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Abstract. We propose a way to establish peer-to-peer authenticated communi-
cations over an insecure channel by using an extra channel which can authen-
ticate very short strings, e.g. 15 bits. We call this SAS-based authentication as
for authentication based on Short Authenticated Strings. The extra channel uses a
weak notion of authentication in which strings cannot be forged nor modi£ed, but
whose delivery can be maliciously stalled, canceled, or replayed. Our protocol is
optimal and relies on an extractable or equivocable commitment scheme.
This approach offers an alternative (or complement) to public-key infrastructures,
since we no longer need any central authority, and to password-based authenti-
cated key exchange, since we no longer need to establish a con£dential password.
It can be used to establish secure associations in ad-hoc networks. Applications
could be the authentication of a public key (e.g. for SSH or PGP) by users over
the telephone, the user-aided pairing of wireless (e.g. Bluetooth) devices, or the
restore of secure associations in a disaster case, namely when one remote peer
had his long-term keys corrupted.

1 On Building Secure Communications

One of the key issue of modern cryptography is the problem of establishing a secure
peer-to-peer communication over an insecure channel. Assuming that we can establish
a private and authenticated key, standard tunneling techniques can achieve it. In the
seminal work of Merkle [32] and Dif£e and Hellman [18], the private and authenticated
key establishment problem was reduced to establishing a communication in which mes-
sages are authenticated. Public key cryptosystems such as RSA [39] further reduce to
the establishment of an authenticated public key. Note that the seed authentication is
also a limiting factor for quantum cryptography [10].

Another major step was the notion of password-based authenticated key agreement
which was £rst proposed by Bellovin and Merritt [8,9] and whose security was proven
by Bellare, Pointcheval, and Rogaway [5] in the random oracle model. Another pro-
tocol, provably secure in the standard model, was proposed by Katz, Ostrovsky, and
Yung [29]. Here, we assume that a private and authenticated short password was set up
prior to the protocol. The key agreement protocol is such that no of¤ine dictionary attack
is feasible against the password so that the threat model restricts to online password-
guessing attacks which are easily detectable.1 When compared to the above approach,
we thus reduce the size of the initial key, but we require its con£dentiality again.

1 See Chapter 7 of [12] for a survey on password-based authenticated key agreement.



3-party models offer other solutions. The Needham-Schroeder model [34] assumes
that everyone has a private authenticated key with a Trusted Third Party (TTP). Ker-
beros [30] is a popular application. The authenticated (only) key model is achieved
with the notion of certi£cate by a Certi£cate Authority (CA). TLS [19] typically uses
X.509 [27] certi£cates. Note that TLS authenticates the server to the client (which is
enough to open a secure tunnel), but that the client authentication is typically based on
a (short) password through the tunnel. Finally, fully password-based 3-party authenti-
cated key agreement was studied by Abdalla, Fouque, and Pointcheval [3].

Ah-hoc networks cannot assume the availability of a central third party and set-
ting up a secure network is a real challenge. Networks which are not attended by a
human operator (e.g. sensor networks) can use a pragmatic solution such as the “resur-
recting duckling” paradigm of Stajano and Anderson [40]. Smaller networks which are
attended by a human operator such as networks of personal mobile devices (laptops,
cell phones, PDAs, headsets, ...) can use the human operator as a third party, but must
minimize his job. A familiar example is the Bluetooth [2] pairing: the operator picks
a random PIN code and types it on devices to be associated, and a pairing protocol is
run through a wireless link to establish a 128-bit private authenticated key. Operator-
to-device transmissions is assumed to be secure (i.e. con£dential and authenticated).
However, as shown by Jakobsson and Wetzel [28], the standard Bluetooth pairing pro-
tocol is insecure unless we assume that either the radio communications in the pairing
protocol are con£dential as well, or the PIN code is long enough.

long key short key
A + C channel symmetric-key cryptography password-based authenticated key

agreement
A channel public-key cryptography SAS-based authentication

Fig. 1. Two-Party Private and Authenticated Key Establishment Paradigms.

Solutions to the secure communications over insecure channels therefore seem to
go to two opposite directions (which further translate in a 3-party model): remove the
con£dential channel (and use public keys) or use short passwords rather than long secret
keys. A natural additional step consists of combining the two approaches: using an extra
channel which only provides authentication and which is limited to the transmission of
short bitstrings. A straightforward solution consists of authenticating every message of
a regular key agreement protocol such as the Dif£e-Hellman protocol [18] as suggested
by Balfanz et al. [4]. The size of messages is typically pretty high, but can be reduced
by authenticating only the hashed values of the messages. By using a collision resistant
hash function, the number of bits to authenticate typically reduces to 160 bits, but a
160-bit string is still pretty long: by using the encoding rules of the RFC 1760 [23]
standard we can represent 160 bits in a human friendly way by using 16 small English
words. A second solution by Hoepman [25,26] can signi£cantly reduce this number. It
is based on special purpose hash functions. However, the security proof is incomplete
and no hash functions with the required properties happen to exist. Another approach



by Gehrmann, Mitchell, and Nyberg [21] (dedicated to the Bluetooth pairing problem)
called MANA I (as for Manual Authentication), based on a universal hash function
family, can perform a message authentication. They however require a stronger notion
of authentication channel. Interestingly, those protocols were proposed to replace the
current insecure Bluetooth pairing protocol and are now suggesting new solutions in
more traditional secure communication standards, e.g. IKEv2 (see Nyberg [35]).

