
A Message Authentication Code Based on

Unimodular Matrix Groups

Matthew Cary?1 and Ramarathnam Venkatesan2

1 University of Washington
cary@cs.washington.edu

2 Microsoft Research
venkie@microsoft.com

Abstract. We present a new construction based on modular groups. A
novel element of our construction is to embed each input into a sequence
of matrices with determinant ±1, the product of which yields the desired
mac. We analyze using the invertibility and the arithmetic properties of
the determinants of certain types of matrices; this may be of interest
in other applications. Performance results on our preliminary implemen-
tations show the speed of our mac is competitive with recent fast mac

algorithms, achieving 0.5 Gigabytes per second on a 1.06 GHz Celeron.

Keywords: Message authentication, efficient mac, hash functions.

1 Introduction

Algorithms to compute message authentication codes (macs) are important in
security applications, and the task of constructing them rigorously and efficiently
has been a subject of many papers. An introduction may be found in [MvOV97].

mac algorithms use a secret key K to select a function HK(X) and map an
input X into a short binary string h = HK(X) of some fixed length. Then, h is
encrypted using a block cipher. If the cipher acts as a random permutation, the
encryptions of the hash values h1, ..., hq of q distinct inputs X1, ..., Xq can not
be distinguished from truly random outputs of the corresponding length, if the
hash values hi = HK(Xi) are distinct. Thus the collision properties of the hash
function determines the security of the mac. The main parameter of interest is
the collision probability PrK [HK(X) = HK(X

′)] where X and X ′ are arbitrary
and distinct inputs. If this probability is the inverse of the size of the range, the
family of HK is called universal [CW81]. This approach has enabled the con-
struction of families (See [BHK+99, HK97, Rog99, BCK96, Sho96, JV98, Ber])
with quantifiable collision probabilities that are quite fast in practice. In this
paper, we will focus on the initial mapping X 7→ h and its collision probability,
and assume for simplicity that all inputs are `-bit word sequences which are the
same length, and can be subdivided into blocks of convenient length t evenly.

? Research done while at Microsoft Research. Partially supported by NSF grant CCR-
0098066

498 M. Cary, R. Venkatesan

Previous Work

To motivate our construction, we recall some earlier ones. The evaluation mac

identifies an input message X = x1, . . . xt with a polynomial of degree t over a
suitable field and computes the map α 7→

∑

i xiα
i for a random α. (See [Sho96]

and [Ber] for speed-ups; the latter uses floating-point operations in a manner
which may apply to our construction).
Many mac constructions use a standard iterative rule yi = fi(xi + yi−1),

where yi are the intermediate values and various methods use different fi’s. In
the evaluation mac, fi(x) = f(x) = αx, the iteration is Horner’s rule and ym is
the final value, while if one takes fi = f(x) = EK(x) to be a block cipher, one
gets the cbc mac (see [BKR00] for an analysis). The chain and sum method in
[JV98] doubles the length of the hash in a one-pass computation by outputting
the pair (yt,

∑

yi). It alternates two random affine transformations x 7→ ax+ b,
one for for odd i, and one for even i, each using an extra multiplier in the
iteration yi = f(exi + yi−1). The invertibility of the operations allows one to
combine mac and encryption to obtain a pseudo-random permutation on X
by further encrypting the intermediate values y1, ...yt−2 with an one-time pad
derived from (yt,

∑

yi) using a stream cipher and encrypting (yt,
∑

yi) with a
block cipher. We will also use the sum of intermediate values in our hash.
These methods work over a field where operations are typically expensive

and using arithmetic modulo 2` is advantageous, as the fastest macs indeed
do. However, we lose invertibility (in the multiplicative sense) which is crucial
for analysis. To wit, for x 6= x′, the function f(x) = αx +b over a field has
a uniform output differential f(x) − f(x′) = α(x − x′) in the sense that it is
uniformly distributed if α is randomly chosen. However, modulo 2` this changes
sharply. If 2`−1|(x−x′) then 2`−1|(y−y′), and the output is distributed on a set
of size 2 for a random odd α. Our goal is to construct reversible transformations
that are suitable for mac (and other applications) keeping the structure of the
proof in the finite field case, except our equations involve coefficients from matrix
groups.

