
Non-Interactive Timestamping in the Bounded

Storage Model

Tal Moran1, Ronen Shaltiel2?, and Amnon Ta-Shma1

1 Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
2 Department of Computer Science and Applied Mathematics, Weizmann Institute of

Science, Rehovot, Israel

Abstract. A timestamping scheme is non-interactive if a stamper can
stamp a document without communicating with any other player. The
only communication done is at validation time. Non-Interactive times-
tamping has many advantages, such as information theoretic privacy and
enhanced robustness. Unfortunately, no such scheme exists against poly-
nomial time adversaries that have unbounded storage at their disposal.

In this paper we show non-interactive timestamping is possible in the
bounded storage model. In this model it is assumed that all parties par-
ticipating in the protocol have small storage, and that in the beginning of
the protocol a very long random string (which is too long to be stored by
the players) is transmitted. To the best of our knowledge, this is the first
example of a cryptographic task that is possible in the bounded storage
model, but is impossible in the “standard cryptographic setting”, even
assuming cryptographic assumptions.

We give an explicit construction that is secure against all bounded stor-
age adversaries, and a significantly more efficient construction secure
against all bounded storage adversaries that run in polynomial time.

1 Introduction

The date on which a document was created is often a significant issue. Patents,
contracts, wills and countless other legal documents critically depend on the
date they were signed, drafted, etc. A timestamp for a document provides con-
vincing proof that it existed at a certain time. For physical documents, many
methods are known and widely used for timestamping: publication, witnessed
signing and placing copies in escrow are among the most common. Techniques
for timestamping digital documents, which are increasingly being used to replace
their physical counterparts, have also become necessary.

Loosely speaking, a timestamping scheme consists of two mechanisms: A
stamping mechanism which allows a user to stamp a document at some specific
time t, and a verification mechanism which allows a recipient to verify at a later
time t′ > t that the document was indeed stamped at time t.

? Research supported by the Koshland Scholarship.

Previous Work

Digital timestamping systems were first introduced in Haber and Stornetta [16],
where three timestamping systems are described. In the näıve timestamping
protocol, the stamper sends the document to all the verifiers during timestamp
generation. In the linking scheme, the stamper sends a one-way hash of the
document to a trusted timestamping server. The server holds a current hash,
which it updates by hashing it with the value sent by the stamper. This links
the document to the previous documents and to the succeeding ones. In the
distributed trust scheme, the document is used to select a subset of verifiers, to
which the stamper sends a hash of the document. Bayer, Haber and Stornetta
[3] improve upon the linking scheme, reducing the communication and storage
requirements of the system and increasing its robustness, by replacing the linear
list with a tree. Further work [17, 7, 6, 8, 5, 4] is mainly focused on additional
improvements in terms of storage, robustness and reducing the trust required in
the timestamping server(s).

One common feature of all the above protocols is that they require the stam-
per to send messages to a central authority (or a distributed set of servers) at
timestamp generation.

Non-interactive Timestamping

We call a timestamping scheme non-interactive if it does not require the stam-
per to send messages at timestamp generation. Non-interactive timestamping
schemes, if they exist, have a number of obvious advantages over active schemes.
However, the notion of non-interactive timestamping seems self-contradictory.
How can we prevent an adversary from faking timestamps, if no action is taken
at timestamp generation? More precisely, suppose that an adversary “learns”
some document at time t′ > t and wants to convince a verifier that he stamped
the document at time t. He can simulate the behavior of an “honest stamper”
who signs the document at time t and generate a timestamp for the document.
Note that the “honest stamper” does not need to send any messages before
time t′ and therefore the adversary will be able to convince a verifier that the
document was stamped at time t.

A crucial point in the argument above is that in order to perform this sim-
ulation the adversary must store all the information available to the “honest
stamper” at time t. We show that non-interactive timestamping is possible in a
scenario in which parties have bounded storage.

The Bounded Storage Model

In contrast to the usual approach in modern Cryptography, Maurer’s bounded
storage model [19] bounds the storage (memory size) of dishonest players rather
than their running time.

In a typical protocol in the bounded storage model a long random string r of
length R is initially broadcast and the interaction between the polynomial-time

participants is conducted based on storing small portions of r. The security of
such protocols should be guaranteed even against dishonest parties which have a
lot of storage (much more than the honest parties) as long as they cannot store
the whole string. Most of the previous work on the bounded storage model con-
centrated on private key encryption [19, 10, 2, 1, 14, 15, 18, 25], Key Agreement
[10] and Oblivious Transfer [9, 12, 13]. In contrast, the notion of non-interactive
timestamping cannot be implemented in the “standard cryptographic setting”.
To the best of our knowledge this is the first example of a protocol in the bounded
storage model which achieves a task that is impossible in the “standard crypto-
graphic setting”.

Non-interactive Timestamping in the Bounded Storage Model

We now explain our setting for non-interactive timestamping in the bounded
storage model. We assume that there are ` rounds and at every round 1 ≤ t ≤ `,
a long random string r of length R is transmitted.3

The Stamping Mechanism: To stamp a document doc at time t, the scheme
specifies a function Stamp(doc, r) whose output is short. To stamp the document
doc, the stamper stores Stamp(doc, r). Intuitively, an adversary (who does not
know doc at time t) is not able to store the relevant information and therefore
is unable to stamp doc.

