
Practical Verifiable Encryption and Decryption

of Discrete Logarithms

Jan Camenisch1 and Victor Shoup2

1 IBM Zürich Research Lab <jca@zurich.ibm.com>
2 New York University <shoup@cs.nyu.edu>

Abstract. This paper addresses the problem of designing practical pro-
tocols for proving properties about encrypted data. To this end, it
presents a variant of the new public key encryption of Cramer and Shoup
based on Paillier’s decision composite residuosity assumption, along with
efficient protocols for verifiable encryption and decryption of discrete log-
arithms (and more generally, of representations with respect to multiple
bases). This is the first verifiable encryption system that provides cho-
sen ciphertext security and avoids inefficient cut-and-choose proofs. The
presented protocols have numerous applications, including key escrow,
optimistic fair exchange, publicly verifiable secret and signature sharing,
universally composable commitments, group signatures, and confirmer
signatures.

1 Introduction

This paper concerns itself with the general problem of proving properties about
encrypted data. In the case of public-key encryption, which is the setting in which
we are interested here, there are two parties who are in a position to prove some
property to another party about an encrypted message — namely, the party
who created the ciphertext, and the party who holds the secret key. A protocol
in which the encryptor is the prover is a verifiable encryption protocol, while a
protocol in which the prover is the decryptor is a verifiable decryption protocol.
For example, suppose a party T has a public key/secret key pair (PK,SK)

for a public key encryption scheme. Party A might encrypt, using T ’s public
PK, a secret message m that satisfies a publicly-defined property θ, and give the
resulting ciphertext ψ to another party B. The latter party might demand that
A prove that ψ is an encryption of a message satisfying property θ. Ideally, the
proof should be “zero knowledge,” so that no unnecessary information aboutm is
leaked to B as part of the proof. Another party B ′ might obtain the ciphertext ψ,
and may request that T prove or disprove that ψ decrypts under SK to a message
m satisfying a publicly-defined property θ′; a special case of this would be the
situation where T simply gives m to B, and proves to B that the decryption was
performed correctly. Again, ideally, the proof should be “zero knowledge.”
Now, if one expects to obtain reasonably practical protocols for this problem,

it seems necessary to restrict the type of properties that protocols should work
with. In this paper, we consider only properties related to the discrete logarithm

Practical Verifiable Encryption of Discrete Logs 127

problem. The message m encrypted by A above is the discrete logarithm of an
element δ with respect to a base γ, and A proves to B that ψ is an encryption
logγ δ under T ’s public key PK. Here, the common inputs to A and B in the
proof protocol are PK, ψ, δ, and γ. Similarly, when a party B ′ presents ψ to
T for decryption, T may state and prove whether or nor ψ decrypts to logγ δ,
or alternatively, T may give the decryption of ψ to B ′, and simply prove that
the decryption was performed correctly. We also consider the obvious generaliza-
tions from discrete logarithms to representations with respect to several bases
— i.e., proving that a ciphertext is an encryption of (m1, . . . ,mk) such that
δ = γm1

1 · · · γmk

k .

Although the restriction to properties related to the discrete logarithm prob-
lem may seem excessive, it turns out (as we discuss in some detail below) that
protocols for proving such properties have many useful applications in cryptogra-
phy, including key escrow, optimistic fair exchange, publicly verifiable secret and
signature sharing, universally composable commitments, group signatures, and
confirmer signatures. One reason why this restriction is not really so excessive
is because in the past few years, efficient protocols for proving numerous prop-
erties about committed values — using Pedersen’s commitment scheme [Ped92]
and generalizations to groups of unknown order — have been developed (c.f.,
[FO97,DF02,Bou00]); by using our scheme for verifiable encryption of a repre-
sentation (i.e., an opening of a commitment), we immediately get corresponding
protocols for proving properties about encrypted values.

The contribution of this paper is to present and analyze an efficient public-
key encryption scheme, together with a suite of proof protocols for the properties
related to the discrete logarithm problem outlined above. The encryption scheme
is a variant of the new public key encryption of Cramer and Shoup based on
Paillier’s decision composite residuosity assumption, suitably modified so as to
support our proof protocols. The proof protocols are all of the usual, three move
“Σ-protocol” type, satisfying the usual, and very strong conditions of special
honest verifier zero knowledge and special soundness. We note that any such
protocol can be easily and efficiently converted into a “real” zero knowledge
protocol using well known techniques, e.g., [Dam00]. Our system for verifiable
encryption of discrete logarithms is the first one that provides chosen ciphertext
security and avoids inefficient cut-and-choose proofs. It is also the first practical
system for verifiable decryption of discrete logarithms.