umac [BHK+99] uses the iteration yi = yi−1+f(x2i, x2i+1) mod 22` where
f(x2i, x2i+1) = (x2i + k2i) · (x2i+1 + k2i+1) mod 22`, ki are random and all
variables except yi are `-bits. This allows leveraging simd available on today’s
cpu’s for media processing to hash more than a byte per cycle or gigabyte per
second.
Recently Klimov and Shamir [KS] constructed an elegant family of invertible

mappings (modulo 2`) that combine arithmetic and boolean operations to get
non-linear maps for use in cryptographic primitives. These functions need to be
randomized and modified to have suitable differential properties, in order to be
used for our and similar applications.

Our Construction

Preliminaries: Recall that our inputs are broken into blocks of length t words,
each of size `-bits. We use a sequence 2 × 2 matrices (Ai) with det(Ai) = ±1

A MAC from Unimodular Matrix Groups 499

and fixed independent of the input xi; the sequence may be periodic so that
implementations can be unrolled with small code footprint. We define invertible
functions fi(x) by multiplication with odd ai, where ai and x are ` bits, and
the 2` bit result is viewed as a vector of two ` bit numbers. The ai form the
secret key of the mac and are assumed to be random. Thus fi(x) is invertible
modulo 22` and can be implemented in one instruction using the usual 2`-bit
result of multiplication of two `-bit quantities. One may be able to use floating
point arithmetic as in [Ber]. All our matrix operations are over ring of integers
modulo 2`.

the algorithm: We embed a given `-bit input xi into a 3× 3 matrix Bi by
xi 7→

[

Ai vi

0 0 1

]

=: Bi, where vi = fi(xi) is a vector with two elements. For each

block of input, we compute the product B =
[

A z
0 0 1

]

of these matrices Bi. The

output of our hash value is the pair (z,
∑t

i=1 vi).

We show that the collision probability is nearly 2−2`, by using the invertibility
of A

i
and the arithmetic properties of the determinants of the matrices of the

form
∏k

i=j Ai − I over Z (and not modulo 2`). We believe this new approach
offers simplicity and can be helpful in other applications than macs.

Our construction can be viewed in a more general setting. Let G be the group
of integer matrices with determinant ±1, V = Z2

2` be the additive group of 2-
dimensional vectors modulo 2` and G n V be their semi-direct product by the
natural action of G on V . Then the above maps each xi into GnV , by mapping
xi to

(

Ai, fi(xi)
)

and takes the product of the images in G n V . This can be
generalized into higher dimensions (see the section 6), and one can also view this
hashing as a walk on the associated directed Cayley graphs.

The reader may have noticed that in the above and in umac the block keys
are random independent sequences of words. umac expands a short key into
a longer one by using a secure pseudo-random generator, and after the first
block, needs only small amount of additional keys on a per block basis. Our
algorithm is similar and a closer look security and performance at reducing this
key generation may be desirable for some applications.

Our current version, implemented on an Intel Celeron, while not fully opti-
mized, is competitive or better than known algorithms but slower than umac.
However, we believe our novel construction is interesting in its own right, and
may lend itself to other applications. Further refinement may improve the speed
of our algorithm, and reduce the amount of key used. Implementations on immi-
nent architectures such as amd with a larger number of registers and different
parallel constructs may also improve our speed.

Our algorithm suggests a semi-universal model for checksums for files, where
mac’s may be an overkill. In section 4 we show that any two inputs that collide
within a block, must differ in at least two locations. The collision probability of
our mac is much smaller if the input differs in at least three locations, which we
may call 3-semi-universal hashing. Such variations and generalizations may lead
to more efficient constructions. We omit the details in this version.