The Verification Mechanism: The verifier stores a short “sketch” of r (denoted by
Sketch(r)) for every time t. At a later time the stamper can send the timestamp
Stamp(doc, r) and the verifier checks whether this timestamp is “consistent”
with his sketch.

Efficiency of a Timestamping Scheme: We say that a timestamping scheme is
(T, V) efficient if the stamper’s algorithm runs online (that is, in one pass) using
space T and polynomial time and the verifier’s algorithm runs online using space
V and polynomial time. We want T and V to be small as functions of R.

Our Notion of Security

Loosely speaking, we want to ensure that even an adversary with a lot of storage
(say storage M = δR for some constant δ < 1) cannot forge a timestamp.
Note, however, that a stamper with storage M > T can easily stamp k =
M/T documents by running the stamping mechanism on some k documents and
storing the generated timestamp (which is of length at most T). We will therefore
say that a scheme is secure if no adversary with space M can successfully stamp
significantly more than M/T documents.

3 One can imagine that random bits are transmitted at high rate continuously by a
trusted party, and that the string r consists of the bits transmitted between time t

and time t + 1.

One can also consider a probabilistic notion of security: given a randomly
chosen document, after the random string has passed, the adversary will not be
able to stamp the document with more than negligible probability. We note that
our notion of security implies this probabilistic notion as well.

Security of a Timestamping Scheme: Given a (T, V)-efficient timestamping scheme.
Let Mmax be the bound on the storage of the most powerful adversary. The
scheme is α-optimal (α > 1) if, for every M ≤ Mmax, no adversary with space
M can successfully stamp more than αM

T documents (for a formal definition of
“successful stamping” see definition 4).

Notice that the definition above requires α–optimality for every M ≤ Mmax.
Requiring α–optimality for Mmax only, would have allowed adversaries with
M � Mmax to produce Mmax

T stamped documents, contradicting the definition’s
spirit. The definition in its current form assures us that any adversary, weak or
strong, with at most Mmax memory, can honestly stamp the same number of
documents if given slightly more resources (storage αM instead of M).

Our Results

In this paper we give two explicit constructions of non-interactive timestamping
schemes in the bounded storage model. The first is secure in an information-
theoretic sense (in the spirit of previous constructions in the bounded storage
model). It requires no unproven assumptions and is secure against any adversary
with arbitrary computational power as long as its storage capability is bounded.
We now state this result (precise definitions appear in Section 3).

Theorem 1. For every η > 0 and large enough R there exists a timestamping
scheme that is (T = O(R1/2+η), V = O(R1/2+η))-efficient and O(1)-optimal.
More precisely, every adversary with space M ∗ ≤ M∗

max = Ω(R) has probabil-

ity at most 2−RΩ(1)

to successfully stamp more than O(M ∗/T) documents. The
timestamping scheme allows stamping documents of length RΩ(1) and allows
RΩ(η) rounds.

Our second system is more efficient. To achieve this efficiency it relies on
cryptographic assumptions and is therefore secure only against adversaries that,
in addition to being storage bounded, are required to run in polynomial time.

Theorem 2. Assume that there exist collision resistant hash functions. There

exists a timestamping scheme that is (T = 2(log log R)O(1)

, V = 2(log log R)O(1)

)-
efficient and O(log R)-optimal. More precisely, every adversary with space M ∗ ≤
M∗

max = Ω(R) and running time polynomial in R has negligible probability to
successfully stamp more than O(log R · M ∗/T) documents. The timestamping
scheme allows stamping documents of length R and allows R rounds.

We remark that our technique can potentially reduce T and V to logO(1) R.
This improvement requires an explicit construction of certain “expander graphs”
that is not known today. More details will appear in the full version of the paper.

Advantages of Our Non-interactive Timestamping Scheme

Non-interactive timestamp systems have some significant advantages over the
interactive systems known to date. We summarize some of these below:

– The only communication made before the verification process is the trans-
mission of the random string r. This allows the timestamp system to be
used in situations where communication is infeasible or undesirable. E.g.,
communication may be asymmetric: one central agency can broadcast all
other users, while the users can not send messages to the agency.

– Everyone can stamp and everyone can verify and no central control or ac-
quaintance between stamper and verifier is needed. The decentralized na-
ture of this scheme overcomes many of the “trust” problems with interactive
timestamp systems. Even in distributed interactive systems, some measure
of trust must be given to third parties. Our non-interactive timestamp sys-
tem requires only that the random string be truly random and receivable by
all parties.

– Privacy. The scheme hides the fact that timestamping occurred at all, e.g.,
an inventor can safeguard her inventions without revealing even the fact of
their existence. This also ensures privacy in an information-theoretic sense.

– Our schemes solve some of the robustness problems that plague interactive
timestamping systems. In particular, it is much more difficult to mount a
denial-of-service attack: there is no central point that can shut down the sys-
tem, and even temporarily shutting down communications will not prevent
the creation of new timestamps. The lack of communication also makes it
difficult for an attacker to tell whether such an attack has succeeded.

Overview of the “Information-Theoretic” Construction

The setup is the following: A string r of length R is transmitted and the stamper
wants to convince a verifier that he “knew” a document prior to the transmission
of this string.

