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Abstract. We present the SIGMA family of key-exchange protocols and
the “SIGn-and-MAc” approach to authenticated Diffie-Hellman under-
lying its design. The SIGMA protocols provide perfect forward secrecy
via a Diffie-Hellman exchange authenticated with digital signatures, and
are specifically designed to ensure sound cryptographic key exchange
while providing a variety of features and trade-offs required in practical
scenarios (such as optional identity protection and reduced number of
protocol rounds). As a consequence, the SIGMA protocols are very well
suited for use in actual applications and for standardized key exchange.
In particular, SIGMA serves as the cryptographic basis for the signature-
based modes of the standardized Internet Key Exchange (IKE) protocol
(versions 1 and 2).

This paper describes the design rationale behind the SIGMA approach
and protocols, and points out to many subtleties surrounding the design
of secure key-exchange protocols in general, and identity-protecting pro-
tocols in particular. We motivate the design of SIGMA by comparing it
to other protocols, most notable the STS protocol and its variants. In
particular, it is shown how SIGMA solves some of the security shortcom-
ings found in previous protocols.

1 Introduction

In this paper we describe the SIGMA family of key-exchange protocols, with
emphasis on its design features and rationale. The SIGMA protocols introduce
a general approach to building authenticated Diffie-Hellman protocols using a
careful combination of digital signatures and a MAC (message authentication)
function. We call this the “SIGn-and-MAc” approach which is also the reason
for the SIGMA acronym.
SIGMA serves as the cryptographic basis for the Internet Key Exchange

(IKE) protocol [11, 16] standardized to provide key-exchange functionality to
the IPsec suite of security protocols [17]. More precisely, SIGMA is the basis for
the signature-based authenticated key exchange in IKE [11], which is the most
commonly used mode of public-key authentication in IKE, and the basis for the
only mode of public-key authentication in IKEv2 [16].
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This paper provides the first systematic description of the development and
rationale of the SIGMA protocols. The presentation is intended to motivate the
design choices in the protocol by comparing and contrasting it to alternative
protocols, and by learning from the strong and weak aspects of previous proto-
cols. It also explains how the different variants of the SIGMA protocol follow
from a common design core. In particular, it explains the security basis on which
the signature-based modes of IKE, and its current revision IKEv2, are based.
The presentation is informal and emphasizes rationale and intuition rather than
rigorous analysis. A formal analysis of the SIGMA protocol has been presented
in [7] where it is shown that the basic SIGMA design and its variants are secure
under a complexity-theoretic model of security. While this rigorous analysis is
essential for gaining confidence in the security design of SIGMA, it does not
provide an explicit understanding of the design process that led to these pro-
tocols, and the numerous subtleties surrounding this design. Providing such an
understanding is a main goal of this paper which will hopefully be beneficial to
cryptographers and security protocol designers (as well as for those engineering
security solutions based on these protocols).

The basic guiding requirements behind the design of SIGMA are (a) to pro-
vide a secure key-exchange protocol based on the Diffie-Hellman exchange (for
ensuring “perfect forward secrecy”), (b) use digital signatures as the means for
public-key authentication of the protocol, and (c) provide the option to protect
the identities of the protocol peers from being learned by an attacker in the
network. These were three basic requirements put forth by the IPsec working
group for its preferred key-exchange protocol. The natural candidate for satis-
fying these requirements is the well-known STS key-exchange protocol due to
Diffie, van Oorschot and Wiener [8]. We show, however, that this protocol and
some of its variants (including a variant adopted into Photuris [14], a predecessor
of IKE as the key-exchange protocol for IPsec) suffer from security shortcomings
that make them unsuited for some practical scenarios, in particular in the wide
Internet setting for which the IPsec protocols are designed. Still, the design of
SIGMA is strongly based on that of STS: both the strengths of the STS design
principles (very well articulated in [8]) as well as the weaknesses of some of the
STS protocol choices have strongly influenced the SIGMA design.

One point that is particularly important for understanding the design of
SIGMA (and other key-exchange protocols) is the central role that the require-
ment for identity protection has in this design. As it turns out, the identity
protection functionality conflicts with the essential requirement of peer authen-
tication. The result is that both requirements (authentication and identity pro-
tection) can be satisfied simultaneously, at least to some extent, but their co-
existence introduces significant subtleties both in the design of the protocol and
its analysis. In order to highlight this issue we compare SIGMA to another au-
thenticated Diffie-Hellman design, a variant of the ISO protocol [12], that has
been shown to be secure [6] but which is not well-suited to support identity pro-
tection. As we will see SIGMA provides a satisfactory and flexible solution to
this problem by supporting identity protection as an optional feature of the pro-
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tocols, while keeping the number of communication rounds and cryptographic
operations to a minimum. As a result SIGMA can suit the identity protection
scenarios as well as those that do not require this functionality; in the later case
there is no penalty (in terms of security, computation, communication, or gen-
eral complexity) relative to protocols that do not offer identity protection at all.
We thus believe that SIGMA is well suited as a “general purpose” authenticated
Diffie-Hellman protocol that can serve a wide range of applications and security
scenarios.

History of the SIGMA protocols. The SIGMA approach was introduced
by the author in 1995 [19] to the IPsec working group as a possible replace-
ment for the Photuris key-exchange protocol [14] developed at the time by that
working group. Photuris used a variant of the STS protocol that we showed
[19] to be flawed through the attack presented in Section 3.3. In particular, this
demonstrated that the Photuris key exchange, when used with optional identity
protection and RSA signatures (or any signature scheme allowing for message
recovery), was open to the same attack that originally motivated the design of
STS (see Section 3.1). Eventually, the Photuris protocol was replaced with the
Internet Key Exchange (IKE) protocol which adopted SIGMA (unnamed at the
time) into its two signature-based authentication modes: main mode (that pro-
vides identity protection) and aggressive mode (which does not support identity
protection). The IKE protocol was standardized in 1999, and a revised version
(IKEv2) is currently under way [16] (the latter also uses the SIGMA protocol as
its cryptographic key exchange).

Related work. There is a vast amount of work that deals with the design
and analysis of key-exchange (and authentication) protocols and which is rel-
evant to the subject of this paper. Chapter 12 of [27] provides many pointers
to such works, and additional papers can be found in the recent security and
cryptography literature. There have been a few works that provided analysis
and critique of the IKE protocol (e.g., [9, 29]). Yet, these works mainly discuss
issues related to functionality and complexity trade-offs rather than analyzing
the core cryptographic design of the key exchange protocols. A formal analysis
of the IKE protocols has been carried by Meadows [26] using automated analysis
tools. In addition, as we have already mentioned, [7] provides a formal analysis of
the SIGMA protocols (and its IKE variants) based on the complexity-theoretic
approach to the analysis of key-exchange protocols initiated in [2]. A BAN-logic
analysis of the STS protocols is presented in [31], and attacks on these protocols
that enhance those reported in [19] are presented in [4] (we elaborate on these
attacks in Section 3.3). Finally, we mention the SKEME protocols [20] which
served as the basis for the cryptographic structure of IKE and its non-signature
modes of authentication, but did not include a signature-based solution as in
SIGMA.