500 M. Cary, R. Venkatesan

Section 2 describes some conventions we use in this paper. Section 3 de-
scribes the construction, which is analyzed in Section 4. We give experimental
performance results in Section 5, and conclude with open problems in Section 6.

2 Conventions

Fix a modulus m = 2`, for example, ` = 32. A word will refer to an element
of Zm = Z/mZ and a double word to an element of Zm2 . Hence, words can be
though of as ` bit integers, and double words as 2` bit integers. All operations
will take place over words, that is, over Zm, unless otherwise specified. We will
take advantage of the ability of modern processors to multiply two words to
produce a double word in a single instruction; this operation will be denoted ×∗.
For x, y ∈ Zm, x ×∗ y will be in Z2

m, that is, we view the result as a two word
vector.

We shall assume, if necessary by padding, the input to consist integral number
of words. For simplicity we assume our input consists of b blocks each of which
has a fixed block length of t words.

3 The Construction

Hashing One Block

We now describe construction for a map v that sends an input block X =
x1, . . . , xt into `-bit hash value v = v(X). The block key consists of `-bit words
ai, for 1 ≤ i ≤ t; the same key is reused with each block. We define fi : Zm → Z2

m

by fi(x) = ai ×∗ x. Our algorithm uses fixed public matrices A1, . . . , At. These
will contain very small entries so that matrix products can be implemented very
efficiently by addition and subtraction of words.

Let vi be the column vector of two words equal to fi(xi). Define matrices Bi,

B and B0, which have the form
[

∗ ∗ ∗
∗ ∗ ∗
0 0 1

]

, where B0 =
[

1 0
0 1

z0

0 0 1

]

, and for i > 0,

Bi :=

[

Ai vi

0 0 1

]

, B := B0 ·

t
∏

i=1

Bi =:

[

A z
0 0 1

]

(1)

It is clear that B can be written as above; z is the first two components of the
third column of B and A has determinant ±1. z0 is an initial value for the block.
We also compute

σ = σ0 +

t
∑

i=1

vi,

where σ0 is another initial value for the block. The hash value is v(X) = (z, σ).

A MAC from Unimodular Matrix Groups 501

Inter-Block Chaining

The kth block is associated with two uniform hash functions F
(k)
1 and F

(k)
2

mapping double words to double words. We drop the superscript if the block
number is clear from context. If (z′, σ′) is the output of a hashed block, we chain
this to the next block by setting σ0 = F2(σ

′) and

B0 =





1 0
0 1

F1(z
′)

0 0 1





as the initial values for the next block. These inter-block functions may be re-
peated to save on key length, at some cost of security, which will be detailed
in the analysis. The exact definition of these functions is not important for our
applications.

Doubling the Hash Value Length

The hash value length can be doubled by performing an independent hash in
parallel. We use key words bi, 1 ≤ i ≤ t which is independent of the ai, and set
the functions gi, i ≤ t to g(x) = bi×∗ x. We define ui = gi(xi), and as above get
a map X 7→ u(X) with the hash value u using

Ci :=

[

Ai ui

0 0 1

]

, C := C0 ·

t
∏

i=1

Ci =:

[

A w
0 0 1

]

, C0 :=





1 0
0 1

u0

0 0 1



 . (2)

We also compute ν = ν0+
∑t

i=1 ui. The overall hash will now be
(

v(X), u(X)
)

=
(z, σ, w, ν).

Main Result

Theorem 1. For t ≤ 50, if H = (z, σ, w, ν) and H ′ = (z′, σ′, w′, ν′) are the

hash values computed from two distinct inputs, then

Pr[H = H ′] ≤ 2−4`+20,

where the probability is taken over the choice of key.

This theorem will follow directly from Lemmas 3 and 4. We note that the
theorem is not optimal, in that the choice for the matrices of Lemma 4 could be
improved.