Using the Document to Select Indices: We implement the function Stamp(doc, r)
as follows: Each document doc specifies some D indices that the stamper will
remember from the long string. For that we use a bipartite graph where the
left-hand vertices are all possible documents, the right-hand vertices are indices
1 ≤ i ≤ R and every left vertex has D neighbors. The indices selected by a
document doc are the neighbors of doc. We want to force a stamper who would
like to stamp k documents to store many indices. Intuitively, this is equivalent
to the requirement that every k documents on the left have many different
neighbors. This naturally leads to using an expander graph. (A bipartite graph
is a (K, c)-expander if every k < K vertices on the left have at least kc neighbors
on the right.)4

4 We stress that we need to use unbalanced graphs (graphs which have many more
vertices on the left than on the right-hand side). Such graphs were constructed in

To stamp a document doc, the stamper stores the content of the long string
at the indices specified by doc. We use graphs with expansion c ≈ D, therefore
to correctly stamp k documents simultaneously an honest stamper must store
roughly kD bits.

Using Random Sets for Verification: The function Sketch(r) is implemented as
follows. The verifier chooses a random subset of size |H| ≈ R/D from the indices
of r and stores the content of r at these indices. After the transmission of the
random string r, a stamper may send a timestamp of a document doc (that
consists of the content of r at the D indices defined by doc). By the birthday
problem, with high probability (over the choice of the verifier’s random set)
some of these indices were also stored by the verifier. The verifier checks that
the content sent by the stamper is consistent with what he stored.

For a fixed string r and document doc, we say that a timestamp is “incorrect”
if it differs from the “correct” timestamp of doc in many indices. The verification
process we described guarantees that, with high probability, the verifier will
reject an “incorrect” timestamp.

A Sketch of the Security Proof: The basic intuition for the security proof is
the following: Suppose that an adversary is able to successfully stamp some
k documents. This means that he correctly stamped these k documents (as
otherwise he is caught by the verifier). However, correctly stamping k documents
requires storing kD indices, therefore if the storage of the adversary is kD ≤ M <
(k + 1)D he can successfully stamp at most k documents. This is the best we
can hope for (by our notion of security) as he could have stamped k documents
by simply running the “stamping mechanism” on any k documents.

However, the argument above is not sufficient. It does not rule out the pos-
sibility that the adversary can stamp many documents such that the identity of
these documents depend on the random string r. Our security definition requires
that for every adversary, with high probability (over the choice of r) there do
not exist k documents which the adversary can successfully stamp. To prove
the security of our scheme we use a “reconstruction argument” and show that
any adversary which breaks the security guarantee can be used to compress the
string r into a shorter string in a way that does not lose a lot of information. As
the string r is random, we get a contradiction. The details are given in Section 4.

Overview of the “Computationally-Bounded” Construction

In the previous construction we chose |H| ≈ R/D so that a random subset of size
|H| in [R] would intersect a subset of size D. We chose |H| = D ≈

√
R, allowing

both the honest stamper and the verifier to store only
√

R bits. We now show

[24, 23]. However, we need graphs with somewhat different parameters. We construct
such graphs by combining the constructions of [24] and a slight modification of [23,
21] (which in turn relies on explicit constructions of “randomness extractors” from
[21, 22]).

how to increase the efficiency and reduce the storage of honest parties to only

2(log log R)O(1)

bits.
We use the same index selection mechanism as before. However, this time

we choose D = 2(log log R)O(1)

(this precise choice of parameters corresponds to
certain expander graphs). The verifier stores a short “hash” of the string r. When
stamping a document the stamper also supplies a short “proof” that the indices
he sent are consistent with the hashed value held by the verifier. We implement
such a hashing scheme using Merkle trees [20]. We show that if collision resistant
hash functions exist then a polynomial time adversary with bounded storage
cannot produce an incorrect timestamp of a document. More precisely, we show
that after the transmission of the random string r, no polynomial time adversary
can generate many documents and stamp them correctly.

Hashing Documents Before Stamping Them: A bottleneck of our scheme is that
when using expanders of degree D we can only handle documents of length D.5

However, in a computational setting (as we have already assumed the existence
of collision resistant hash functions) we can stamp longer documents by first
hashing them to shorter strings and then stamping them.

2 Preliminaries

2.1 Notation

The following conventions will be used throughout the paper.

Random String: We refer to the random string as r, its length is denoted by
R, and we think of it as composed of N blocks of length n denoted r1, . . . , rN .
For any subset S ⊆ [N], the expression r|S will be taken to mean the string
generated by concatenating the blocks ri for all i ∈ S.

Hamming Distance: The Hamming Distance between two strings r1 and r2 is
the number of blocks on which the two strings differ.

Online Space: For a family of functions F , we denote by Space(F) the maximum
space used by any function in F . We say a function f can be computed online
with space s if there is an algorithm using space at most s which reads its input
bits one by one and computes f in one pass.

2.2 Unbalanced Expander Graphs

A graph is expanding if every sufficiently small set has a lot of neighbors. Our
timestamping scheme relies on unbalanced expanders.

5 This is because in unbalanced expander graphs, the degree must be logarithmic in
the number of left-hand vertices. Thus, shooting for degree D we can at most get
that the left-hand set (which is the set of documents) is of size 2D.

Definition 1 (unbalanced expander graphs). A bipartite graph G = (V1, V2, E)
is (Kmax, c)-expanding if, for any set S ⊂ V1 of cardinality at most Kmax, the
set of its neighbors Γ (S) ⊆ V2 is of size at least c|S|.

