as described in Section 4.2 for the βi’s in the scheme from [2]).

m sample f m sample f

2 X2 −X − 1 8 X8 +X4 −X3 +X − 1
3 X3 −X − 1 9 X9 +X4 − 1
4 X4 −X − 1 10 X10 −X3 +X2 +X − 1
5 X5 −X3 −X2 +X + 1 11 X11 −X5 +X3 +X2 − 1
6 X6 −X − 1 12 X12 +X6 −X5 −X4 −X3 −X + 1
7 X7 −X3 +X2 +X − 1

Fig. 1. Polynomials f that allow binary αi’s

We have been searching for suitable polynomials f with minimal residual
degree deg(f −Xm), and that the polynomials found have rather small residual
degree. This suggests that there is no shortage of suitable polynomials at all. As



an aside, if we assume the existence of a suitable {−1, 0, 1}-polynomial for every
n, then it can always be found in polynomial time.8

The best implementation of the scheme from [2] is given by Stam [14] us-
ing multi-exponentiation techniques. The achieved sharing complexity is Õ(n3)
and the reconstruction complexity Õ(n1+lg 3) group operations. It appears to be
hard to further improve the complexity of the scheme from [2], as the scheme
seems to be bound to an f with n-bit coefficients, and thus the module scalar-
multiplication of a “small” number in R = Z[X]/(f) (meaning represented by
a {−1, 0, 1}-polynomial of degree < m) with an element in Gm requires Θ(mn)
group operations. That is where our complexity improvement stems from: since
we can choose f with constant coefficients, a module scalar-multiplication with
a small number requires only O(m2) group operations, and we achieve a sharing
complexity of Õ(n2) and a reconstruction complexity of Õ(nlg 3) group opera-
tions.9 (The lg(n)-factors hidden by the Õ-notation have exponent at most 2).

The conclusion is that for reasonable values of n (namely for n up to 4096)
our scheme is considerably more efficient than the scheme from [2] (and any other
black-box secret sharing scheme). Furthermore, the evidence indicates that this
is true for any n.

6 A Tight Lower Bound for the Randomness

In this final section we prove that our new black-box secret sharing scheme is
not only optimal with regard to the expansion factor but also with regard to the
randomness complexity. Specifically, we prove a lower bound of t · lg(n) − O(t)
for the randomness complexity of binary linear secret sharing schemes, which
immediately implies the same bound for black-box secret sharing schemes. Recall
that the randomness complexity of our scheme is t · dlg(n)e.

Recently, King proved the lower bound lg
(

n · (n− 1) · · · (n− t+ 2)
)

[9, The-
orem 12], which, using similar techniques as we do, can also be shown to be
t · lg(n)−O(t). However, the proposed proof assumes that the number of rows in
any black-box secret sharing scheme M ∈ Zd×e is lower bounded by d ≥ n lg(n),
while in fact the best known lower bound is d ≥ n lg(n+3)−n (see Theorem 2).
Note that the bound d ≥ n lg(n) used by King is widely conjectured to hold
and sharpening the known lower bound to this conjectured lower bound is an
interesting open problem.

8 In time Õ(n3 lg 3): there are O(nlg 3) candidate polynomials f . Each candidate can be
checked by computing the product of all non-zero {−1, 0, 1}-polynomials modulo f .
There are O(nlg 3) factors in this product and the size of the coefficients in any step
is also bounded by Õ(nlg 3). Note that for n = 212 this polynomial upper bound is
already close to practically infeasible.

9 The exponent lg 3 results from the fact that ∆ (respectively ∆(β) in the scheme
from [2]) can be replaced by its square-free part, which is the product of distinct
polynomials of degree less than m ≈ lgn with coefficients in {−1, 0, 1}, of which
there exist 3m ≈ nlg 3.



Recall that a linear secret sharing scheme over a finite field F is defined along
the lines of Definition 1 and 2, except that Z is replaced by F and G is restricted
to G = F . In the following, e denotes the Euler number e ≈ 2.718.