502 M. Cary, R. Venkatesan

4 Analysis

Collisions in a Block

We will first concentrate on the analysis of the hash of a single block, and assume
that B0 = I, the 3× 3 identity matrix. By repeated use of the identity

[

A v
0 0 1

]

·

[

B u
0 0 1

]

=

[

AB Au+ v
0 0 1

]

in equation (1), we have that

z = v1 +A1v2 +A1A2v3 + · · ·+A1A2 · · ·At−1vt. (3)

For two (not necessarily distinct) input blocks, we write X = x1, . . . , xt and
X ′ = x′1, . . . , x

′
t define v

′
i = fi(x

′
i), and define z

′ and σ′ analogously.
We need the following technical lemma relating the distributive law of of ×∗

over vector subtraction. We remark that in general it is not true that a×∗ x−
a×∗ x

′ = a×∗ (x− x′) and thus the operation is not linear. However, assuming
x 6= x′, a ×∗ x − a ×∗ x

′ is nearly as likely to collide with any fixed value as
a×∗ (x− x′).

Lemma 1. Given any fixed words x 6= x′ and any fixed double word α =
(α1, α2),

Pr
a
[a×∗ x− a×∗ x

′ = α] ≤ 2−`+2,

where the probability is taken over uniformly chosen odd words a ∈ Zm.

Proof. For this proof we let · denote the usual multiplication over double words.
By abusing notation we write a·x = y for a, x ∈ Zm and y ∈ Zm2 ; we note also in
this case there is no overflow, so that y = ax as integers. The crux of this lemma is
the difference between subtraction over double words as integers modulom2, and
subtraction over two-dimensional vectors modulo m. To make this distinction
explicit, for an element x ∈ Zm2 we write [x] as the vector corresponding x,
so that [x] ∈ Z2

m. Then for double words y and z, if [y] − [z] = (w1, w2), then
[y − z] = (w1 − c, w2), where c is either 0 and 1 depending on whether there is
a carry between the low and high words or not.
Let A be the set of all odd a that cause a collision, that is, for the fixed

α = (α1, α2), all a such that [a · x]− [a · x
′] = α for x and x′ as in the statement

of the lemma. Then for any a ∈ A, [a · x− a · x′] = (α1− ca, α2), for ca = 0 or 1.
Given a, a′ ∈ A with ca = ca′ , we have a · (x−x′) = a′ · (x−x′) over the integers,
so that as x 6= x′, a = a′. Thus A contains at most two elements, possibly one
with carry 0 and possibly one with carry 1. As there are 2`−1 choices for odd a,
the chance of choosing one in A is at most 2 · 2−`+1 = 2−`+2, as required. ut

We now begin our analysis of the hash function proper.

Lemma 2. If (z, σ) = (z′, σ′) for distinct inputs X and X ′, then X and X ′

differ in at least two locations.

A MAC from Unimodular Matrix Groups 503

Proof. Suppose not, so that xi = x′i for all i 6= j, and xj 6= x′j for some j. Then
σ − σ′ = aj ×∗ xj − aj ×∗ x

′
j . As aj is odd and hence an invertible map from

Zm → Z2
m, σ 6= σ′, contradicting (z, σ) = (z′, σ′). ut

We now know that colliding inputs have at least two distinct words, however
we do not know which words these are. This is where computing the hash as
a matrix product and sum helps us. For example, if x and y are independently
distributed over Zm, then 2x + y and 2y − x are independently distributed as
well. Note, however, that x+ y and x− y are not independently distributed; for
example, they have the same parity. The difference between these two examples
is that the former arises from the matrix

[

2 1
−1 2

]

, which is invertible over Zm,

while the the matrix of the latter is
[

1 1
1 −1

]

has determinant -2, and so is not
invertible over Zm. The relationship between the two components of our hash
pair, z and σ, is similar, so that if we pick our matrices carefully, z and σ will
be independent.

Definition 1. A sequence of matrices A1, . . . , At is k-invertible if for any i < j,
and ∆ defined as

∆ = det(Ai · · ·Aj−1 − I),

if ∆ is nonzero, and if 2k′

|∆, then k′ ≤ k.