In this paper, we study solutions which can achieve message authentication by using
the (weak) authentication of a short bitstring. We call them SAS-based schemes as for
“Short Authenticated Strings”. A typical application is the pairing problem in wireless
networks such as Bluetooth. Another application is secure peer-to-peer communication:
if two persons who know each other want to set up a secure communication they can
exchange SAS on a postcard, by fax, over a phone call, a voice message, or when they
physically encounter.

The other MANA protocols [21,22], as well as the extension of the Hoepman pro-
tocols by Peyrin and Vaudenay [38], can be seen as a 3-party translation called the
“User-Aided Key Exchange (UAKE)”. The user becomes a real participant in the pro-
tocol who does simple computations like comparing strings or picking a random one.
The security proof in the present paper could equally apply to these cases.

2 Preliminaries

2.1 Communication and Adversarial Models

We consider a communication network with (insecure but cheap) broadband commu-
nication channels and narrowband channels which can be used to authenticate short
messages. Authenticated channels are related to a node identity ID. An illustration for
this model is the location-limited channel of Balfanz et al. [4]. For instance, a user
A working on his laptop in an airport lounge would like to print a con£dential docu-
ment on a laser printer B through a wireless link. The user reading a message on the
LCD screen of B and typing it on the laptop keyboard is an authenticated channel from
the identi£ed printer to the laptop. A SAS-based authentication protocol can be used
to transmit and authenticate the public key of the printer by keeping small the trans-
mission over the authenticated channel. Another example is when Bob would like to
authenticate the PGP public key of Alice in his key ring. If he can recognize her voice,
she can spell a SAS on his voice mail. If he can recognize her signature, she can send a
signed SAS to him by fax or even on a postcard.

Adversarial model. Except for the authentication channels, we assume that the ad-
versary has full control on the communication channels. In particular, she can prevent a
message from being delivered, she can delay it, replay it, modify it, change the recipient
address, and of course, read it. We adopt here the stronger security model of Bellare-
Rogaway [6,7] which even assumes that the adversary has full control on which node
launches a new instance of a protocol, and on which protocol instance runs a new step
of the protocol. Bellare-Rogaway [6,7] considered protocols for access control or key
agreement which basically have no input. Here, protocols do have inputs and we assume
that the adversary can choose it. Namely, we assume that the adversary has access to a



launch(n,r,x) oracle in which n is a node of the network, r is a character (i.e. a role to
play in the protocol), and x is the input of the protocol for this character. This oracle re-
turns a unique instance tag πi

n. Since a node can a priori run concurrent protocols, there
may be several instances related to the same node n. To simplify we restrict ourselves
to 2-party protocols so that there are only two characters Alice and Bob in the protocol.
Any node can play any of these characters. A q-shot adversary is an adversary limited
to q launch(·,Alice, ·) queries and q launch(·,Bob, ·) queries. The adversary also has
access to the oracle send(πi

n,m) which sends a message m to a given instance and re-
turns an m′ message which is meant to be sent to the other participant. For example, a
protocol with input x and y respectively can be run on node A and B by

1. πa← launch(A,Alice,x)
2. πb← launch(B,Bob,y)
3. m1← send(πa, /0)
4. m2← send(πb,m1)
5. m3← send(πa,m2)
6. ...

until a message is a termination message. Note that the Bellare-Rogaway model [6,7]
considers additional oracles reveal(πi

n) (which reveals the output from a protocol in-
stance), corrupt(n,x) (which corrupts the collection of instances related to the node n
and forces their private states to become x), and test (which is speci£c to the semantic
security of key agreement protocols). These oracles are not relevant here since we never
use long-term secrets and the output of the protocols is not secret.

Authentication channel. The authentication channels provide to the recipient of a mes-
sage the insurance on whom sent it as is. In particular the adversary cannot modify it
(i.e. integrity is implicitly protected). On the other hand she can stall it, remove it, or
replay it. We stress that those channels are not assumed to provide con£dentiality. For-
mally, an authentication channel from a node n refers to the identi£er IDn. The send

oracle maintains an unordered set of authenticated messages in all authenticated chan-
nels from the node n. Only send oracles with a πi

n instance can insert a new message x
in this set. Later, when a send oracle is queried with any instance tag and a message of
form authenticateIDn(x), it is accepted by the oracle only if x is in the set. Note that con-
current or successive instances related to the same node write in the same set: messages
from the node are authenticated, but the connection to the right instance is not. Authen-
ticated channels can typically be implemented, e.g. by human telephone conversations,
voice mail messages, handwritten postcards, etc.

Stronger authentication channel. We can also consider strong authentication channels,
namely authenticated channels which provide an additional security property. We list
here a few possible properties in an informal way.