Note that we do not require that |V1| = |V2|. In fact, in our timestamping
scheme we will use graphs in which |V1| � |V2|. In this paper we need unbal-
anced expanders with very specific requirements. Loosely speaking we want a
(Kmax, Ω(D))-expanding graph with as small as possible degree D and right-
hand side of size roughly KmaxD. We use some existing constructions of unbal-
anced graphs [24] as well as a modification of [23] to prove the next theorem
(the proof will appear in the full version of the paper).

Theorem 3. There exists a fixed constant β > 0 such that for every Kmax ≤
|V1|, there exists a bipartite graph G = (V1, V2, E) with left degree D that is

(Kmax, c = βD) expanding with D = 2O(log log V1+(log log Kmax)3), and |V2| =
4βKmaxD. Furthermore, this graph is explicit in the sense that given a vertex
v ∈ V1 and an integer 1 ≤ i ≤ D one can compute the i’th neighbor of v in time
polynomial in log |V1| + log D.

3 One Round Timestamping: The Model

In this section we formally define our model for timestamping in the bounded
storage model. The definitions are only for a single round. Definitions for multiple
rounds are straightforward generalizations and will appear in the full version.

A long random string r of length R is transmitted. The verifier takes a short
sketch Sketch(r) of the random string and remembers it. An honest stamper,
who wants to stamp a document doc ∈ DOC, calculates y = Stamp(doc, r).
When, at a later stage, the stamper wants to prove he knew the document doc at
stamping time, he sends y to the verifier who computes Verify(Sketch(r), doc, y)
and decides whether to accept or reject. More formally,

Definition 2 (Non-Interactive timestamping scheme). A non-interactive
timestamping scheme consists of three functions:

– A stamping function Stamp(doc, r).
– A sketch function Sketch(r) (we allow Sketch to be a probabilistic function).
– A verification function Verify(Sketch(r), doc, y).

We require that for every string r and document doc, the function
Verify(Sketch(r), doc, Stamp(doc, r)) accepts.

We define efficiency:

Definition 3 (Efficiency). A non-interactive timestamping scheme is (T, V)-
efficient if Stamp can be computed online in space T = T (R) and time polynomial
in R, and Sketch can be computed online in space V = V (R) and time polynomial
in R.

An honest stamper with space M can easily stamp M/T documents by run-
ning the function Stamp in parallel. We require that no adversary with memory
M∗ can successfully stamp significantly more than M ∗/T documents. We first
define our model for adversaries:

Definition 4 (adversary). An adversary consists of two functions: Store∗(r),
which produces a short string b, and Stamp∗(doc, b) which, given a document
doc and b, attempts to produce a timestamp for doc. The space M ∗ of an adver-
sary is the maximal length of Store∗(r).6 An adversary γ-successfully stamps a
document doc at (some fixed) r if

Pr[Verify(Sketch(r), doc, Stamp∗(doc, Store∗(r))) = Accept] ≥ γ

Note that this probability is over the coin tosses of Sketch and the internal
random coins of the adversary. Note that when the adversary is not computation-
ally bounded, we can assume w.l.o.g. that the adversary is deterministic (does
not use random coins)

We define security as:

Definition 5 (Security). We say that a (T, V)-efficient timestamping scheme
is α-optimal (for ρ > 0, α ≥ 1, γ > 0 and M ∗

max < R) if for every M∗ ≤ M∗
max

and every adversary A with space M ∗,

Pr
r

[

A can γ-successfully stamp α
M∗

T
documents at r

]

≤ ρ

Definition 5 is very strong. It guarantees that whenever the sketch size is
small, no matter how powerful the adversary is, the number of documents the
adversary can successfully stamp is very small.

3.1 Security Against Feasibly Generated Documents

Until now, we have allowed the adversary to run in arbitrary time. When the
adversary is time-bounded, we can imagine scenarios where Definition 5 does
not hold, yet the system is secure because the adversary does not have the com-
putational power to find the documents he can illegally stamp. It makes sense to
require security only against “feasibly generated documents”. We model feasi-
bly generated documents by a probabilistic polynomial time machine Generate∗c
which, on input r and an integer k, outputs k documents (all different).

Definition 6 (Security against feasibly generated documents). We say
that a (T, V)-efficient timestamping scheme is α-optimal (for ρ > 0, α ≥ 1,
γ > 0 and M∗

max < R) against feasibly generated documents, if for every M ∗ ≤
6 Note that the adversary is not required to run online in space M ∗. The function

Store∗(r) can be an arbitrary function of r.

M∗
max, every adversary A with space M ∗, and every polynomial time machine

Generate∗c:

Pr
[

A γ-successfully stamps at r the documents Generate∗c(r, α
M∗

T)
]

≤ ρ

where the probability is over the choice of r and the random coins of Generate∗c
and A.

4 A Scheme with Information-Theoretic Security

In this section we describe a timestamping scheme which is information theoret-
ically secure against arbitrary adversaries with small storage.