Although our protocols do not rely on the random oracle heuristic, we hasten
to point out that even allowing this heuristic, our protocols are much more
efficient than previously known protocols for these problems.

1.1 Applications

In this section, we outline some of the numerous applications of verifiable encryp-
tion and decryption of discrete logarithms and representations. For all of them
our protocols, used together with the existing solutions, yields more efficient
solutions or adds security to chosen ciphertext attacks.

128 J. Camenisch, V. Shoup

Key escrow. Party A may encrypt its own secret key for an asymmetric cryp-
tographic primitive under the public key of a trusted third party T , and present
to a second party B the ciphertext ψ and a proof that ψ is indeed an encryption
of it’s secret key. This problem area has attracted a good deal of attention, with
specific schemes being proposed in [Sta96,BG96,YY98,ASW00,PS00].

Now, if A’s secret key is, say, a key for a discrete log based scheme, such
as Schnorr or DSS signatures or ElGamal encryption, we can use our verifiable
encryption protocol directly. We note that for this and other applications, it is
important to be able to bind some public data, called a label, to the ciphertext at
both encryption and decryption time. In this application, user A would attach a
label to ψ that indicates the conditions under which ψ should be decrypted, e.g.,
A’s identity and perhaps and expiration date. The definition of chosen ciphertext
security ensures that decrypting a ciphertext under any label different from the
label used to create the ciphertext reveals no information about the original
encrypted message.

Even though T is “trusted,” it might be nice to minimize the trust we need
to place in T . To this end, verifiable decryption comes in handy — we can force
T to prove that it performed the decryption operation correctly. Of course, this
does not prevent T from misbehaving in other ways, such as divulging a secret
key to an unauthorized party.

If A’s secret key is for a factoring based scheme, one can still use our protocol
for verifiable encryption of a representation. One can use Pedersen’s commit-
ment scheme to commit to some quantity related to the secret key, and then
use an appropriate protocol to prove that the committed value is indeed the
right one, together with our protocol to prove that the encryption contains an
opening of the commitment. The quantity committed to could be the factor-
ization of an RSA modulus, the decryption exponent of an RSA scheme, or an
appropriate root in a Guillou-Quisquater scheme — there are (not too terri-
bly inefficient) protocols for proving that a committed value is of such a form
[FO97,CM99a,DF02,PS00,Bou00].

Optimistic fair exchange. Two parties A and B want to exchange some
valuable digital data (e.g., signatures on a contract, e-cash), but in a fair way:
either each party obtains the other’s data, or neither party does. One way to
do this is by employing a trusted third party T , but, for the sake of efficiency,
with T only involved in crisis situations. One approach to this problem is to
have both parties verifiably encrypt to each other their data under T ’s pub-
lic key, and only then do they reveal their data to each other — if one party
backs out unexpectedly, the other can go to T to obtain the required data. The
general problem of optimistic fair exchange has been extensively studied, c.f.,
[ASW97,BDM98,BP90,Mic,ASW00], while the solution using verifiable encryp-
tion was studied in detail in [ASW00].

Our scheme for verifiable encryption may be used directly to efficiently imple-
ment the fair exchange of Schnorr or DSS signatures. As outlined in [ASW00],
if the public key of the Schnorr signature scheme consists of the base γ and

Practical Verifiable Encryption of Discrete Logs 129

the group element α = γx, and A has a signature on a message m of the form
(β, c, s), where β = γr, c = H(β,m), s = r + xc mod ρ, and ρ is the group size,
then A gives to B the triple (β, c, δ), where δ = γs, along with an encryption ψ
of s under T ’s public key, and proves to B that ψ is an encryption of logγ δ. In
addition to checking the proof that ψ is a correct encryption of logγ δ, B also
checks that δ = βγc; with these checks, B can be sure that if the need arises,
ψ can be decrypted so as to obtain a signature on m. As argued in [ASW00],
this technique of reducing a signature to a discrete logarithm does not make it
any easier for anyone to forge a signature. Moreover, as discussed in [ASW00],
similar techniques can be used to facilitate the fair exchange of other items, such
as electronic cash.
As in the escrow application, the label mechanism plays a crucial role here,

helping to enforce the logic of the exchange protocol, and a verifiable decryption
protocol may be used to hold T ’s feet to the fire.