Stall-free transmission: from the time an authenticated message is released by a send

oracle to the time it is given as input to a send oracle query, no other oracle query
can be made. Hence, either the message is treated by the immediately following
oracle query, or it is never used.



Transmission with acknowledgment: messages are released together with a destination
node identi£er, and the sending instance is given a way to check whether at least
one instance related to this node has received the message or not.

Listener-ready transmission: similarly, the sending instance can check if an instance
related to the destination node is currently listening to the authenticated channel.

Face-to-face conversations achieve all properties. Telephone conversations achieve the
last two properties: Alice starts talking to Bob when she is aware that Bob is listening,
and subtle human senses assure her that Bob has heard her message. Less interactive
communications such as voice mail messages do not provide these properties: Bob may
not even be aware that Alice wants to send him a message, and Alice has neither way
to know when Bob has received it, nor insurance that her message was recorded.

Message authentication protocol. Our message authentication protocols have input m
on the side of the claimant Alice and output I||m̂ on the side of the veri£er Bob. Intu-
itively, they should be such that I = IDA and m̂ = m, meaning that m̂ coming to node B
was authenticated as sent by IDA, the identi£er of Alice.

On a global perspective, several launch(Ak,Alice,mk) and launch(B`,Bob, /0) are
queried, which creates several πik

Ak
instances of Alice (authentication claims) and several

π j`
B`

instances of Bob (authentication veri£cations). If no attack occurs then we have a
perfect matching between the k’s and `’s, related instances have matching conversations
which fully follow the protocol speci£cations, and the π j`

B`
ends with output IDAk ||mk for

the matching k. In any other case we say that an attack occurred. We say that an attack is
successful if there exists at least an instance π j`

B`
which terminated and output I||m̂ such

that there is no k for which I = IDAk and m̂ = mk. Note that many protocol instances can
endlessly stay in an unterminated state or turn in an abort state. In particular, we do not
consider denial-of-services attacks.

2.2 Commitment Schemes

Our protocols are based on commitment schemes. They are used to commit on an ar-
bitrary non-hidden message m together with a hidden k-bit string r. We formalize them
by three algorithms.

setup which generates a random parameter KP (which is used by all other algorithms
and omitted from notations for simplicity reasons) and a secret key KS.

commit(m,r) which takes a message x = m||r and produces two strings: a commit value
c and a decommit value d. Here, we consider that x includes a part m which is not
meant to be hidden and a part r which is a hidden k-bit string. We can call m a tag
for the commitment so that we have a tag-based commitment to r. Note that this
algorithm is typically non deterministic.

open(m,c,d) which takes m, c, and d and yields a message r or an error signal. We
require this algorithm to be deterministic and to be such that whenever there exists
r such that (c,d) is a possible output for commit(m,r), open(m,c,d) yields r.

Note that the setup plays no real role so far. It is used in extensions of commitment
schemes. We keep it anyway to have de£nitions well suited to all kinds of commitment
schemes that will be used. Commitment schemes have two security properties.



– (T,ε)-hiding: no algorithm A bounded by a time complexity T can win the follow-
ing game by interacting with a challenger C with a probability higher than 2−k +ε.
1. C runs setup and sends KP to A .
2. A selects a tag m and sends it to C .
3. C picks a random r, runs commit on (m,r), gets (c,d), and sends c to A .
4. A yields r′ and wins if r = r′.

When T = +∞ and ε = 0, we say that the scheme is perfectly hiding.
– (T,ε)-binding: no algorithm A bounded by a time complexity T can win the follow-

ing game by interacting with a challenger C with a probability higher than 2−k +ε.
1. C runs setup and sends KP to A .
2. A selects a tag m and sends it to C .
3. A selects a c and sends it to C .
4. C picks a random r and sends it to A .
5. A computes a d and wins if (m,c,d) opens to r.

When T = +∞ and ε = 0, we say that the scheme is perfectly binding.

Commitment schemes can be relative to an oracle, in which case all algorithms and
adversaries have access to the oracle. However, they have no access to the complete
history of oracle calls. Extensions of commitment schemes have extra algorithms which
do have access to this history.

Extractable commitment. In this extension of commitment schemes, there is an addi-
tional deterministic algorithm extractKS(m,c) which yields r when there exists d such
that (m,c,d) opens to r. When using oracles, this algorithm is given the history of oracle
queries. Clearly, extractable commitments are perfectly binding. Adversaries playing
the hiding game can make oracle calls to extract, except on the committed m tag.

Equivocable commitment. In this extension of commitment schemes, there are two al-
gorithms simcommitKS(m) and equivocateKS

(m,c,r,ξ). simcommit returns a fake com-
mit value c and an information ξ, and equivocate returns a decommit value d such that
(m,c,d) opens to an arbitrary r for (c,ξ) obtained from simcommit. For any KP||KS

and any m, the distribution of fake commit values is assumed to be identical to the
distribution of real commit values to any r with tag m. From this we deduce that the
commitment is perfectly hiding. Adversaries playing the binding game can make oracle
calls to simcommit and equivocate, except on the committed m tag, and are assumed
not to see ξ. Namely, the equivocate oracle works only if there was a matching oracle
call to simcommit before, and gets ξ directly from the history. In our paper, we further
assume that adversaries are limited to a single query to simcommit and equivocate.
This is a quite restrictive assumption, but it will be enough for our purpose.