4.1 The Stamping Scheme

Let R, N and n be integers such that R = N · n. Given a string r ∈ {0, 1}R,
we partition it into N blocks of n bits. We use ri to denote the i’th block of r.
Let DOC denote the set of all documents which can be stamped. Let G be a
(Kmax, βD) bipartite expander (V1, V2, E) with left degree D, where the “left”
set V1 is DOC and the “right” set V2 is [N]. We define the three procedures
Sketch, Stamp and Verify:

– Stamp(doc, r) = r|Γ (doc).
– Sketch(r) = H, r|H where H has |H| elements selected at random from [N].

– Verify(Sketch(r), doc, y) =

{

Accept Sketch(r)|H∩Γ (doc) = y|H∩Γ (doc)

Reject otherwise

Notice that Sketch(r) contains the restriction of r to the indices of H, and
therefore in particular contains the restriction of r to the indices of H∩ Γ (doc),
and y contains the restriction of r to Γ (doc) and therefore in particular contains
the restriction of r to the indices of H ∩ Γ (doc).

Theorem 4. Let G be a (Kmax, βD)-expanding graph, γ > 0 and g = 1
5 . Fix n

large enough such that n > log N ≥ 1
g·β and assume that log |DOC| ≤ gβDn. If

D|H| ≥ N
gβ ln(1

γ) then the scheme is (T = Dn, V = |H|(n+log N))-efficient and

α-optimal for α = 1
(1−4g)·β , ρ = 2−gβnD, γ and M∗

max = (1 − 4g)βDnKmax.

Plugging in parameters, a corollary of this is:

Corollary 1. For every η > 0 and large enough R we construct a timestamping
scheme which is (T = R1/2+η, V = R1/2+η)-efficient and O(1)-optimal with

ρ = 2−RΩ(1)

, γ = 2−RΩ(η)

and M∗
max = Ω(R). The timestamping scheme allows

stamping documents of length RΩ(1).

We prove the corollary in the full version of the paper. We remark that
a probabilistic argument shows that there exist bipartite graphs of degree D
which have expansion (1 − o(1))D and using such non-explicit graphs in our
construction (and setting g = o(1)) gives α = (1 + o(1)) optimality (whereas
the theorem below only achieves α = O(1)). In the remainder of the section we
prove Theorem 4.

4.2 Efficiency

The verifier first chooses a random set H and stores it, and then stores RH. This
can indeed be done online with space V = |H|(n + log N). We now explain how
the stamper can run online in space T = Dn. Observe that it can calculate the
indices it will need to store before the random string goes by (since it knows doc
before it sees the random string). As the indices take D log N < Dn space, it
can work in place, replacing each index with the contents of the block as it goes
by. We now turn to proving security.

4.3 Security

In Definition 4 we defined “successful stamping”. Without loss of generality, we
assume the adversary is deterministic. Let Rsuccessful(k) = Rγ

successful(k) denote
the set of random strings r on which the adversary γ-successfully stamps at least
k documents. We would like to prove that Rsuccessful has small probability. We
first define a similar notion of “correct stamping”:

Definition 7. An adversary correctly stamps a document doc at r if
Stamp∗(doc, Store∗(r)) = r|Γ (doc). An adversary correctly stamps a document
doc at r with at most err errors, if the Hamming distance between
Stamp∗(doc, Store∗(r)) and r|Γ (doc) is at most err.

We let Rcorrect(k) = Rerr=gβD
correct (k) denote the set of random strings r for

which there are at least k documents that the adversary correctly stamps with at
most err errors.

The security proof has two parts.

Lemma 1. Assume log |DOC| ≤ gβDn, err = gβD and n ≥ 1
g·β . For every

k ≤ Kmax and any adversary with space M ∗ ≤ (1 − 4g)βkDn we have Prr[r ∈
Rcorrect(k)] ≤ 2−gβnDk.

We then relate Rcorrect and Rsuccessful:

Lemma 2. Assume D|H| ≥ N
gβ ln(1

γ). For every k, Rsuccessful(k) ⊆ Rcorrect(k).

Together,

Proof. (of Theorem 4) We need show that no adversary with space M ∗ can
γ-successfully stamp more than k = αM∗

Dn documents. Notice that for M∗ ≤
M∗

max, k = αM∗

Dn ≤ αM∗
max

Dn = Kmax and M∗ = kDn
α = kDn(1 − 4g)β. Hence,

Prr[r ∈ Rsuccessful(k)] ≤ Prr[r ∈ Rcorrect(k)] ≤ 2−gβnDk ≤ 2−gβnD where the
first inequality follows by Lemma 2 and the second inequality follows by Lemma
1. The third inequality is because k ≥ 1.

4.4 The Proof of Lemma 1

We first define a compression function Com(r) for r ∈ Rcorrect(k). Let r ∈
Rcorrect(k). Suppose doc1, . . . , dock are the documents that the adversary cor-
rectly stamps at r with at most err errors. Denote Γ = ∪1≤i≤kΓ (doci), that
is the set of all indices which are selected by one of the k documents. Denote
BAD = ∪1≤i≤kBAD(doci), that is the set of all indices which are bad for at
least one of the k documents. We call an index j ∈ Γ \ BAD useful. We choose
Com(r) to be:

Com(r) = (doc1, . . . , dock; Store∗(r); r|Γ̄ ;BAD; r|BAD)

We define a “decompression” function Dec(a) that gets as input Com(r) and
tries to recover r. Let r be a string from Rcorrect, i.e., a string on which the stam-
per correctly stamps k-documents with at most err errors. From doc1, . . . , dock,
that appear in Com(r), we recover the set Γ , and from Com(r) we learn which
indices are in the subset BAD ⊂ Γ . Now, for every 1 ≤ j ≤ N we recover rj as
follows:

– If j 6∈ Γ then we use the information in r|Γ̄ to find rj .
– If j ∈ BAD then we use the information in r|BAD to find rj .
– If j ∈ Γ \ BAD then we find an i such that

j ∈ Γ (doci). We run Stamp∗(doci, Store∗(r)) and take rj from its output.