For any interval I = [i, j), the matrix B =
∏

I Ai − I formed from a k-
invertible sequence of Ai is nearly invertible in the following sense. Let det(B) =
s2k′

for odd, nonzero s and k′ ≤ k. Then Bx = α can be solved modulo 2`−k

uniquely and then there are 2k solutions modulo 2`. Thus we need to ensure that
the value k should be as small as possible.

Lemma 3. Assume that the sequence A1, . . . , At is k-invertible. Then for dis-

tinct inputs X 6= X ′, Pr{ai}[(z, σ) = (z
′, σ′)] ≤ 2−2`+4+k, where fi(x) = ai×∗ x.

Proof. Let δxi = xi − x′i and δvi = f(xi) − f(x′i) = ai ×∗ xi − ai ×∗ x
′
i. By

Lemma 2, we can assume that there exist i < j such that δxi 6= 0 and δxj 6= 0.
Our analysis now is in terms of matrix equations over Zm involving Ai’s and
δvi ; the inputs xi and x

′
i are involved implicitly in a non-linear way which will

by Lemma 1 will cost us a factor of 2. By fixing all ar for r 6= i, j, we have that

Pr
ai,aj

[(z, σ) = (z′, σ′)] =

Pr
ai,aj

[A1 · · ·Ai−1δvi +A1 · · ·Aj−1δvj = α, δvi + δvj = β] ,
(4)

for appropriate fixed α and β. Rearranging (4), we have that for some fixed α′,
it is equivalent to

Pr
ai,aj

[(Ai · · ·Aj−1 − I)δvj = α′, δvi + δvj = β] .

Let B = (Ai · · ·Aj−1−I), and let ∆ = detB. As the sequence Ai, . . . , Aj−1 is k-

invertible,∆ = s·2k′

for some odd s and k′ ≤ k. As remarked above, Bδvj = α′ iff

504 M. Cary, R. Venkatesan

2k′

δvj = α∗ in Zm, for some fixed α
∗ depending on α′ and B. As from Lemma 1

Praj
[δvj = γ] ≤ 2−`+2 for any fixed γ, Praj

[2k′

δvj = α∗] ≤ 2−`+2+k′

≤ 2−`+2+k

(recall all operations are performed over Zm). Finally, if the event 2
kδvj = α∗

occurs, then Prai
[δvi + δvj = β] ≤ 2−`+2 (and can be possibly zero), as δvi

depends only on ai, independently from vj . Multiplying these probabilities gives
the lemma. ut

Inter-Block Chaining

We now consider the operation of the hash over several blocks. Let (zk, σk) be the

output of the kth block, so that the initial values for the k+1 block are F
(k)
1 (zk)

and F
(k)
2 (σk). If the keys for the pair (F

(k)
1 , F

(k)
2) are new at each block, then

the initial positions at each block are independent, using the uniformity of the
Fi. Given two messages X1, . . . , Xn and X

′
1, . . . , X

′
n, let i be the largest index of

different blocks, so that Xi 6= X ′
i and Xj = X ′

j for j > i. Then H(X1, . . . , Xn) =
H(X ′

1, . . . , X
′
n) iff (zi, σi) = (z′i, σ

′
i). If H(X1, . . . , Xi−1) = H(X ′

1, . . . , X
′
i−1),

then the probability that (zi, σi) = (z
′
i, σ

′
i) is given in Lemma 3. Otherwise, by

fixing all key bits but those for F
(i−1)
r , r = 1, 2, the probability that (zi, σi) =

(z′i, σ
′
i) is equal to that of a collision in the F

(i−1)
r , which is smaller than that

of Lemma 3. If we wish to save on key size, the F
(i)
j can be reused. A standard

union-bound shows that the bit-security of the hash decreases linearly with the
frequency of reuse.

Choice of Matrices

The choice of the sequence A1, . . . , At can be tailored to implementation require-
ments. Obviously there is a trade-off between finding k-invertible matrices for
minimum k while ensuring that the matrix-vector products of the hashing algo-
rithm can be efficiently computed. Our implementations in §5 use the families
below. We caution that if the order of the matrices is changed, the determinants
of interest may be identically zero!