Example 1 (Ideal commitment model). A £rst commitment scheme model which can
be used is the ideal commitment model. Here, we assume that the network includes a
trusted third party (TTP) with whom anyone can communicate in a perfectly secure
way. The commit algorithm consists of securely sending a message x to the TTP. The
TTP attaches it to a nonce value c which is returned to the sender and inserts (c,x) in an
archive with a protection ¤ag set. There is no decommit value, but the same sender can



replace the disclosure of it by a decommit call to the TTP. Then, the TTP clears the pro-
tection ¤ag of the (c,x) entry which becomes readable by anyone. Obviously we obtain
a perfectly binding and hiding scheme. Note that it is extractable and equivocable.

Example 2 (Extractable commitment based on a random oracle). We take an easy com-
mitment scheme which was already mentioned in Pass [37]. Here, we use a random
oracle H which upon a query d returns a random value c ← H(d) in {0,1}`c . The
commit(m,r) algorithm simply picks a random value e in {0,1}`e , takes d = r||e, and
calls c← H(m||d). The open(m,c,d) algorithm simply extracts r from d and checks
that c = H(m||d). When all oracle queries to H produce no collision on m||c, commit-
ments can trivially be extracted form the history. When the number of queries is q, this
is the case, except with probability less than q2.2−`c−1. We prove that the best strategy
for an adversary to play the hiding game is to look for r||e exhaustively by trying it with
H. Actually, if for each r the adversary has queried qr values H(m||r||e) on the commit-
ted tag m, the probability of success when answering r is one if the right r||e was found,
which happens with probability 2−`e−k ∑s qs, and (2`e−qr)/(2`e+k−∑s qs) in the other
case. Hence, the overall probability of success is 2−k + 2−`e−k(∑s qs− qr) which is at
most 2−k +q.2−`e−k. Hence, when H is limited to q accesses, the commitment scheme
is (+∞,q.2−`e−k)-extractable with probability at least 1− q2.2−`c−1. So with `c = 2`e

and `e = 80, the scheme is pretty safe until the complexity reaches a number of oracle
calls within the order of magnitude of 280−k.

Example 3 (Equivocable commitment based on a signature scheme). One can easily
prove (see Appendix B) that the notion SSTC(2) of simulation-sound trapdoor commit-
ment as de£ned in MacKenzie-Yang [31], where the adversary is given two equivocate

oracle calls, provides equivocable commitments following our de£nition. Hence, from
[31] we get a nice equivocable commitment scheme based on DSA [1] and another one
based on the Cramer-Shoup signature scheme [14]. We can also use the stronger notion
of non-malleable commitments [15,16,20], and in particular the Damgªard-Groth com-
mitment scheme [17] based on the strong RSA assumption in the common reference
string (CRS) model.

Introducing a public key may look paradoxical since the purpose of our work is to
get rid of any a priori authenticated public key. This is the puzzling aspect of the CRS
model: we assume usage of a public key for which a secret key exists, but that nobody
can use it. We can even rely on the uniform random string (URS) model (see [17]) in
which the public key is a uniformly distributed reference bitstring.

2.3 Previous Work

The Gehrmann-Mitchell-Nyberg MANA I [21] protocol is depicted in Fig. 2.2 By con-
vention we put a hat on received messages which are not authenticated since they can
differ from sent messages in the case of an active attack. Other MANA protocols are
designed for two devices attended by a user who can do simple operations. MANA I is
the only protocol in which the user is a passive messenger who only forwards messages.

2 Note that the original MANA I protocol is followed by an authenticated acknowledgment.



MANA I uses a universal hash function family H. Proposed constructions lead to 16–
20 bit long SAS values. Although MANA I is essentially non-interactive, the security
requires a stronger authentication channel. Otherwise, one can run the following attack.

1. πa← launch(A,Alice,m)
2. πb← launch(B,Bob, /0)
3. m← send(πa, /0)
4. authenticateAlice(K||µ)← send(πa, /0)
5. £nd m̂ 6= m such that HK(m̂) = µ by random search
6. send(πb, m̂)
7. send(πb,authenticateAlice(K||µ))

MANA I is nevertheless secure when using an authentication channel which provides
stall-free transmission or listener-ready transmission as de£ned in Section 2.1.

Alice Bob
input: m

pick K ∈U {0,1}k m
−−−−−−−−−−−−−−−−→

µ← HK(m)
authenticateAlice(K||µ)
−−−−−−−−−−−−−−−−→ check µ = HK( m̂)

output: Alice, m̂

Fig. 2. The MANA I Protocol.