The only case where we do not take the value of rj directly from Com(r) is for
j ∈ Γ \ BAD. However, all such indices j are useful, and therefore we correctly
decode them. Therefore, for every r ∈ Rcorrect we have Dec(Com(r)) = r.

We now analyze the output length of the compression function Com. The
documents doc1, . . . , dock take k log |DOC| bits space. |Store∗(r)| ≤ M∗, by def-
inition. As G is expanding and k ≤ Kmax, |Γ | ≥ βkD and therefore r|Γ̄ ≤
R−βkDn. We represent BAD ⊆ Γ by a binary vector of length |Γ | ≤ kD which
has a “one” for indices in Γ ∩BAD and a “zero” for indices in Γ \BAD. Each of
the k documents is correctly stamped at r with at most err errors, and therefore
for every such document doci we have |BADdoci

| ≤ err and |BAD| ≤ k ·err. The
representation of r|BAD is therefore bounded by k · err ·n. We conclude that the
total length of the output of Com is at most k log |DOC| + M ∗ + R − βkDn +
kD + k · err · n. We denote this quantity R − ∆.

As every r ∈ Rcorrect has a small description (of length R − ∆) we have
|Rcorrect| ≤ 2R−∆ and therefore Pr[r ∈ Rcorrect] ≤ 2−∆. We have kD ≤
gβkDn (for large enough n). We also have err = gβD and by our assump-
tion log |DOC| ≤ gβnD. Altogether, R − ∆ ≤ R − βDkn[1 − 3g] + M ∗. We get
that ∆ ≥ (1 − 3g)βDkn − M∗. As M∗ ≤ (1 − 4g)βkDn we get ∆ ≥ gβkDn as
desired.

4.5 The Proof of Lemma 2

Claim. Fix an adversary, a string r and a document doc. If the adversary γ-
successfully stamps doc at r then it correctly stamps doc at r with at most
N
|H| ln(1

γ) errors.

Proof. We prove the contrapositive. Suppose for some doc ∈ DOC and r, the
timestamp provided by the adversary for doc has err∗ > err incorrect indices.
Denote by BADdoc ⊂ [N] the set of incorrect indices. The verifier catches the
adversary iff BADdoc ∩ H 6= ∅, i.e. if one of the incorrect indices is in H (the
set of indices stored by Sketch). For each index in H, the probability that it
hits BADdoc is err∗

N , and the probability that none of them hits BADdoc is

(1− err∗

N)|H| ≤ e−
err∗|H|

N (assuming the set H is chosen with repetition). Hence,

the adversary γ-successfully stamps doc with γ ≤ e−
err|H|

N . Turning that around,
if the adversary γ-successfully stamps doc, then err ≤ N

|H| ln(1
γ).

In particular, for every r and doc for which the stamper is γ successful,
err ≤ N

|H| ln(1
γ) ≤ gβD. Hence, the stamper correctly stamps doc at r with at

most err = gβD errors. It follows that Rsuccessful(k) ⊆ Rcorrect(k) as desired.

5 An Efficient Scheme Secure Against Polynomial Time

Adversaries

The scheme suggested in Section 4 requires the honest parties (stamper and
verifier) to store many bits, namely TV > R where T is the stamp size, V
the sketch size and R the random string length. In other words, if the stamp
size is very small then the sketch size V is almost all of the random string.
Our second scheme has small sketch and stamp size. This is achieved by using
the previous stamping scheme with a small T and using a different verification
method that allows the verifier to use much less storage. This verification method
is valid only against computationally bounded adversaries and takes advantage
of the bounded computational capabilities of the cheating party. In this section
we briefly describe the scheme and give a sketch of the proof. Due to space
constraints, the exact details will appear in the full version. We assume the
reader has some familiarity with collision resistant hash functions7 [11] (CRHFs)
and Merkle trees [20].

5.1 The Stamping Scheme

Let H =
{

h : {0, 1}2n 7→ {0, 1}n
}

be a family of CRHFs8 and R = log H + Nn.
We partition a string r ∈ {0, 1}R into N +1 blocks, denoted r0, r1, . . . , rN where
r0 is of length log H and for i > 0, ri is of length n. The string r0 (which didn’t
appear in the previous scheme) serves as a “key” to the “hash function”. We use
the same “index selection” mechanism as in Section 4; G is a bipartite graph

7 also called “collision intractable” or “collision free” hash functions
8 Informally, this means that no computationally bounded adversary can find x1 6= x2

such that h(x1) = h(x2) when given a random function h in the family. In this
paper we require hash functions which are hard even for adversaries which run in
time slightly super-polynomial in n. This is because the adversary runs in time
polynomial in R, whereas n can be very small compared to R.

with left degree D, where the left set is the set DOC and the right set is the set
[N]. We now describe the stamp, sketch and verify procedures:

Sketchc The verifier stores r0 and the root of a Merkle tree whose leaves are
r1, . . . , rN , using the hash function specified by r0.