Organization In Section 2 we informally discuss security requirements for key-
exchange protocols in general and for SIGMA in particular, and present specific
requirements related to identity protection. Section 3 presents the STS protocol
and its variants, and analyzes the strengths and weaknesses of these protocols.
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Section 4 discusses the ISO protocol as a further motivation for the design of
SIGMA (in particular, this discussion serves to stress the role of identity protec-
tion in the design of SIGMA). Finally, Section 5 presents the SIGMA protocols
together with their design rationale and security properties. In particular, Sec-
tion 5.4 discusses the SIGMA variants used in the IKE protocols.
Note: In the full version of this paper [24] some additional information is provided
as appendices. Specifically, Appendix A includes a simplified (and somewhat informal)
definition of key-exchange security. Appendix B presents a “full fledge” instantiation
of SIGMA which includes some of the elements omitted in the simplified presentation
of Section 5 but which are crucial for a full secure implementation of the protocols.
Appendix C discusses key-derivation issues and presents the specific key-derivation
technique designed for, and used in, the IKE protocols. This technique is of independent
interest since it applies to the derivation of keys in other key-exchange protocols; in
particular, it includes a mechanism for “extracting randomness” from Diffie-Hellman
keys.

2 Preliminaries: On the Security of Key-Exchange

Protocols

Note: this section is important for understanding the design goals of SIGMA;
yet, the impatient reader may skip it in a first reading (but see the notation
paragraph at the end of the section).
In this paper we present an informal exposition of the design rationale be-

hind the development of the SIGMA protocols. This exposition is intended to
serve crypto protocol designers and security engineers to better understand the
subtle design and analytical issues arising in the context of key-exchange (KE
for short) protocols in general, and in the design of SIGMA in particular. This
exposition, however, is not a replacement for a formal analysis of the protocol. A
serious analysis work requires a formal mathematical treatment of the underly-
ing security model and protocol goals. This essential piece of work for providing
confidence in the security of the SIGMA protocols is presented in a companion
paper [7]. The interested reader should consult that work for the formal foun-
dations of security on which SIGMA is based. Yet, before going on to present
the SIGMA protocols and some of its precursors we discuss informally some of
the salient aspects of the analytical setting under which we study and judge KE
protocols. This presentation will also provide a basis for the discussion of some
of the techniques, strengths and weaknesses showing up in the protocols studied
in later sections.
We start by noting that there is no ultimate security model. Security defi-

nitions may differ depending on the underlying mathematical methodology, the
intended application setting, the consideration of different properties as more or
less important, etc. The discussion below focuses on the core security proper-
ties of KE protocols as required in most common settings. These requirements
stem from the the quintessential application of KE protocols, namely, the sup-
ply of shared keys to pairs of parties which later use these keys to secure (via
integrity and secrecy protection) their pairwise communications. In addition, we
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deal with some more specific design goals of SIGMA motivated by requirements
put forth by the IPsec working group: the use of the Diffie-Hellman exchange
as the basic technique for providing “perfect forward secrecy”, the use of digital
signatures for authenticating the exchange, and the (possibly optional) provision
of “identity protection”.

2.1 Overview of the security model and requirements

In spite of being a central (and “obvious”) functionality in many cryptographic
and security applications, the notion of a “secure key-exchange protocol” re-
mains a very complex notion to formalize correctly. Here we state very infor-
mally some basic requirements from KE protocols that we will use as a basis for
later discussion of security issues arising in the design of KE protocols. These
requirements are in no way a replacement for a formal treatment carried in [7],
but are consistent (at least at the intuitive level) with the notion of security in
that work.

Authentication Each party to a KE execution (referred to as a session) needs
to be able to uniquely verify the identity of the peer with which the session
key is exchanged.

Consistency If two honest parties establish a common session key then both
need to have a consistent view of who the peers to the session are. Namely,
if a party A establishes a key K and believes the peer to the exchange to be
B, then if B establishes the session key K then it needs to believe that the
peer to the exchange is A; and vice-versa.

Secrecy If a session is established between two honest peers then no third party
should be able to learn any information about the resultant session key (in
particular, no such third party, watching or interfering with the protocol run,
should be able to distinguish the session key from a random key).

While the “authentication” and “secrecy” requirements are very natural and
broadly accepted, the requirement of “consistency” is much trickier and many
times overlooked. In Section 3.1 we exemplify this type of failure through an
attack first discovered in [8]. This attack, to which we refer as an “identity
misbinding attack”, applies to many seemingly natural and intuitive protocols.
Avoiding this form of attack and guaranteeing a consistent binding between a
session key and the peers to the session is a central element in the design of
SIGMA.
One important point to observe is that the above requirements are not ab-

solute but exist only in relation to a well-defined attack model. The adversarial
model from [7] assumes that each party holds a long-term private authentication
key that is used to uniquely identify and authenticate this party (in the context
of this paper we can concretely think of this long-term authentication key as
being a secret digital signature key.) It also assumes the existence of a trusted
certification authority, or any other trusted mechanism (manual distribution,
web of trust, etc), for binding identities with public keys. Parties communicate
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over a public network controlled by a fully-active man-in-the-middle attacker
which may intercept, delete, delay, modify or inject messages at will. This at-
tacker also controls the scheduling of protocol sessions (a session is an execution
instance of the protocol) which may run concurrently at the same or different
parties.

In addition, the attacker may learn some of the secret information held by
the parties to the protocol. Specifically, the attacker may learn the long-term
secret information held by a party, in which case this party is considered as
controlled by the attacker (and referred to as corrupted). There is no requirement
about the security of sessions executed by a corrupted party (since the attacker
may impersonate it at will), however, it is required that session keys produced
(and erased from memory) before the party corruption happened will remain
secure (i.e. no information on these keys should be learned by the attacker). This
protection of past session keys in spite of the compromise of long-term secrets
is known as perfect forward secrecy (PFS) and is a fundamental property of the
protocols discussed here. The attacker may also learn session-specific information
such as the value of a session key or some secret information contained in the
internal state of a session (e.g., the exponent x of an ephemeral Diffie-Hellman
exponential gx used in that session). In this case, there is no requirement on the
security of the compromised session but we do require that this leakage has no
effect on other (uncompromised) sessions. This models resistance to a variety of
attacks, including known-key attacks and replay attacks (see [27]), and emphasizes
the need for key independence between different sessions.

The analysis of protocols under this model is carried on the basis of the
generic properties required from the cryptographic primitives used in the proto-
col, rather than based on the properties of specific algorithms. This algorithm in-
dependence (or generic security) principle is important in case that specific crypto
algorithms need to be replaced (for better security or improved performance),
and to support different combinations of individually secure algorithms.