The Hoepman authenticated key agreement protocol [25] is depicted in Fig. 3. It
consists of a commitment exchange and an authentication exchange, followed by a
regular Dif£e-Hellman protocol [18].3 The protocol is based on the decisional Dif£e-
Hellman problem in a group G. It works with the hypothesis that H1 and H2 are two
hash functions such that H2 is balanced from G to {0,1}k, and given a uniformly dis-
tributed X in G, the two random variables H1(X) and H2(X) are independent. Although
no example which meet these criteria is provided in [25]4, Hoepman provided a sketch
of security proof for the complete protocol5 in the Bellare-Rogaway model.

3 Non-Interactive Message Authentication

We £rst present a solution based on a collision resistant hash function inspired by Bal-
fanz et al. [4]. Since the result is quite straightforward, the proof is omitted.

3 Note that £rst committing to the Dif£e-Hellman values was already suggested by Mitchell-
Ward-Wilson [33].

4 One can note that the criterion on H2 seemingly suggests that the order of G should be a
multiple of 2k which is not the case in classical Dif£e-Hellman groups so (H1,H2) instances
may not exist at all.

5 Fig. 3 presents a simpli£ed version of the protocol. The complete protocol is followed by a key
con£rmation and a key derivation based on the leftover hash lemma [24] (see Boneh [11]).



Alice Bob
pick xA ∈U {0, . . . , |G|−1} pick xB ∈U {0, . . . , |G|−1}

yA← gxA yB← gxB

hA← H1(yA)
hA−−−−−−−−−−−−−−−−→
hB←−−−−−−−−−−−−−−−− hB← H1(yB)

SASA← H2(yA)
authenticateAlice(SASA)
−−−−−−−−−−−−−−−−→

authenticateBob(SASB)
←−−−−−−−−−−−−−−−− SASB← H2(yB)

yA
−−−−−−−−−−−−−−−−→ check ĥA,SASA

check ĥB,SASB
yB

←−−−−−−−−−−−−−−−−
kA← ( ŷB)xA kB← ( ŷA)xB

output: Bob,kA output: Alice,kB

Fig. 3. The Hoepman Authenticated Key Agreement Protocol.

Theorem 4. Let µ be the overall time complexity of the message authentication proto-
col in Fig. 4. Given an adversary of time complexity T , number of launch oracle queries
Q, and probability of success p, we can £nd collisions on H within a complexity T +µQ
and same probability.

One advantage of this protocol is that it is non-interactive. Collision resistance requires
the number of authenticated bits to be at least 160 which is still quite large. We can
actually half this number by using the Pasini-Vaudenay protocol [36] based on a hash
function resisting to second preimage attacks (a.k.a. weakly collision resistant hash
function).6 Note that the MANA I protocol requires less bits, but a stronger authentica-
tion channel which renders the protocol “less non-interactive”.

Alice Bob
input: m

m
−−−−−−−−−−−−−−−−→

h← H(m)
authenticateAlice(h)

−−−−−−−−−−−−−−−−→ check h = H( m̂)
output: Alice, m̂

Fig. 4. Message Authentication using a Collision Resistant Hash Function.

4 SAS-based Message Authentication

In Fig. 5 is depicted a SAS-based message authentication protocol. Basically, Alice £rst
commits on her (non-hidden) input message m together with a hidden random string RA.

6 This protocol consists of sending m||c||d||authenticate(H(c)) where (c,d) is obtained from
m by using a trapdoor commitment.



After reception of m and the commit value c, Bob picks a random string RB and gives
it to Alice. Alice then opens her commitment by sending a d and sends SAS = RA⊕RB

through her authenticated channel. Bob can £nally check the consistency of this string
with the commitment. This protocol can be used to authenticate in both directions and
henceforth for authenticated key agreement as detailed in Appendix A.

With weak authentication channels, the adversary can run as follows:

– impersonate Bob and start the protocol with Alice with m,c, R̂B,d,
– stall the SAS message,
– launch several Bob’s and impersonate Alice with m̂, ĉ, d̂ until Alice’s SAS matches,
– deliver the SAS and complete the protocol.

This attack works within a number of trials around 2k. Note that the attack is not dis-
crete on Bob’s side since many protocols abort. Similarly, the adversary can launch
many instances of Alice and make a catalog of Alice’s SAS messages. After Alice has
performed quite a lot of protocols, the catalog can be close to the complete catalog of 2k

messages. With this collection, the adversary can impersonate Alice. Note that the at-
tack is pretty discrete here. We can further trade the number of instances of Bob against
the number of instances of Alice and have a birthday paradox effect. Namely, with 2

k
2

concurrent runs of Alice and Bob we have fair chances of success.

Alice Bob
input: m

pick RA ∈U {0,1}k pick RB ∈U {0,1}k

c||d← commit(m||RA)
m||c

−−−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−−−−
d

−−−−−−−−−−−−−−−−→ R̂A← open( m̂, ĉ,̂d)

SAS← RA⊕ R̂B
authenticateAlice(SAS)
−−−−−−−−−−−−−−−−→ check SAS = R̂A⊕RB

output: Alice, m̂

Fig. 5. SAS-based Message Authentication.