9 Note that Sketchc is
deterministic (unlike the case of the previous section where Sketch is prob-
abilistic).

Stampc Given a document doc ∈ DOC the stamper uses the function Stamp
of the previous section, and for every j ∈ Γ (doc) stores rj along with the
Merkle-path from rj to the root of the tree.10

Verifyc Given a document doc, a “root” a and a stamp y composed of D Merkle-
paths, the function Verifyc(a, doc, y) accepts iff all paths are valid (that is,
the label of the tree root computed from the Merkle-paths is consistent with
that stored by the verifier).

We note that both Sketchc and Stampc can be computed online in small
space, using the standard method for computing Merkle-trees online. For our
choice of parameters, this gives the required efficiency. Using the expander con-

struction of Theorem 3 for G, we obtain a scheme with efficiency 2(log log R)O(1)

(and thus prove Theorem 2). It is possible to get an even more efficient scheme
with T = V = (log R)O(1). However, this result requires a better graph than the
one constructed in Theorem 3. It is folklore that such graphs exist by a proba-
bilistic argument. However, at this point no such explicit construction is known.
In the remainder of the section we sketch the proof of security of the scheme
(The complete proof of Theorem 2 appears in the full version of the paper).

5.2 Security

We follow the outline of the correctness proof of the information-theoretic version
of Section 4, except that now we work with security for generated documents. We
show that if the adversary successfully stamps many documents then he correctly
stamps many documents which is impossible by the “reconstruction argument”
of the previous section.

Fix some adversary with memory M ∗ and running time polynomial in R. We
use coins to denote the concatenation of the random coins used by Stamp∗

c and
Generate∗c . We define Rcomp

correct(k) to be the set of pairs (r, coins) such that, for
every doc ∈ Generate∗c(r, k), the Merkle paths output by Stamp∗c(Store∗c(r), doc)
are correct (i.e. that they are actual paths in the Merkle tree whose leaves are
the blocks of r). In particular, this implies that the leaves of the paths are a

9 Informally, a Merkle tree of r1, . . . , rN using the hash function h is a labeled binary
tree, where the leaves are labeled by r1, . . . , rN and the label of each internal node
is given by applying h to the concatenation of its children’s labels.

10 A Merkle-path from rj consists of rj along with the labels of the siblings of all
nodes on the path from rj to the root of the Merkle tree. Such as sequence contains
sufficient information to compute the labels of all nodes on the path to the root node
(by repeatedly applying the hash function).

“correct” timestamp for the k documents output by Generate∗c(r, k) in the sense
of Section 4.

We now want to define the computational analogue of Rsuccessful and relate it
to Rcomp

correct. We define Rcomp
successful(k) to be the set of all pairs (r, coins) for which

the adversary successfully stamps the k documents output by Generate∗c(r, k)
(i.e. for all doc ∈ Generate∗c(r, k), the the Merkle paths output by
Stamp∗c(Store∗c(r), doc) are accepted by the verifier). This definition of success
corresponds to the notion of security in Definition 6.

We prove that Prr,coins[(r, coins) ∈ Rcomp
successful(k) \Rcomp

correct(k)] ≤ neg (where
neg is a negligible function of n). This is because we can imagine a machine which,
when given a random hash function r0, uniformly selects the pair (r, coins) and
runs the adversary. The claim follows, as for every pair (r, coins) ∈ Rcomp

successful(k)\
Rcomp

correct(k), this machine can find a collision for r0. Thus we have a computational
analogue of Lemma 2.

We then show (using Lemma 1) that every random string for which the
adversary can correctly stamp many documents can be compressed, which gives
a bound on the probability that this occurs.

6 Discussion and Open Problems

Dealing with Errors: Most protocols in the Bounded Storage Model, and ours
among them, assume the broadcast random string is received identically and
without errors by all parties. However, in many natural implementations of such
protocols, this assumption may not be realistic (e.g. when the random string has
a natural source).

Our information-theoretic scheme can be made to work even with errors
(provided the error rate is low enough) by allowing the verifier to accept a
timestamp even if the the blocks in the intersection differ by a small amount.
The proof of Lemma 1 already allows the adversary to make some errors when
stamping, and still be considered successful. Increasing the error rate by a small
amount will not invalidate the lemma (although the parameters suffer slightly).

The computational scheme, on the other hand, currently requires the random
string to be received perfectly by all parties. It is an interesting open question
whether this requirement can be removed.

Removing the Need for Constant Monitoring: Our timestamping schemes require
the verifier to run the Sketch function in every round for which it may, someday,
want to verify documents. The verifier must therefore constantly monitor the
random string, which is too much to ask from a casual user of the system.

An implementation of our timestamp systems can overcome this difficulty by
using “verification centers”: dedicated third parties who act as verifiers. In some
sense, such third parties appear in all previous timestamp protocols. This raises
the issue of how much trust the user must place in the verification center.

In the computational version of our protocol, the verification center is also
easily auditable by casual users: the verifier is deterministic and has no secret

information. Any user can act as a verifier for a single round, and compare its
state to that of the verification center: any inconsistency will be instantly visible.