Lemma 4. Define the following integer matrices of determinant ±1.

A′
1 =

(

−1 1
1 −2

)

, A′
2 =

(

2 1
1 1

)

, and A′
3 =

(

1 3
1 2

)

.

We now extend this periodically into a longer sequence: At = (A1, . . . , At) where
Ai+3s = A′

i. Then A19 is 4-invertible, and A50 is 6-invertible.

Proof. This can be verified by direct computation. A plot of the the k-invertibility
of A50 is shown in Figure 1. ut

It would be interesting to see if the noticeable structure in the plot can be
exploited. We now present another family of matrices whose near-invertibility
is not as good; however these have entries from {±1, 0} yielding more efficient

A MAC from Unimodular Matrix Groups 505

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200 1400

M
ax

. #
 F

ac
to

rs
 o

f 2

Sequence Number

Fig. 1. The 6-invertibility of A50. The y-axis is the largest k ≥ 0 such that

2k| det
(

(
∏j

i As

)

− I
)

, where the interval {i . . . j} is given by the sequence number.

The determinant is nonzero in all cases.

implementations. Preliminary implementations suggest a 15% speed-up when
using these simpler matrices. Of perhaps more interest, we can also show the
determinants of interest are non-zero, if not nearly odd.

Lemma 5. Define the following matrices.

B′
1 =

(

1 1
1 0

)

, B′
2 =

(

−1 −1
0 −1

)

, B′
3 =

(

0 1
1 1

)

, and B′
4 =

(

−1 0
−1 −1

)

.

Set Bi = B′
(i mod 4)+1 and Bt = (B1, . . . , Bt). Then for any 1 ≤ i ≤ j ≤ t, if

M =
∏j

i Bs, det(M − I) 6= 0.

This is a necessary condition for k-invertibility, though clearly is insufficient
in general. Experimentally, Bt is roughly log1.5 t-invertible. For t ∼ 50, they
are not as invertible as A50, so we have not used them in our implementation.
Figure 2 shows the growth of the k-invertibility of Bt as t is increased.

Proof. For a matrix A, we write A ≥ 0 if each entry of A is at least 0. We write
A ≤ 0 if −A ≥ 0, and A ≥ A′ if A − A′ ≥ 0. We also write |A| to denote the
matrix whose entries are the absolute value of those of A.
In the notation of Lemma 5, note that

X1 = B′
1B

′
2 = B′

2B
′
3 =

(

−1 −2
−1 −1

)

and X2 = B′
3B

′
4 = B′

4B
′
1 =

(

−1 −1
−2 −1

)

.

By examination we have for all 1 ≤ s ≤ 4, det(B ′
s − I) ∈ {−1, 4} and hence

nonzero, and Tr(B′
s) ∈ {1,−1} and at least 1 in absolute value. For r = 1, 2,

det(Xr − I) = 2 6= 0 and Tr(Xr) = −2. Finally, det(B
′
sXr − I) ∈ {−4,−3, 6}.

506 M. Cary, R. Venkatesan

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300

M
ax

. #
 F

ac
to

rs
 o

f 2

t

Fig. 2. The k-invertibility of Bt (solid line) plotted against log1.5 t (dashed line). Here

the y-axis is the largest k such that 2k| det
(

(
∏j

i Bs

)

− I
)

, for all 1 ≤ i ≤ j ≤ t, for the

specified t.