Theorem 5. We consider one-shot adversaries against the message authentication pro-
tocol in Fig. 5. We denote by T and p their time complexity and probability of success,
respectively. We assume that the commitment scheme is either (TC,ε)-extractable or
(TC,ε)-equivocable. There exists a (small) constant µ such that for any adversary, we
have either p≤ 2−k + ε or T ≥ TC−µ.

Our results seemingly suggest that for any secure commitment scheme the success prob-
ability of practical one-shot attacks is bounded by 2−k + ε where ε is negligible. Our
results are pretty tight since adversaries with a probability of success 2−k clearly exist.

Proof. Due to the protocol speci£cations, a successful adversary must perform the fol-
lowing sequences of steps to interact with Alice and Bob. The way the adversary inter-
leaves the two sequences is free.



1. select m, πa← launch(·,Alice,m)
2. c← send(πa, /0)
3. select R̂B, d← send(πa, R̂B)

1. πb← launch(·,Bob, /0)
2. select m̂||ĉ, RB← send(πb, m̂||ĉ)
3. select d̂, send(πb, d̂)

The attack runs like a game for the adversary A who wins if (m,c,d) (resp. (m̂, ĉ, d̂))
opens to RA (resp. R̂A) such that RA⊕ R̂B = R̂A⊕RB. The game starts by receiving the
selected public parameter KP (if any) for the commitment scheme. We can make A play
with a simulator for Alice and Bob. Note that an attack implies that m 6= m̂.

A B C
KP←−

KP←−
m
−→

m
−→

c
←−

c
←−

R̂B−→ pick R
R
−→

d
←− RA← open(m,c,d)

d
←−

m̂|| ĉ
−→ R̂A← extract( m̂, ĉ)
RB←− pick RB
d̂
−→

Case 1

A B C
KP←−

KP←−
·· ·
m
−→

m
−→

c
←−

c
←−

·· ·
m̂|| ĉ
−→ R̂A← extract( m̂, ĉ)
RB←− pick RB
· · ·
R̂B−→ RA← R̂A⊕RB⊕ R̂B

RA−→
d
←−

d
←−

·· ·
d̂
−→

Case 2

Fig. 6. Reduction with Extractable Commitments.

Extractable commitments. We construct from A an adversary B who plays an aug-
mented hiding game with the help of one query to the extract oracle. The augmented
hiding game consists of the regular one followed by C sending the right decommit
value d. Obviously, an adversary playing this augmented game can be transformed into
an adversary playing the regular game with the same winning probability. As depicted
in Fig. 6, B £rst receives KP and sends it to A . Then, he simulates Alice and Bob to
A . Whenever A sends m to Alice, B submits it in the augmented hiding game. Then, B
receives a challenge c which is sent back to A (i.e., Alice does not compute any com-
mitment but rather uses the challenge). Whenever A sends m̂||ĉ to Bob, B can extract
R̂A by calling extract(m̂, ĉ). When A sends R̂B to Alice, we distinguish two cases.

Case 1. If A did not send m̂||ĉ to Bob yet, there is essentially one way to interleave the
two sequences which consists in £rst playing with Alice, then playing with Bob.
Here, B answers a random R to the challenge and wins with probability 2−k. B
continues the simulation and plays with A by receiving d and sending it from Alice
to A . Then, A sends m̂||ĉ to Bob from which B extracts R̂A. Bob’s simulation picks
a random RB, but RA, R̂A, and R̂B are £xed. So, A wins with probability 2−k. Hence,
A and B win their respective game with the same probability in this case.



Case 2. If now A has sent m̂||ĉ to Bob, B can compute RA = R̂A⊕RB⊕ R̂B and answer
RA. B receives d and sends it to A . A typical example is depicted on Fig. 6. Here,
A and B win or loose at the same time, thus win with the same probability.

We observe that the simulation by B is perfect and that the extraction is legitimate since
m 6= m̂. We deduce that we can win the hiding game with the same probability as the
attack. Let µ be the complexity of the protocol plus one oracle call. The complexity of
B is essentially the complexity of A plus µ. The success probability of the attack is thus
at most 2−k + ε.

A B C
KP←−

KP←−
m
−→

c
←− c← simcommit(m)
R̂B−→ pick RA
d
←− d← equivocate(m,c,RA)

m̂|| ĉ
−→

m̂|| ĉ
−→

RB←− RB← RA⊕ R̂A⊕ R̂B
R̂A←−

d̂
−→

d̂
−→

Case 1

A B C
KP←−

KP←−
·· ·
m
−→

c
←− c← simcommit(m)
· · ·
m̂|| ĉ
−→

m̂|| ĉ
−→

RB←− pick RB
R̂A←−

·· ·
R̂B−→ RA← R̂A⊕RB⊕ R̂B
d
←− d← equivocate(m,c,RA)
· · ·
d̂
−→

d̂
−→

Case 2

Fig. 7. Reduction with Equivocable Commitments.

Equivocable commitments. From A we construct an adversary B who plays the bind-
ing game with the help of one query to the simcommit and equivocate oracles. (See
Fig. 7.) Namely, B runs A and £rst forwards KP. Whenever B receives m̂ and ĉ from
A , he submits it in the binding game. Whenever B must send c to A , he launches the
simcommit oracle to get c. When A sends R̂B to Bob, we distinguish two cases.