Discussion: sufficiency of the above security requirements. One impor-
tant question is whether the above security requirements (and more precisely the
formal security requirements from [7]), under which we judge the security of pro-
tocols in this work, are necessary and/or sufficient to guarantee “key-exchange
security”. Necessity is easy to show through natural examples in which the re-
moval of any one of the above required properties results in explicit and clearly
harmful attacks against the security of the exchanged key (either by compromis-
ing the secrecy of the key or by producing an inconsistent binding between the
key and the identities of the holders of that key). Sufficiency, however, is harder
to argue. We subscribe to the approach put forth in [6] (and followed by [7]) by
which a minimal set of requirements for a KE protocol must ensure the security
of the quintessential application of KE protocols, namely, the provision of “se-
cure channels” (i.e., the sharing of a key between peers that subsequently use
this key for protecting the secrecy and integrity of the information transmitted
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between them). It is shown in [7] that their definition (outlined here) is indeed
sufficient (and actually minimalistic) for providing secure channels.
Also important to stress is that this definitional approach dispenses of some

requirements that some authors (e.g., [25]) consider vital for a sound definition
of security. One important example is the aliveness requirement, namely, if A

completes a session with peer B then A has a proof that B was “alive” during
the execution of the protocol (e.g., by obtaining B’s unique authentication on
some nonce freshly generated by A). This property is not guaranteed by our (or
[7]) definition of security. Moreover, some natural key-transport protocols (e.g.,
the ENC protocol formally specified in [6]) are useful key-exchange protocols
that guarantee secure channels yet do not provide a proof of aliveness. The only
possible negative aspect of a KE protocol that lacks the aliveness guarantee is
that a party may establish a session with a peer that did not establish the corre-
sponding session (and possibly was not even operational at the time); this results
in a form of “denial of service” for the former party but not a compromise of
data transmitted and protected under the key. However, DoS attacks with simi-
lar effects are possible even if aliveness guarantees are provided, for example by
the attacker preventing the arrival of the last protocol message to its destination.
A related (and stronger) property not guaranteed by our basic definition of

security is peer awareness. Roughly speaking, a protocol provides peer awareness
for A if when A completes a session with peer B, A has a guarantee that (not
only is B alive but) B has initiated a corresponding session with peer A. Adding
aliveness and peer awareness guarantees to a KE that lacks these properties is
often very simple, yet it may come at a cost (e.g., it may add messages to the ex-
change or complicate other mechanisms such as identity protection). Therefore,
it is best to leave these properties as optional rather than labeling as “insecure”
any protocol that lacks them.1

All the protocols discussed in this paper provide aliveness proofs to both
parties but only the ISO protocol and the 4-message SIGMA-I with added ACK
(Section 5.2) provide peer awareness to both parties. In particular, the IKE
protocols (Section 5.4) do not provide peer awareness to one of the peers. As
said, this property can be added, when required, at the possible expense of extra
messages or other costs.

2.2 Identity protection

As discussed in Section 2.1, key-exchange protocols require strong mutual au-
thentication and therefore they must be designed to communicate the identity
of each participant in the protocol to its session peer. This implies that the
identities must be transmitted as part of the protocol. Yet some applications
require to prevent the disclosure of these identities over the network. This may
be the case in settings where the identity (for the purpose of authentication)

1 We stress that in contrast to the key-exchange setting, the aliveness requirements,
and sometimes peer awareness, is essential in “entity authentication” protocols whose
sole purpose may be to determine the aliveness of a peer.
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of a party is not directly derivable from the routing address that must appear
in the clear in the protocol messages. A common example is the case of mobile
devices wishing to prevent an attacker from correlating their (changing) location
with the logical identity of the device (or user). Note that such an application
may not just need to hide these identities from passive observers in the network
but may require to conceal the identity even from active attackers. In this case
the sole encryption of the sender’s identity is not sufficient and it is required
that the peer to the session proves its own identity before the encrypted identity
is transmitted. As it turns out the requirement to support identity protection
adds new subtleties to the design of KE protocols; these subtleties arise from
the conflicting nature of identity protection and authentication. In particular, it
is not possible to design a protocol that will protect both peer identities from
active attacks. This is easy to see by noting that the first peer to authenticate
itself (i.e. to prove its identity to the other party) must disclose its identity to the
other party before it can verify the identity of the latter. Therefore the identity
of the first-authenticating peer cannot be protected against an active attacker.
In other words, KE protocols may protect both identities from passive attacks
and may, at best, protect the identity of one of the peers from disclosure against
an active attacker.

This best-possible level of identity protection is indeed achievable by some
KE protocols, and in particular is attained by the SIGMA protocols. The under-
lying design of SIGMA allows for a protocol variant where the initiator of the
exchange is protected against active attacks and the responder’s identity is pro-
tected against passive attacks (we refer to this variant as SIGMA-I), and it also
allows for another variant where the responder’s id is protected against active
attacks and the initiator’s against passive attacks only (SIGMA-R). Moreover,
providing identity protection has been a main motivating force behind the design
of SIGMA which resulted from the requirement put forth by the IPsec working
group to support (at least optionally) identity protection in its KE protocol.
The SIGMA protocols thus provide the best-possible protection against identity
disclosure. The choice of SIGMA-I or SIGMA-R depends on which identity is
considered as more sensitive and requires protection against active attacks. On
the other hand, SIGMA also offers full KE security also in cases where identity
protection is not needed. That is, the core security of the protocol does not de-
pend on hiding identities but rather this protection of identities is a functionality
added on top of the core protocol.

A related issue which is typical of settings where identity protection is a
concern, but may also appear elsewhere, is that parties to the protocol may not
know at the beginning of a session the specific identity of the peer but rather
learn this identity as the protocol proceeds. (This may even be the case for
the initiator of the session which may agree to establish the initiated session
with one of a set of peers rather than with one predefined peer). This adds, in
principle, more attack avenues against the protocol and also introduces some
delicate formal and design issues (e.g., most existing formalisms of key-exchange
protocols do assume that the peer identities are fixed and known from the start
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of the session). In [7] this more general and realistic setting is formalized under
the name of the post-specified peer setting and the SIGMA protocols are shown
to be secure in this model. See [7] for the technical details.
Finally we comment on one additional privacy aspect of KE protocols. In

some scenarios parties may wish to keep their privacy protected not only against
attackers in the network but also to avoid leaving a “provable trace” of their com-
munications in the hands (or disks) of the peers with which they communicate.
A protocol such as ISO (see Section 4) in which each party to the protocol signs
the peer’s identity is particularly susceptible to this privacy concern (since these
signatures can serve to prove to a third party the fact that the communication
took place). In the SIGMA protocols, however, this proof of communication is
avoided to a large extent by not signing the peer’s identity, thus providing a
better solution to this problem.
Note: some may consider the non-repudiation property of a protocol such as ISO (Sec-

tion 4) as an advantage. However, we consider that non-repudiation using digital sig-

natures does not belong to the KE protocol realm but as a functionality that needs to

be dealt with carefully in specific applications, and with full awareness of the signer to

the non-repudiation consequences.