Theorem 7. For arbitrary t, n ∈ Z with 0 < t < n − 1, the randomness com-
plexity ρ of any binary linear secret sharing scheme M ∈ Fd×e

2 , and thus in
particular of any black-box secret sharing scheme M ∈ Zd×e, for n and t satis-
fies ρ > t · lg n− (1 + lg e)t.

Proof. First of all, the bound for black-box secret sharing immediately follows
from the bound on binary linear secret sharing, as any black-box secret sharing
scheme M ∈ Zd×e reduced modulo 2 results in a binary linear secret sharing
scheme.

Consider a binary linear secret sharing scheme M ∈ Fd×e
2 for t and n as in

the claim. Without loss of generality we may assume that the rows of Mi are
linearly independent for any i. Also, by the lower bound on the expansion factor
from Theorem 2, which also applies to binary linear schemes, we may assume
that, say, Mn consists of dn ≥ dlg(n+3)e − 1 rows (respectively dn ≥ dlg(n)e in
case t = 1). Furthermore, as t > 0, ε = (1, 0, . . . , 0) is not in the space spanned
by the rows inMn. Altogether this implies that, essentially by a basis change,M
can be brought into a form where Mn consists of the (dn × dn)-identity-matrix
padded with zeroes to its left, while still being a binary linear secret sharing

scheme for n and t. Consider now the labeled matrix M ′ ∈ F(d−dn)×(e−dn)
2 by

removing Mn as well as the last dn columns of M (i.e. the columns that overlap
with the identity matrix embedded inMn). The labeling (of the remaining rows)
is left unchanged. It is not hard to see that M ′ is a binary linear secret sharing
scheme for n′ = n− 1 and t′ = t− 1. This procedure can be applied iteratively t
times, resulting in a secret sharing scheme for n− t participants and threshold 0
(which may have randomness complexity 0). The total number of rows removed
during this process, and thus the randomness complexity of the original secret
sharing scheme M is ρ ≥ ∑t−2

i=0

(

dlg(n + 3 − i)e − 1
)

+ d(lg(n − t + 1)e. Using
Stirling’s bounds

√
2π nn+1/2 e−n+1/(12n) < n! <

√
2π nn+1/2 e−n+1/(12n+1)



for factorials, we get

ρ ≥
t−2
∑

i=0

(

dlg(n+ 3− i)e − 1
)

+ d(lg(n− t+ 1)e

≥
t−1
∑

i=0

lg(n− i)− t+ 1 = lg
t−1
∏

i=0

(n− i)− t+ 1 = lg
n!

(n− t)! − t+ 1

> lg
nn+1/2 e−n+1/(12n)

(n− t)(n−t)+1/2 e−(n−t)+1/(12(n−t)+1)
− t+ 1

> lg
nn+1/2 e−n+1/(12n)

n(n−t)+1/2 e−(n−t)+1/(12(n−t)+1)
− t+ 1

= t lg n−
(

t+
1

12(n− t) + 1
− 1

12n

)

lg e− t+ 1

> t lg n− (1 + lg e)t

ut

7 Concluding Remarks

From a practical point of view, the proposed black-box secret sharing scheme
is essentially optimal with respect to its expansion factor (and its randomness
complexity) and it is reasonably efficient for practical values of n: there seems
to be little room for improvement (besides maybe squeezing the constant in
the computational complexity). From a theoretical point of view, there are still
a few open ends: First of all, we only have evidence but no proof that the
proposed black-box secret sharing scheme is computationally efficient for large n.
Furthermore, the question about the minimal achievable expansion factor is still
not entirely solved, there is still a gap of (at most) 2 between the expansion factor
achieved by the proposed scheme and the known lower bound; and we know that
for certain parameters our construction is not optimal: it is for instance an easy
exercise to construct a black-box secret sharing scheme for t = 1 and n = 3
with expansion factor 5/3 (in contrast to 2, achieved by the proposed generic
construction). Finally, all (reasonably good) black-box secret sharing schemes
(for arbitrary t and n) are based on the framework discussed in Section 3. It
would be interesting to discover completely new approaches.
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