Case 1. If A did not send m̂||ĉ to Bob yet, there is essentially one way to interleave
the two sequences. Here, B picks a random RA and equivocate his commitment
by calling equivocate(m,c,RA) so that he can send d to A . When receiving the
challenge R̂A, B chooses RB = RA⊕ R̂A⊕ R̂B and send it to A .

Case 2. If now A has sent m̂||ĉ to Bob, B has already answered some random RB to
A and received some challenge R̂A. He can thus compute RA = R̂A⊕RB⊕ R̂B and
equivocate his commitment by calling equivocate(m,c,RA). A typical example is
depicted on Fig. 6.

Here, A and B win or loose at the same time, thus win with the same probability so we
conclude as for the extractable commitments. ut



5 On the Selection of the SAS Length

We now study the security in a multiparty and concurrent setting.

Lemma 6. We consider a message authentication protocol with claimant Alice and
veri£er Bob in which a single SAS is sent. We denote by µA (resp. µB) the complexity of
Alice’s (resp. Bob’s) part. We consider adversaries such that the number of instances
of Alice (resp. Bob) is at most QA (resp. QB). We further denote by T0 and p0 their time
complexity and probability of success, respectively. There is a generic transformation
which, for any QA, QB, and any adversary, transforms it into a one-shot adversary with
complexity T ≤ T0 +µAQA +µBQB and probability of success p≥ p0/QAQB.

The lemma tells us that once we proved that a protocol resists one-shot adversaries
up to a probability of success of p, then it resists to adversaries up to a probability
of success which is close to QAQB p. With the protocol in Fig. 5, this probability is
basically QAQB.2−k. This bound is tight as shown by the attacks in Section 4.

Proof. Let us consider an adversary A . We number every instance of Alice and every
instance of Bob by using two separate counters. We say that an instance πa of Alice is
compatible with an instance πb of Bob if πb succeeded and received an authenticated
message which was sent by πa. The number of possible compatible pairs of instances
is upper bounded by K = QAQB. When an attack is successful, it yields a random pair
(I,J) of compatible instances of Alice and Bob.

We transform A into a one-shot adversary B as follows: we run A and simulate
launch and send oracle calls. We pick a random pair (I∗,J∗) with uniformly distributed
I∗ ∈ {1, . . . ,QA} and J∗ ∈ {1, . . . ,QB}. When A queries launch(·,Alice, ·) for the I∗th
time, B forwards the query to the real launch oracle. send queries to the related in-
stance are also forwarded to the real send oracle. The same holds for the J∗th query
launch(·,Bob, ·). Clearly, the attack succeeds with probability p0/QAQB on the only
non-simulated instances. It runs with complexity T0 +µAQA +µBQB. ut

For applications, we assume that the number of network nodes is N ≈ 220, and that
the number of protocol runs per node is limited to R ≈ 210. Actually, the protocols are
not meant to be run so many times: only for seed authentication. Indeed, they can be
used to authenticate a public key, and authentication can later be done using the public
key itself so the protocol is no longer useful. We target a probability of success limited
to p≈ 2−10. Using Th. 5 and the previous lemma tells us that we can take k≥ log2

QAQB
p .

When considering the probability of success at large over the network, i.e. the
probability that an attack occurs somewhere in the network, we have the constraint
QA + QB ≤ NR. Thus we have QAQB ≤ N2R2/4 for our message authentication pro-

tocol. Thus we can take k = log2
N2R2

4p = 68 which is already shorter than the solution
based on hash functions.

When considering the probability of success against a target veri£er node, i.e. the
probability that a given user will accept a forged message, we take QB ≤ R as an addi-
tional constraint. Thus we have QAQB ≤ NR2 which leads us to k = log2

NR2

p = 50. By
using the encoding rules of the RFC 1760 [23] standard, this represents £ve 4-character
human-friendly (or at least English) words.



Credit cards ATM use 4-digit PIN codes which are con£dential and quite strongly
authenticated. Protocols are also limited to three trials. In our settings, this translates
into a 3-shot 2-party model: N = 2, R = 3, and p = 3 · 10−4. To reach the same se-
curity level with weak authentication and no con£dentiality, we need a SAS of size
k = log2

NR2

4p ≈ 15 bits, i.e. a 5-digit PIN code.

6 Conclusion

We have shown how to achieve authentication over an insecure channel by using a nar-
rowband authentication channel. The later channel is used to authenticate a short string:
the SAS. Using weak authentication, we can obtain high security level in a multiparty
setting by using 50-bit SAS. Note that in a 3-shot 2-party adversarial model, a 15-bit
SAS (i.e. a 5-digit PIN code) is enough. This is similar to the MANA I protocol, except
that we no longer require a strong notion of authentication. SAS channels are widely
available for human beings: they can transmit SAS by fax, voice mail, type them on
mobile devices, etc.