2.3 Further remarks and notation

Denial of Service. Key-exchange protocols (including SIGMA) open opportu-
nities for Denial-of-Service attacks since the responder to an exchange is usually
required to generate state and/or perform costly computations before it has
the opportunity to authenticate the peer to the exchange. This type of attacks
cannot be prevented in a strong sense but can be mitigated by using some fast-
to-verify measures. One such technique has been proposed by Phil Karn [14] via
the use of “cookies” that the responder to a KE protocol uses to verify that the
initiator of the exchange is being able to receive messages directed to the IP
address from which the exchange was initiated (thus preventing some form of
trivial DoS attacks in which the attacker uses forged origin addresses, and also
improving the chances to trace back a DoS attack). This and other techniques
are orthogonal to the cryptographic details of the KE protocol and then can
be adopted into SIGMA. In particular, recent proposals for revising IKE [16, 1]
incorporate Karn’s technique into SIGMA. Other forms of denial of service are
possible (and actually unavoidable) such as an active attacker that prevents the
completion of sessions or lets one party complete the session and the other not.

A word of caution. It is important to remark that all the protocols discussed
in this paper are presented in their most basic form, showing only their crypto-
graphic core. When used in practice it is essential to preserve this cryptographic
core but also to take care of additional elements arising in actual settings. For
example, if the protocol negotiates some security parameters or uses the pro-
tocol messages to send some additional information then the designers of such
full-fledge protocol need to carefully expand the coverage of authentication also
to these additional elements. We also (over) simplify the protocol presentation
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by omitting the explicit use of “session identifiers”: such identifiers are needed
for the run of a protocol in a multi-session setting where they are used to match
incoming protocol messages with open KE sessions. Moreover, the binding of
messages to specific session id’s is required for core security reasons such as pre-
venting interleaving attacks. Similarly, nonces may need to be included in the
protocol to ensure freshness of messages (e.g. to prevent replay attacks). In our
presentation, however, these elements are omitted by over-charging the Diffie-
Hellman exponentials used in the protocols with the additional functionality of
also serving as session ids and nonces. For the level of conceptual discussion in
this paper, simplifying the presentation by reducing the number of elements in
the protocol is useful (and also in line with the traditional presentation of proto-
cols in the cryptographic literature, in particular with [8]). But when engineering
a real-world protocol we recommend to clearly separate the functionality of dif-
ferent elements in the protocol. For illustration purposes, we present a version
of a “full fledge” SIGMA protocol in [24].

Notation. All the protocols presented here use the Diffie-Hellman exchange.
We use the traditional exponential notation gx where g is a group genera-
tor. However, all the treatment here applies to any group in which the Diffie-
Hellman problem is hard. (A bit more precisely, groups in which the so called
“Decisional Diffie-Hellman Assumption (DDH)” holds, namely, the infeasibility
to distinguish between quadruples of the form (g, gx, gy, gxy) and quadruples
(g, gx, gy, gz) where x, y, z are random exponents.) We use the acronym DH to
denote Diffie-Hellman, and use the noun “exponential” for elements such as gx

and the word “exponent” for x. In the description of our protocols the DH group
and generator g are assumed to be fixed and known in advance to the parties or
communicated at the onset of the protocol (in the later case, the DH parameters
need to be included in the information authenticated by the protocol).
Throughout the paper we will also use the notation { · · · }K to denote encryption
of the information between the brackets under a symmetric encryption function
using key K. Other cryptographic primitives used in the paper are a mac (mes-
sage authentication code) which is assumed to be unforgeable against chosen
message attack by any adversary that is not provided the mac key, and a digital
signature scheme sig assumed to be secure against chosen message attacks. By
sigA(msg) we denote the signature using A’s private key on the message msg.
The letters A and B denote the parties running a KE protocol, while Eve (or E)
denotes the (active) attacker. We also use A,B,E to denote the identities used
by these parties in the protocols.

3 The STS Protocols

Here we discuss the STS protocol (and some of its variants) which constitutes
one of the most famous and influential protocols used to provide authenticated
DH using digital signatures, and of particular appeal to scenarios where identity
protection is a concern. The STS protocol, due to Diffie, van Oorschot and
Wiener, is presented in [8] where a very instructive description of its design
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rationale is provided. In particular, this work is the first to observe some of the
more intricate subtleties related to the authentication of protocols in general and
of the DH exchange in particular. The STS protocol served as the starting point
for the SIGMA protocols described in this paper. Both the strengths of the STS
design principles as well as the weaknesses of some of the protocol choices have
motivated the design of SIGMA. These aspects are important to be understood
before presenting SIGMA. We analyze several variants of the protocol proposed
in [8, 27, 14].
Remark. The attacks on the STS protocol and its variants presented here originate

with the communications by the author to the IPsec working group in 1995 [19]. Since

then some of these attacks were recalled elsewhere (e.g. [30]) and enhancements of the

attack against the MAC variant have been provided in [4].

3.1 BADH and the identity-misbinding attack: A motivating
example

As the motivation for the STS protocol (and later for SIGMA too) we present
a proposal for an “authenticated DH protocol” which intuitively provides an
authenticated KE solution but is actually flawed. We denote this protocol by
BADH (“badly authenticated DH”).

A gx
- B

gy , B , sigB(g
x, gy)¾

A , sigA(g
y, gx) -

The output of the protocol is a session key Ks derived from the DH value gxy.
(Note: the identity of A may also be sent in the first message, this is immaterial
to the discussion here.)
This protocol provides the most natural way to authenticate a DH exchange

using digital signatures. Each party sends its DH exponential signed under its
private signature key. The inclusion of the peer’s exponential under one’s signa-
ture is required to prove freshness of the signature for avoiding replay attacks
(we will discuss more about this aspect in the context of SIGMA, in particular
the possibility to replace the signature on the peer’s exponential with the signa-
ture on a peer-generated nonce). One of the important contributions of [8] was to
demonstrate that this protocol, even if seemingly natural and intuitively correct,
does not satisfy the important consistency requirement discussed in Section 2.1.
Indeed, [8] present the following attack against the BADH protocol. An active
(“person-in-the-middle”) attacker, which we denote by Eve (or E), lets the first
two messages of the protocol to go unchanged between A and B, and then it
replaces the third message from A to B with the following message from Eve to
B:

E E , sigE(g
y, gx) - B
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The result of the protocol is that A records the exchange of the session key Ks

with B, while B records the exchange of the same key Ks with Eve. In this case,
any subsequent application message arriving to B and authenticated under the
key Ks will be interpreted by B as coming from Eve (since from the point of view
of B the key Ks represents Eve not A). Note that this attack does not result in a
breach of secrecy of the key (since the attacker does not learn, nor influence, the
key in any way) but it does result in a severe breach of authenticity since the two
parties to the exchange will use the same key with different understandings of
who the peer to the exchange is, thus breaking the consistency requirement. To
illustrate the possible adverse effects of this attack we use the following example
from [8]: imagine B being a bank and A a customer sending to B a monetary
element, such as an electronic check or digital cash, encrypted and authenticated
under Ks. From the point of view of B this is interpreted as coming from Eve
(which we assume to also be a customer of B) and thus the money is considered
to belong to Eve rather than to A (hopefully for Eve the money will go to her
account!).
The essence of the attack is that Eve succeeds in convincing the peers to the

DH exchange (those that chose the DH exponentials) that the exchange ended
successfully yet the derived key is bound by each of the parties to a different
peer. Thus the protocol fails to provide an authenticated binding between the
key and the honest identities that generated the key. We will refer to this attack
against the consistency requirement of KE protocols as an identity misbinding
attack (or just “misbinding attack” for short).2

3.2 The basic STS protocol

Having discovered the misbinding attack on the “natural” authenticated DH
protocol BADH, Diffie et al. [8] designed the STS protocol intended to solve this
problem. The basic STS protocol is:

A gx
- B

gy , B , { sigB(g
x, gy) }Ks¾

A , { sigA(g
y, gx) }Ks -

where the notation { · · · }K denotes encryption of the information between the
brackets under a symmetric encryption function using keyK. In the STS protocol
the key used for encryption is the same as the one output as the session key
produced by the exchange3.