Online Versus Locally-Computable: The strategies for the honest players are
efficient in the sense that they work online using small space and polynomial
time. A stronger notion of efficiency called “locally-computable” was suggested in
[25]. It requires the honest players to store a small substring of the string r. More
precisely, the players need to choose a subset S ⊆ [R] before the random string
is transmitted and only store r|S . We point out that the “information-theoretic”
scheme (Section 4) has this additional property, whereas the “computationally-
bounded” scheme (Section 5) does not.11 Natural open problems are whether
the “information-theoretic” scheme can be improved to yield better parameters,
and whether the “computationally-bounded” scheme can be improved to run
with strategies that are locally computable.

Acknowledgements

We thank Danny Harnik, Moni Naor and Muli Safra for helpful discussions, and
the anonymous reviewers for their constructive comments.

References

1. Y. Aumann, Y.Z. Ding, and M. O. Rabin. Everlasting security in the bounded
storage model. IEEE Transactions on Information Theory, 48, 2002.

2. Y. Aumann and M. O. Rabin. Information theoretically secure communication
in the limited storage space model. In Advances in Crypology — CRYPTO ’99,
volume 1666, pages 65–79, 1999.

3. D. Bayer, S. Haber, and W. S. Stornetta. Improving the efficiency and reliability of
digital time-stamping. In R. M. Capocelli et al., editor, Sequences II: Methods in
Communication, Security and Computer Science, pages 329–334. Springer-Verlag,
Berlin Germany , New York, 1992.

4. J. Benaloh and M. de Mare. Efficient broadcast time-stamping. Technical Report 1,
Clarkson University Department of Mathematics and Computer Science, August
1991.

5. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized
alternative to digital signatures. Lecture Notes in Computer Science, 765:274, 1994.

6. Ahto Buldas and Peeter Laud. New linking schemes for digital time-stamping. In
Information Security and Cryptology, pages 3–13, 1998.

7. Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson. Time-stamping
with Binary Linking Schemes. In Hugo Krawczyk, editor, Advances on Cryptology
— CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages 486–
501, Santa Barbara, USA, August 1998. Springer-Verlag.

11 In the “computationally-bounded” scheme , both stamper and verifier read blocks
of the string r online, and need to “hash them” quickly before reading the next
incoming blocks. Thus, to implement this scheme, one needs to use hash functions
which can be computed very efficiently.

8. Ahto Buldas, Helger Lipmaa, and Berry Schoenmakers. Optimally efficient ac-
countable time-stamping. In Public Key Cryptography, pages 293–305, 2000.

9. Christian Cachin, Claude Crepeau, and Julien Marcil. Oblivious transfer with
a memory-bounded receiver. In IEEE Symposium on Foundations of Computer
Science, pages 493–502, 1998.

10. Christian Cachin and Ueli Maurer. Unconditional security against memory-
bounded adversaries. In Burton S. Kaliski Jr., editor, Advances in Cryptology —
CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 292–306.
Springer-Verlag, 1997.

11. I.B. Damgard. Collision free hash functions and public-key signature schemes.
In Advances in Cryptology — EUROCRYPT ’87, Proceedings, volume 304, pages
203–216. Springer-Verlag, 1987.

12. Yan Zong Ding. Oblivious transfer in the bounded storage model. Lecture Notes
in Computer Science, 2139:155, 2001.

13. Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-round
oblivious transfer in the bounded storage model. In Theory of Cryptography —
TCC ’04, volume 2951, Cambridge, MA, USA, February 2004. Springer-Verlag. To
appear.

14. Y.Z. Ding and M.O. Rabin. Hyper-encryption and everlasting security. In Annual
Symposium on Theoretical Aspects of Computer Science (STACS), pages 1–26,
2002.

15. Stefan Dziembowski and Ueli Maurer. Tight security proofs for the bounded-
storage model. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computing, pages 341–350. ACM, May 2002.

16. Stuart Haber and W. Scott Stornetta. How to time-stamp a digital document.
Lecture Notes in Computer Science, 537:437, 1991.

17. Stuart Haber and W. Scott Stornetta. Secure names for bit-strings. In ACM
Conference on Computer and Communications Security, pages 28–35, 1997.

18. C. Lu. Hyper-encryption against space-bounded adversaries from on-line strong
extractors. In Advances in Cryptology — CRYPTO ’02, volume 2442, pages 257–
271. Springer, 2002.

19. U. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher.
Journal of Cryptology, 5(1):53–66, 1992.

20. Ralph C. Merkle. A certified digital signature. In Proceedings on Advances in
cryptology, pages 218–238. Springer-Verlag New York, Inc., 1989.

21. R. Raz, O. Reingold, and S. Vadhan. Error reduction for extractor. In 40th IEEE
Symposium on Foundations of Computer Science, pages 191–201, 1999.

22. A. Srinivasan and D. Zuckerman. Computing with very weak random sources.
SIAM Journal on Computing, 28:1433–1459, 1999.

23. Amnon Ta-Shma. Storing information with extractors. Information Processing
Letters, 83(5):267–274, September 2002.

24. Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Loss-less condensers,
unbalanced expanders, and extractors. In ACM, editor, Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing: Hersonissos, Crete, Greece,
July 6–8, 2001, pages 143–152, New York, NY, USA, 2001. ACM Press.

25. S.P. Vadhan. On constructing locally computable extractors and cryptosystems in
the bounded storage model. In Advances in Cryptology — CRYPTO ’03. Springer,
2003.