Our protocol is well suited to ad-hoc message authentication. It can be used for PKI-
less public key transmission or to run a key agreement protocol. It can also be used to
restore a secure association in disaster cases when two remote peers have compromised
their secret keys or a PKI is badly broken. Another application could be a Bluetooth-
like pairing between physically identi£ed wireless devices with higher security: we no
longer rely on the secrecy of a PIN code but on the authentication through a human user
of a short string.

Our protocol relies on a commitment scheme and is provably secure in the strongest
security model so far, namely the Bellare-Rogaway model, by using extractable or
equivocable commitment schemes. They can be constructed in the ideal commitment
model, in the random oracle commitment model, and in the CRS model.
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A Message Cross-Authentication

We consider protocols which perform message authentication in both directions at the
same time. These protocols have inputs mA on the side of Alice and mB on the side



of Bob, and outputs IB||m̂B on the side of Alice and IA||m̂A on the side of Bob. They
should be such that they achieve message authentication in both directions. In Fig. 8 is
a message cross-authentication protocol. It requires k authenticated bits in both ways.
Obviously, an adversary against this protocol transforms into an adversary against the
message authentication protocol in Fig. 5. So Theorem 5 holds for this new protocol
as well. This protocol can be used e.g. to run the Dif£e-Hellman authenticated key
agreement protocol [18] with mA = gxA and mB = gxB . This is essentially the protocol
called DH-SC in [13].

Alice Bob
input: mA input: mB

pick RA ∈U {0,1}k pick RB ∈U {0,1}k

cA||dA← commit(0||mA||RA)
mA||cA

−−−−−−−−−−−−−−−−→
mB||cB

←−−−−−−−−−−−−−−−− cB||dB← commit(1||mB||RB)
dA−−−−−−−−−−−−−−−−→ R̂A← open(0|| m̂A, ĉA, d̂A)

R̂B← open(1|| m̂B, ĉB, d̂B)
dB←−−−−−−−−−−−−−−−−

SASA← RA⊕ R̂B
authenticateAlice(SASA)
−−−−−−−−−−−−−−−−→ SASB← R̂A⊕RB

check SASA = SASB
authenticateBob(SASB)
←−−−−−−−−−−−−−−−− check SASA = SASB

output: Bob, m̂B output: Alice, m̂A

Fig. 8. SAS-based Cross Authentication.

B Using Simulation-Sound Trapdoor Commitments

MacKenzie-Yang [31] de£nes SSTC commitments by £ve algorithms setup ′, commit′,
verify′, simcommit′, and equivocate′. The only syntaxic difference with our de£nition
is in the verify′ algorithm which replaces open, but without message recovery. Namely,
commit′(m,r) yields a pair (c,e) and verify′(m,c,r,e) = true whenever (c,e) is a pos-
sible output of commit′(m,r). Obviously, by letting d = r||e, we de£ne a commitment
scheme in our sense.

In [31], the hiding game is restricted to a 2-fold game. Namely, the adversary yields
r0 and r1 together with c, and the challenger picks r equal to one of these two values.
The adversary should have a probability of success less than 1

2 +ε. The following lemma
proves that such a commitment scheme is 2ε-hiding in our sense.

Lemma 7. There exists a (small) constant ν such that for any T and ε, a (T + ν,ε)-2-
fold-hiding commitment scheme is a (T,2ε)-hiding commitment scheme.

Proof. Let A be an adversary of complexity at most T which plays our 2k-fold hiding
game. We construct an adversary B for the 2-fold hiding game as follows.

1. B receives KP and forwards it to A .



2. A sends m to B .
3. B picks two random different r0 and r1 and plays m,r0,r1.
4. B receives a challenge c which commits to either r0 or r1 and forwards it to A .
5. A answers to the challenge by a string r.
6. If r = rb, B answers b. Otherwise, B picks a random bit b and answers b.

We let ν be the complexity of B without A . Obviously, B perfectly simulates a chal-
lenger for the 2k-fold game to A . Let p′ = 2−k + ε′ be the probability of success of
A . When A is successful, so is B . When A is not successful and r 6∈ {r0,r1}, B suc-
ceeds with probability 1

2 . When A is not successful and r ∈ {r0,r1}, B fails. Hence, the
probability that B answers correctly to the 2-fold game is

p = p′ +
1− p′

2

(

1−
1

2k−1

)

=
1
2

+ p′
2k

2(2k−1)
−

1
2(2k−1)

=
1
2

+ ε′
2k

2(2k−1)

Since we must have p− 1
2 ≤ ε, we deduce ε′ ≤ 2ε(1−2−k)≤ 2ε. ut

In [31], our binding game is replaced by the ability to produce a collision, namely a
(m,c,d,d′) quadruplet such that (m,c,d) and (m,c,d ′) successfully open to two differ-
ent values. Following the simulation-sound binding property de£nition, the adversary
has access to simcommit′ and equivocate′ like in our de£nition. Namely, they do not see
ξ and cannot decommit values which are not issued by simcommit′. By usual rewind-
ing techniques, we show that from an adversary who wins our binding property with
probability 2−k +ε in time T and one simcommit query we can make an adversary who
£nds collisions with probability 2−2kε in time 2T and two simcommit queries.