2 This type of attack appears in the context of other authentication and KE protocols.
It is sometimes referred to as the “unknown key share attack” [4, 15].

3 This is a weakness of the protocol since the use of the session key in the protocol
leaks information on the key (e.g., the key is not anymore indistinguishable from
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Is this protocol secure? In particular, is the introduction of the encryption of
the signatures sufficient to thwart the identity misbinding attack? This at least
has been the intention of STS. The idea was that by using encryption under the
DH key the parties to the exchange “prove” knowledge of this key something
which the attacker cannot do. Yet, no proof of security of the STS protocol
exists (see more on this below). Even more significantly we show here that the
misbinding attack applies to this protocol in any scenario where parties can
register public keys without proving knowledge of the corresponding signature
key. (We note that while such “proof of possession” is required by some CAs for
issuing a certificate, this is not a universal requirement for public key certificates;
in particular it is not satisfied in many “out-of-band distribution” scenarios, webs
of trust, etc.) In this case Eve can register A’s public key as its own and then
simply replace A’s identity (or certificate) in the third message of STS with her
own. B verifies the incoming message and accepts it as coming from Eve. Thus,
in this case the STS protocol fails to defend against the misbinding attack. Thus,
for the STS to be secure one must assume that a secure external mechanism for
proof of possession of signature keys is enforced. As we will see both the ISO
protocol discussed in Section 4 and the SIGMA protocols presented here do not
require such a mechanism. Moreover, even under the assumption of external
“proof of possession” the above STS protocol has not been proven secure.

Note. In [31] an analysis of the STS protocol based on an extension of BAN logic [5]

is presented. However, the modeling of the encryption function in that analysis is as a

MAC function. Therefore this analysis holds for the MAC variant of STS presented in

the next subsection. However, as we will see, for considering that protocol secure one

needs to assume that the CA verifies that the registrant of a public key holds the cor-

responding private key (proof of possession) and, moreover, that “on-line registration”

attacks as discussed below are not possible.

What is the reason for this protocol failure? The main reason is to assume
that the combination of proof of possession of the session key together with
the signature on the DH exponentials provide a sufficient binding between the
identities of the (honest) peers participating in the exchange and the resultant
key. However, as the above attack shows this is not true in general. Can this
shortcoming be corrected? One first observation is that encryption is not the
right cryptographic function to use for proving knowledge of a key. Being able
to encrypt a certain quantity under a secret key is no proof of the knowledge
of that key. Such a “proof of key possession” is not guaranteed by common
modes of encryption such as CBC and is explicitly violated by any mode using
XOR of a (pseudo) random pad with the plaintext (such as counter or feedback

random). In addition, this can lead to the use of the same key with two different
algorithms (one inside the KE protocol, and another when using the exchanged
session key in the application that triggered the key exchange), thus violating the
basic cryptographic principle of key separation (see, e.g., [20]). These weaknesses are
easily solved by deriving different, and computationally independent, keys from the
DH value gxy, one used internally in the protocol for encryption and the other as
the session key output by the protocol.
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modes, stream ciphers, etc.). To further illustrate this point consider a seemingly
stronger variant of the protocol in which not only the signature is encrypted but
also the identity (or full certificate) of the signer is encrypted too. In this case
the above attack against STS is still viable if the encryption is of the XOR type
discussed above. In this case, when A sends the message {A , sigA(g

y, gx) }Ks
,

Eve replaces A’s identity (or certificate) by just XORing the value A⊕E in the
identity location in the ciphertext. When decrypted by B this identity is read
as E’s and the signature verified also as E’s. Thus we see that even identity
encryption does not necessarily prevent the attack. As we will see in the next
section replacing the encryption with a MAC function, which is better suited to
prove possession of a key, is still insufficient to make the protocol secure.

3.3 Two STS variants: MACed-signature and Photuris

In [8] a variant of the basic STS protocol is suggested in which the encryption
function in the protocol is replaced with a message authentication (MAC) func-
tion. Namely, in this STS variant each party in the protocol applies its signature
on the DH exponentials plus it concatenates to it a MAC on the signature us-
ing the key Ks. For example, the last message from A to B in this protocol
consists of the triple (A, b, c) where b = sigA(g

y, gx) and c = macKs
(b). In [8]

this variant is not motivated as a security enhancement but as an alternative
for situations –such as export control restrictions– in which the use of a strong
encryption function is not viable. However, considering that a MAC function is
more appropriate for “proving knowledge of a key” than an encryption function
(as exemplified above) then one could expect that this variant would provide for
a more secure protocol. This is actually incorrect too. The above attack on basic
STS (where Eve records the public key of A under her name) can be carried
exactly in the same way also in this MAC-based variant of the protocol. Same
for the case where on top of the signature and identities (or even on top of the
MAC) one applies an encryption function of the XOR type.
Moreover, if (as it is common in many application) A and B communicate

their public key to each other as part of the KE protocol (i.e., the identities A

and B sent in the protocol are their public-key certificates), then this MAC-ed
signature variant is not secure even if the system does ensure that the registrant
of a public key knows the corresponding private key! This has been shown by
Blake-Wilson and Menezes [4] who present an ingenious on-line registration at-
tack against the protocol. In this form of attack, the attacker Eve intercepts the
last message from A to B and then registers a public key (for which she knows
the private key) that satisfies sigE(g

y, gx) = sigA(g
y, gx). Eve then replaces the

certificate of A with her own in the intercepted message and forwards it to B

(leaving the signature and mac strings unchanged from A’s original message).
Clearly, B will accept this as a valid message from Eve since both signature
and mac will pass verification. In other words, Eve successfully mounted an
identity-misbinding attack against the MACed-signature protocol. In [4] it is
shown that this on-line registration attack can be performed against natural
signature schemes. In particular, it is feasible against RSA signatures provided
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that the registrant of the public key can choose her own public RSA exponent.4

While the full practicality of such an attack is debatable, it certainly suffices to
show that one cannot prove this protocol to be secure on the basis of generic
cryptographic functions, even under the assumption that the CA verifies pos-
session of the private signature key. As a final note on this attack, we point out
that this attack is possible even if the protocol is modified in such a way that
each peer includes its own identity under the signature (something that can be
done to avoid the need for “proof of possession” in the public-key registration
stage).
From the above examples we learn that the failure to the misbinding attack

is more essentially related to the insufficiency of binding the DH key with the
signatures. Such a binding (e.g., via a MAC) provides a proof that someone
knows the session key, but does not prove who this someone is. As we will see
later, the essential binding here needs to be done between the signature and the
recipient’s identity (the ISO protocol) or between the DH key and the sender’s
identity (the SIGMA protocol).
We finish this section by showing the insecurity of another variant of the STS

protocol described in [27] and used as the core cryptographic protocol in Photuris
[14] (an early proposal for a KE protocol for IPsec). As the previous variants,
this one is also illustrative of the subtleties of designing a good KE protocol.
This variant dispenses of the use of encryption or mac; instead it attempts at
binding the DH key to the signatures by including the DH key gxy under the
signature:

A gx
- B

gy , B , sigB(g
x, gy, gxy)¾

A , sigA(g
y, gx, gxy) -

An obvious, immediate, complaint about this protocol is that the DH key gxy is
included under the signature, and therefore any signature that leaks information
on the signed data (for example, any signature scheme that provides “message
recovery”) will leak information on gxy. This problem is relatively easy to fix:
derive two values from gxy using a one-way pseudorandom transformation; use
one value to place under the signature, and the other as the generated session
key. A more subtle weakness of the protocol is that it allows, even with the
above enhancement, for an an identity misbinding attack whenever the signature
scheme allows for message recovery (e.g. RSA). In this case the attacker, Eve,
proceeds as follows: it lets the protocol proceed normally between A and B for
the first two messages, then it intercepts the last message from A to B and

4 In this case, Eve uses an RSA public modulus equal to the product of two primes
p and q for which computing discrete logarithms is easy (e.g., all factors of p − 1
and q−1 are small), and calculates the private exponent d for which (hash(gy, gx))d

equals the signature sent by A.
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replaces it with the message

E E , sigE(g
y, gx, gxy) - B

But how can E sign the key gxy (or a value derived from it) if it does not
know gxy? For concreteness assume that sigA(M) = RSAA(hash(M)), for some
hash (and encoding) function hash. Since Eve knows A’s public key it can in-
vert A’s signature to retrieve hash(gy, gx, gxy) and then apply its own signature
RSAE(hash(gy, gx, gxy)) as required to carry the above attack! (Note that this
attack does not depend on any of the details of the public-key registration pro-
cess; the attacker uses its legitimately generated and registered public key.)
Photuris included the above protocol as an “authentication only” solution,

namely, one in which identities are not encrypted. It also offered optional identity
protection by applying encryption on top of the above protocol. In the later case
the above simple misbinding attack does not work. Yet, even in this case no
proof of security for such a protocol is known. The above protocol (without
encryption) is also suggested as an STS variant in [27] where it is proposed to
explicitly hash the value gxy before including it under the signature.
Remark: In this STS variant [27] the value gxy under the signature is replaced with

h(gxy) where h is a hash function. This explicit hashing of gxy seems to be intended to

protect the value gxy in case that the signature in use reveals its input. While this is

not sufficient to defend against our identity misbinding attack, it is interesting to check

whether revealing the value h(gxy) may be of any use to an eavesdropper (note that

in this case the attacker has the significantly simpler task of monitoring the protocol’s

messages rather than actively interfering with the protocol as required to carry the

misbinding attack). Certainly, learning h(gxy) is sufficient for distinguishing the key

gxy from random (even if the hash function acts as an ideal “random oracle”). But can

the attacker obtain more than that? To illustrate the subtle ways in which security

deficiencies may be exploited, consider the following practical scenario in which the

function h is implemented by SHA-1 and the key derivation algorithm defines the

session key to be Ks = HMAC-SHA1gxy (v), where v is a non-secret value. The reader

can verify (using the definition of HMAC in [21]) that in this case the attacker does

not need to find gxy for deriving the session key Ks, but it suffices for her to simply

know SHA-1(gxy). Therefore if this later value is revealed by the signature then the

security of the protocol is totally lost. Not only this example shows the care required in

designing these protocols, but it also points to the the potential weaknesses arising from

protocols whose security cannot be claimed in a generic (i.e. algorithm-independent)

way.

4 The ISO Protocol

Here we recall the ISO KE protocol [12] which similarly to STS uses digital
signatures to authenticate a DH exchange5. However, the ISO protocol resolves

5 Strictly speaking, the protocol presented here is a simplification of the protocol in
[12]. The latter includes two elements that are redundant and do not contribute
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the problem of key-identity binding demonstrated by the misbinding attack on
the BADH protocol (see Section 3.1) differently. The protocol simply adds the
identity of the intended recipient of the signature to the signed information.
Specifically, the protocol is:

A A , gx
- B

B , gy , sigB(g
x, gy, A)¾

sigA(g
y, gx, B) -

It is not hard to see that the specific identity misbinding attack as described
in Section 3.1 is avoided by the inclusion of the identities under the signatures.
Yet having seen the many subtleties and protocol weaknesses related to the STS
protocols in the previous section it is clear that resolving one specific attack is
no guarantee of security. Yet the confidence in this protocol can be based on the
analytical work of [6] where it is shown that this is a secure KE protocol (under
the security model of that work). It is shown there that any feasible attack in
that model against the security of the ISO protocol can be transformed into
an efficient cryptanalytical procedure against the DH transform or against the
digital signature function scheme in use.
The ISO protocol is simple and elegant. It uses a minimal number of messages

and of cryptographic primitives. It allows for delaying computation of the DH
key gxy to the end of the interaction (since the key is not used inside the protocol
itself) thus reducing the effect of computation on protocol latency. The protocol
is also minimal in the sense that the removal of any of its elements would render
the protocol insecure. In particular, as demonstrated by the BADH protocol, the
inclusion of the recipient’s identity under the signature is crucial for security. It
is also interesting to observe that replacing the recipient’s identity under the
signature with the signer’s identity results in an insecure protocol, open to the
identity-misbinding attack exactly as in the case of BADH.
Therefore, it seems that we have no reason to look for other DH protocols

authenticated with digital signatures. This is indeed true as long as “identity pro-
tection” is not a feature to be supported by the protocol. As explained below,
in spite of all its other nice properties the ISO protocol does not satisfactorily
accommodate the settings in which the identities of the participants in the pro-
tocol are to be concealed from attackers in the network (especially if such a
protection is sought against active attacks).
The limitation of the ISO protocol in providing identity protection comes

from the fact that in this protocol each party needs to know the identity of the

significantly to the security of the protocol and are therefore omitted here. These
elements are the inclusion of the signer’s identity under the signature and an addi-
tional mac value. In contrast to SIGMA, where the additional MAC is essential for
security, the mac in [12] serves only for explicit key confirmation (which adds little
to the implicit key confirmation provided in the simplified variant discussed here).
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peer before it can produce its own signature. This means that no party to the
protocol (neither A or B) can authenticate the other party before it reveals its
own name to that party. This leaves both identities open to active attacks. If the
only protection sought in the protocol is against passive eavesdroppers then the
protocol can be built as a 4-message protocol as follows:

A gx
- B

gy , {B }Ke¾

{A , sigA(g
y, gx, B) }Ke -

{ sigB(g
x, gy, A) }Ke¾

where Ke is an encryption key derived from the DH key gxy. We note that
with this addition of encryption the ISO protocol looses several of its good
properties (in particular, the minimality discussed above and the ability to delay
the computation of gxy to the end of the protocol) while it only provides partial
protection of identities since both identities are trivially susceptible to active
attacks.