Hence we can proceed by induction, and assume j − i > 2. Set M ′ =
∏j−2

s=i Bs

and fix r so thatM =M ′Xr, and by induction we can assume that
∣

∣Tr(M ′)
∣

∣ ≥ 2
Since det(M) = ±1, det(M − I) = det(M) + 1− Tr(M), and det(M) + 1 =

0 or 2, it will be enough to show that |Tr(M)| > 2. Note that M ≥ 0 or M ≤ 0,

for Bs = ±1 · |Bs|, so that M = ±1 ·
∏j

i |Bs|, and
∏

|Bs| ≥ 0. As M ′ ≥ 0
or M ′ ≤ 0, using the same argument as for M , by examining Xr we see that
|M | ≥ |M ′|.
One can label the off-diagonal elements of M ′ by x and y, so that

Tr(M) = Tr(M ′Xr) = −
(∣

∣Tr(M ′)
∣

∣+ 2|x|+ |y|
)

,

if necessary by exchanging x and y. In a similar way as showing |M | ≥ |M ′|,
one can show |M ′| > 0, so thus

∣

∣Tr(M)
∣

∣ ≥
∣

∣Tr(M ′)
∣

∣+1 ≥ 3, using the inductive
assumption on M ′. Hence det(M − I) 6= 0, as required. ut

5 Preliminary Implementation

Our hash design is mindful of operating constraints of modern processors. In
particular it admits parallelization which is useful now that SIMD operations are
standard on most computers. For example, the MMX instruction set standard
on Intel Pentium II and later processors can operate simultaneously on 32-bit
words with a throughput of 2 per cycle.
We mention some caveats. As written above, our test version is not optimized

and availability of extra registers and parallelism in imminent machines must be
taken in to account. The comparison numbers are to be taken as indicative

A MAC from Unimodular Matrix Groups 507

Algorithm
Security
(Bits)

Peak Rate
(cycles/byte)

Key Size
(8 Kbyte Message)

Ours (two streams) 108 3.7 13.6 Kbits

Ours (one stream) 54 2.0 6.8 Kbits

umac 60 0.98 8 Kbits

sha-1 80 12.6 512 bits

Data for other algorithms taken from [BHK+99, BHK+00].

Fig. 3. mac Comparisons

of the parameters chosen in the test, and the results may depend on it. The
comparison of key size generation was not closely looked at since this would
mean re-coding and testing other algorithms with different parameters. The
numbers presented on key sizes here may offer a different picture than what one
would get if aggressive optimizations were made.
For brevity, we say that a hash or mac has s bits of security if the collision

probability (over the choice of keys) on two distinct fixed messages is ≤ 2−s.
Using A50, by Lemma 3 each hash gives 2 · 32 − 4 − 6 = 54 bits of security,
using 30 32-bit words of key per mac per stream, plus the key for the inter block
chaining. As two macs are computed, the total security is 108 bits. Using MMX
instructions on a 1.06 GHz Celeron, this mac was computed at a peak rate of
3.7 cycles per byte. We have not implemented an optimized SSE2 algorithm to
determine if the extended instruction set would benefit our algorithm. We also
implemented the hash using a single stream, which gives 54 bits of security. This
achieved a peak rate of 2.0 cycles per byte.
Our algorithm is also competitive with umac on the length of the generated

key. To maintain the security bounds of Lemma 3, each inter-block hash needs
four 32-bit words of key per hash stream. Each of our blocks then requires 50 · 2
32-bit words of key. Thus, for an 8 Kbyte message, 42 inter-block hashes are
required, for 5376 bits of key per hash stream. The total for an 8 Kbyte message
and two hash streams is 13.6 Kbits of key. This compares with the current umac

implementation [BHK+00] which requires 8 Kbits of generated key to hash a
message of any length to 60 bits of security.
We summarize this information with context from other algorithms in Fig-

ure 3.

6 Future Work

k-Invertible Matrices: The proof k-invertibility of our matrix sequences is
computational and analytical proofs are desirable. It is not necessary for such se-
quences to be periodic, as ours are. More complex families may improve the speed
and the security of our hash. For example, we have found a periodic sequence of
4×4 matrices of length 80 which is 4-invertible. The larger matrices can be used
to consume twice as much input per iteration, and the longer sequence length

508 M. Cary, R. Venkatesan

means the inter-block chaining is less frequent, improving efficiency. Preliminary
implementations show this is 17% faster than the matrices of Lemma 4, and 2%
faster than the matrices of Lemma 5, while providing more security than the
other sequences.