Another privacy (or lack of privacy) issue related to the ISO protocol which
is worth noting is that by signing the peer’s identity each party to the protocol
leaves in the hands of the peer a signed (undeniable) trace that the communica-
tion took place (see the discussion at the end of Section 2.2).

The SIGMA protocol presented in the next section provides better, and more
flexible, support for identity protection with same or less communication and
computational cost, and with an equivalent proof of security.

Remark (an identity-protection variant of the ISO protocol): We end this
section by suggesting an adaptation of the ISO protocol to settings requiring
identity protection (of one of the peers) to active attacks. We only sketch the
idea behind this protocol. The idea is to run the regular ISO protocol but instead
of A sending its real identity in the first message it sends an “alias” computed
as Â = hash(A, r) for a random r. Then B proceeds as in the basic protocol but
includes the value Â under its signature instead of A’s identity; it also uses the
key gxy to encrypt its own identity and signature. In the third message A reveals
its real identity ‘A’ and the value r used to compute Â. It also sends its signature
(with B’s identity signed as in the regular ISO protocol). This whole message is
privacy-protected with encryption under Ke. The above protocol can be shown
to be secure under certain assumptions on the hash function hash. Specifically,
this function needs to satisfy some “commitment” properties similar to those
presented in [22].

We omit further discussion of this protocol and proceed to present the SIGMA
protocol that provides a satisfactory and flexible solution to the KE problem
suitable also for settings with identity protection requirements, and with less
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requirements on the underlying cryptographic primitives than the above “alias-
based” ISO variant.

5 The SIGMA Protocols

The weaknesses of the STS variants (which provide identity protection but not
full security in general) and the unsuitability of the ISO protocol for settings
where identity protection is a requirement motivated our search for a solution
that would provide solid security for settings where identity protection is or is not
a requirement. The result is the SIGMA protocols that we present here and whose
design we explain based on the design lessons learned through the examples in
previous sections (and many other in the literature). SIGMA takes from STS
the property that each party can authenticate to the other without needing to
know the peer’s identity (recall that the lack of this property in the ISO protocol
makes that protocol inappropriate to support identity protection). And it takes
from ISO the careful binding between identities and keys, but it implements
this binding in a very different way. More specifically, SIGMA decouples the
authentication of the DH exponentials from the binding of key and identities.
The former authentication task is performed using digital signatures while the
latter is done by computing a MAC function keyed via gxy (or more precisely,
via a key derived from gxy) and applied to the sender’s identity. This “SIGn-and-
MAc” approach is the essential technique behind the design of these protocols
and the reason for the SIGMA acronym.
As pointed out in Section 2.3, we focus on the cryptographic core of the

protocol leaving important system and implementation details out of the dis-
cussion. In particular, as we will also note below, in the following presentation
we overcharge the DH exponentials with the added functionality of session id’s
and freshness nonces. (A “full fledge” SIGMA instantiation with a more careful
treatment of these elements is presented in [24].)

5.1 The basic SIGMA protocol

The most basic form of SIGMA (without identity protection) is the following:

A gx
- B

gy , B , sigB(g
x, gy) , macKm

(B)¾

A , sigA(g
y, gx) , macKm

(A) -

The output of the protocol is a session key Ks derived from the DH value gxy

while the key Km used as a MAC key in the protocol is also derived from
this DH value. It is essential for the protocol security that the keys Km and
Ks be “computationally independent” (namely no information on Ks can be



418 H. Krawczyk

learned from Km and vice-versa). 6 Note that this basic protocol does not
provide identity protection. This will be added on top of the above protocol
using encryption (see following sections). The important point is that SIGMA’s
security is built in a modular way such that its core cryptographic security is
guaranteed independently of the encryption of identities. Thus the same design
serves for scenarios requiring identity protection but also for the many cases
where such protection is not an issue (or is offered only as an option). We note
that the identities A and B transmitted in messages 2 and 3 may be full public-
key certificates; in this case the identities included under the mac may be the
certificates themselves or identities bound to these certificates.

The first basic element in the logic of the protocol is that the DH exponential
chosen by each party is protected from modification (or choice) by the attacker
via the signature that the party applies to its own exponential. We note that
the inclusion of the peer’s exponential under the signature is not mandatory and
can be replaced with a nonce freshly chosen and communicated by the peer.
Yet, either the peer’s exponential (if chosen fresh and anew in each session) or a
fresh nonce must be included under the signature; otherwise the following replay
attack is possible. It would suffice for the attacker to learn the exponent x of a
single ephemeral exponential gx used by a party A in one session for the attacker
to be able to impersonate A on a KE with any other party (simply by replaying
the values gx and sigA(g

x)). Thus, in this case A’s impersonation by the attacker
is possible even without learning A’s long-term signature key. This violates the
security principle (see Section 2.1) by which the exposure of ephemeral secrets
belonging to a specific session should not have adverse effects on the security of
other sessions.

The second fundamental element in SIGMA’s design is the MACing of the
sender’s identity under a key derived from the DH key. This can be seen as a
“proof of possession” of the DH key but its actual functionality is to bind the
session key to the identity of each of the protocol participants in a way to provide
the “consistency” requirement of KE protocols. As discussed in Section 2.1, this
is a fundamental requirement needed, in particular, to avoid attacks such as the
identity misbinding attack from Section 3.1. Note that without this MACing
the protocol “degenerates” into the BADH protocol from Section 3.1 which is
susceptible to this attack. Therefore we can see that all the elements in the
protocol are mandatory (up to replacement of the peer’s exponential under the
signature with a fresh nonce).

We note that the above SIGMA protocol, as well as all the following variants,
satisfy all the security guarantees discussed in Section 2.1. In particular, they
provide “perfect forward secrecy (PFS)” due to the use of the Diffie-Hellman
exchange. This assumes that DH exponentials are chosen anew and indepen-
dently for each session, that the exponents x, y used in a DH exponentials gx, gy

are erased as soon as the computation of the key gxy is completed, and that
these exponents are not derivable from any other quantity stored in the party’s

6 We discuss specific ways to derive these values from gxy using pseudorandom func-
tions in the full version of this paper [24].
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computer (in particular, if x is generated pseudorandomly then the value of past
exponents x should not be derivable from the present state of the PRG). We
note that SIGMA can allow for re-use of DH exponentials by the same party
across different sessions. However, in this case the forward secrecy property is
lost (or at least confined to hold only after all sessions using the exponent x are
completed and the exponent x erased). In case of re-use of DH exponents one
must derive the keys used by the session (e.g. Km, Ks) in a way that depends
on some session-specific non-repeating quantity (a nonce or session-id). Also, as
discussed before, in this case such a fresh nonce needs to be included under the
peer’s signature. There are other, more theoretical, issues concerning the re-use
of DH exponents that are not treated here.
As we have stressed before, this informal outline of the design rationale for

SIGMA does not constitute a proof of security for the protocol. The formal
analysis in which we can base our confidence in the protocol appears in the
companion analysis paper [7].

5.2 Protecting identities: SIGMA-I

As said, SIGMA is designed to serve as a secure key-exchange protocol both in
settings that do not require identity protection (in which case the above simple
protocol suffices) or those where identity protection is a requirement. The main
point behind SIGMA’s design that allows for easy addition of identity protection
is that the peer’s identity is not needed for own authentication. In particular, one
of the peers can delay communicating its own identity until it learns the peer’s
identity in an authenticated form. Specifically, to the basic SIGMA protocol we
can add identity protection by simply encrypting identities and signatures using
a key Ke derived from gxy (Ke must be computationally independent from the
authentication key Km and the session key Ks):

A gx
- B

gy , {B , sigB(g
x, gy) , macKm

(B) }Ke¾

{A , sigA(g
y, gx) , macKm

(A) }Ke -

This protocol has the property that it protects the identity of the initiator from
active attackers and the identity of the responder from passive attackers. Thus,
the protocol is suitable for situations where concealing the identity of the initiator
is considered of greater importance. A typical example is when the initiator is a
mobile client connecting to a remote server. There may be little or no significance
in concealing the server’s identity but it may be of prime importance to conceal
the identity of the mobile device or user. We stress that the encryption function
(as applied in the third message) must be resistant to active attacks and therefore
must combine some form of integrity. Combined secrecy-integrity transforms
such as those from [13] can be used, or a conventional mode of encryption (e.g.
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CBC) can be used with a MAC function computed on top of the ciphertext [3,
23]. Due to the stronger protection of the identity of the Initiator of the protocol
we denote this variant by SIGMA-I.

We remark that while this protocol has the minimal number of messages
that any KE protocol resistant to replay attacks (and not based on trusted
timestamps) can use, it is sometimes desirable to organize the protocol in full
round-trips with each pair of message containing a “request message” and a
“response message”. If so desired, the above protocol can add a fourth message
from B to A with a simple ACK authenticated under the authentication key
Km. This ACK message serves to A as a proof that B already established the
key and communications protected under the exchanged key Ks can start. It
also provides the flexibility for A to either wait for the ACK or start using
the session key as soon as it sent the third protocol message. (Depending on B’s
policy this traffic may be accepted by B if the channel – or “security association”
in the language of IKE – was already established by B, or discarded if not, or
queued until the key establishment is completed.) Finally, it is worth noting that
this ACK-augmented protocol provides the peer awareness property discussed in
Section 2.1. (This is in contrast to the other variants of SIGMA presented here
which do not enjoy this property.)

5.3 A four message variant: SIGMA-R

As seen, SIGMA-I protects the initiator’s identity against active attacks and
the responder’s against passive attacks. Here we present SIGMA-R which pro-
vides defense to the responder’s identity against active attacks and to the ini-
tiator’s only against passive attacks. We start by presenting a simplified version
of SIGMA-R without encryption:

A gx
- B

gy
¾

A , sigA(g
y, gx) , macKm

(A) -

B , sigB(g
x, gy) , macKm

(B)¾

The logic of the protocol is similar to that of the basic SIGMA. The difference
is that B delays the sending of its identity and authentication information to
the fourth message after it verified A’s identity and authentication in message 3.
This “similarity” in the logic of the protocol does not mean that its security is
implied by that of the 3-message variants. Indeed, the protocol as described above
is open to a reflection attack that is not possible against the 3-message variant.
Due to the full symmetry of the protocol an attacker can simply replay each of
the messages sent by A back to A. If A is willing to accept a key exchange with
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itself then A would successfully complete the protocol.7 Therefore, to prevent this
attack the protocol needs to ensure some “sense of direction” in the authenticated
information. This can be done by explicitly adding different “tags” under the
mac for each of the parties (e.g., A would send macKm

(“0”, A) while B would
send macKm

(“1”, B)), or by using different mac keys in each direction (i.e.,
instead of deriving a single key Km from gxy one would derive two keys, Km

and K ′

m, where the former is used by A to compute its mac and the latter by
B). Any of these measures are sufficient to prevent the reflection attack and
make the protocol secure [7] (another defense is for A to check that the peer’s
DH exponential is different than her own.)
The full protocol SIGMA-R (with identity protection) is obtained by encrypt-

ing the last two messages in the above depicted protocol (and adding a reflection
defense as discussed before). A “full fledge” illustration of protocol SIGMA-R is
presented in [24].

Remark (the inter-changeability property of SIGMA). It is worth noting
that the last two messages in the above protocol can be interchanged. Namely,
B may proceed as described in SIGMA-R and wait for the reception of A’s
message (message 3 in the above picture) before sending his last message. But B

may also decide to send his last message (signature and mac) immediately after,
or together with, message 2 (which results in SIGMA-I). In this way, B may
control if he is interested in protecting his own identity from active attacks or if
he prefers to favor a faster exchange. The protocol may also allow for messages
3 and 4 to cross in which case the protocol is still secure but both identities may
be open to active attacks.

5.4 Further variants and the use of SIGMA in IKE

As seen above the MAC of the sender’s identity is essential for SIGMA’s security.
Here we present a variant of the protocol that differs from the above descriptions
by the way the MAC value is placed in the protocol’s messages. Specifically, the
idea is to include the MAC value under the signature (i.e., as part of the signed
information). The interest on this variant is that it saves in message length by
avoiding explicit sending of the MAC value, and more significantly because it is
the variant of SIGMA adopted into the IKE protocol (both IKE version 1 [11]
and version 2 [16]).
The mac moved under the signature may cover just the identity of the

sender or the whole signed information. For example, in B’s message the pair
(sigB(g

x, gy) , macKm
(B)) is replaced with either (i) sigB(g

x, gy,macKm
(B))

or (ii) sigB(macKm
(gx, gy, B)). In this way the space for an extra mac outside

the signature is saved, and the verification of the mac is merged with that of
the signature. In either case, as long as the mac covers the identity of the signer

then the same security of the basic SIGMA protocol (as well as SIGMA-I and

7 The only damage of this attack seems to be that it forces A to use a key derived

from the distribution gx2

rather than gxy. These distributions may be distinguishable
depending on the DH groups.
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SIGMA-R) is preserved8 [7]. Variant (ii) is used in the IKE protocol (version
1) [11] in two of its authentication modes: the signature-based exchange of IKE
uses the basic 3-message SIGMA protocol (without identity encryption) as pre-
sented in Section 5.1 for its aggressive mode, and it uses the 4-message SIGMA-R
in its main mode. (In the later case, the use of SIGMA-R in IKE is preceded
by two extra messages for negotiating security parameters.) In IKE the mac

function is implemented via a pseudorandom function which is also used in the
protocol for the purpose of key expansion and derivation.9 IKE version 2 [16]
uses variant (i) with SIGMA-R as its single key exchange method authenticated
with public keys. In this protocol the peer’s DH exponential is not signed; the
essential freshness guarantee is provided by signing a nonce chosen by the peer
(see Section 5.1).
The SIGMA-R protocol has also been adopted in the JFK protocol [1] which

has been proposed in the context of the undergoing revision of the IKE protocol.
We note that in both [16, 1] protocol SIGMA-R is augmented with mechanisms
that provide some defense against Denial-of-Service attacks as discussed in Sec-
tion 2.3.
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