Other Hardware Platforms: Both our construction and umac benefit
from the media processing instructions found on Pentium CPUs. Other plat-
forms, such as those of AMD, or Intel’s Itanium CPU, have different advantages,
including larger register files. These details may change the relative performance
between our mac and umac, as well as motivate new directions in mac design.

Combined MAC and Encryption: Since our operations are invertible, we
may try to combine authentication and encryption with stream ciphers. The
idea is rather simple: use the final hash value to define a key for a stream cipher
to generate a one-time pad. Instead of encrypting the input sequence xi, one
encrypts yi = aixi+bi, where ai and bi are random key words (the first quantity
is the lower half of a vi in a step of our mac). As before we further need to
encrypt the hash value. One needs to exercise caution here: if the addition with
bi were omitted, one could still observe correlations. This would be the case if
the inputs xi end in many zeroes and RC4 is used. It would be interesting to see
if such minor known or future correlations in RC4 [Gol97, Mir02, MT98] can be
masked.

Key Size Reduction: The inter-block chaining seems to contain some slack
in the use of key. Almost twice as much key is used in inter-block hashing as is
used for the blocks. Key reuse techniques such as a Toplitz shift (see [BHK+99])
may be able to address this problem. The use of a single pairwise independent
hash may be sufficient, but our proof of that is incomplete.

References

[ALW01] Noga Alon, Alexander Lubotzky, and Avi Wigderson. Semi-direct product
in groups and Zig-zag product in graphs: Connections and applications. In
FOCS 2001, pages 630–637. IEEE, 2001.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions
for message authentication. Lecture Notes in Computer Science, 1109,
1996.

[Ber] D. Bernstein. Floating-point arithmetic and message authentication. draft
available as http://cr.yp.to/papers/hash127.dvi.

[BHK+99] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC:
Fast and secure message authentication. Lecture Notes in Computer Sci-

ence, 1666:216–233, 1999.
[BHK+00] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC

home page, 2000. URL: http://www.cs.ucdavis.edu/~rogaway/umac.
[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher

block chaining message authentication code. Journal of Computer and

System Sciences, 61(3):362–399, 2000.
[CW81] Carter and Wegman. New hash functions and their use in authentication

and set equality. Journal of Computer and System Sciences, 22(3):265–279,
1981.

A MAC from Unimodular Matrix Groups 509

[Gol97] J. Golic. Linear statistical weaknesses in alleged RC4 keystream generator.
In Advances in Cryptology — EUROCRYPT ’97, volume 1233 of Lecture

Notes in Computer Science, pages 226–238. Springer-Verlag, 1997.
[HK97] Shai Halevi and Hugo Krawczyk. MMH: Software message authentication

in the Gbit/second rates. In Fast Software Encryption, pages 172–189,
1997.

[JV98] Mariusz H. Jakubowski and Ramarathnam Venkatesan. The chain and
sum primitive and its applications to MACs and stream ciphers. In Ad-

vances in Cryptology — EUROCRYPT ’98, volume 1403 of Lecture Notes

in Computer Science, pages 281–293. Springer-Verlag, 1998.
[KS] Alexander Klimov and Adi Shamir. A new class of invertible mappings.

Crypto 2001 Rump Session.
[Mir02] Ilya Mironov. Not so random shuffles of RC4. In Advances in Cryptology

— CRYPTO 2002, Lecture Notes in Computer Science. Springer-Verlag,
2002.

[MvOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook

of Applied Cryptography. CRC Press, 1997.
[MT98] Serge Mister and Stafford E. Tavares. Cryptanalysis of RC4-like Ciphers

In Selected Areas in Cryptography, 131–143, 1998.
[Rog99] Phillip Rogaway. Bucket hashing and its application to fast message au-

thentication. Journal of Cryptology: the Journal of the International As-

sociation for Cryptologic Research, 12(2):91–115, 1999.
[Sho96] Victor Shoup. On fast and provably secure message authentication based

on universal hashing. Lecture Notes in Computer Science, 1109, 1996.