Publicly verifiable secret sharing and signature sharing. Stadler [Sta96]
introduced the notion of publicly verifiable secret sharing. Here, one party, the
dealer, shares a secret with several proxies P1, . . . , Pn, in such a way that a third
party (other than the dealer and the proxies) can verify that the sharing was done
correctly. This can be done quite simply by sharing the secret using Shamir’s
secret sharing scheme: the dealer encrypts Pi’s share under Pi’s public key, and
gives to the third party commitments to these shares, along with commitments to
the coefficients of the blinding polynomial, and all of the ciphertexts, and proves
to to the third party that the ciphertexts encrypt openings of the commitments to
the shares. Since the openings to the commitments are just discrete logarithms,
verifiable encryption of discrete logarithms is just the right tool.
Using the notion discussed above above for reducing a signature to a discrete

logarithm, one can easily implement a (publicly) verifiable signature sharing
scheme [FR95,CG98] for Schnorr and DSS signatures.
These two applications of verifiable encryption were discussed in [CD00].

Universally composable commitments. The notion of universally compos-
able (UC) commitments, introduced by Canetti and Fischlin [CF01], is a very
strong notion of security for a commitment scheme. It basically says that com-
mitments in the real world acts like commitments in an ideal world in which,
when a party A commits to a value x to a party B, A presents x to an ideal-
ized trusted party T (that does not exist in the real world), and when A opens
the commitment, T gives x to B. In the ideal world, no information about x is
revealed to B prior to opening, and A is forced to fix the value committed to
when the commitment protocol runs.
This notion of security is so strong, in fact, that it can only be realized

in the common reference string (CRS) model, where all parties have access to
a string that was generated by a trusted party according to some prescribed
distribution. In the CRS model, the simulator S in the ideal world is given the
privilege of generating the common reference string, and so S may know some

130 J. Camenisch, V. Shoup

“side information” related to the common reference string that is not available
to anyone in the real world.

Verifiable encryption of a representation may be used to implement UC com-
mitments in the CRS model, as follows. The CRS consists of a public key for the
encryption scheme, along with bases γ1 and γ2 for some suitable group. When
A commits a value x to B, he creates a Pedersen commitment C = γx1 γ

r
2 , and

an encryption ψ of the representation (x, r) of C with respect to (γ1, γ2). A then
gives (C,ψ) to B, and proves to B that ψ indeed decrypts to a representation
of C. In order to satisfy the definition of security for UC commitments, and
in particular, to prevent “man in the middle attacks,” a label containing A’s
identity should be attached to ψ.

The reason this is secure is that the simulator S in the CRS model knows
the secret key to the encryption scheme, which allows him to “extract” values
committed by corrupted parties, and S knows the discrete logarithm of γ2 with
respect to γ1, which allows him to “equivocate” values committed by honest
parties. The proof that ψ is an encryption of a representation C ensures that
the value extracted by the simulator at commitment time agrees with the value
revealed at opening time.

The details of this construction and security proof are the subject of a forth-
coming paper.

Confirmer signatures. In a confirmer signature scheme, a notion introduced
in [Cha94], a party A creates an “opaque signature” ψ on a message m, which
cannot be verified by any other party except a designated trusted third party T ,
who may either confirm or deny the validity of the signature to another party
B. Under appropriate circumstances, T may also convert ψ into an ordinary
signature, which may then be verified by anybody. Additionally, the party A
may prove the validity of an opaque signature ψ to a party B, at the time
that A creates and gives ψ to B. As described in [CM00], one may implement
confirmer signatures as follows: A creates an ordinary signature σ on m, and
encrypts σ under T ’s public key. Using verifiable encryption, A may prove to B
that the resulting ciphertext ψ indeed encrypts a valid signature onm, and using
verifiable decryption, T may confirm or deny the validity of ψ, or alternatively,
just decrypt ψ, thus converting it to the ordinary signature σ. To implement
this idea for Schnorr signatures, one again uses the idea outlined in above for
reducing signatures to discrete logarithms. The details of all this are the subject
of a forthcoming paper.

Group signatures and anonymous credentials. In a group signature
scheme (see [ACJT00,KP98,CD00]), when a user joins a group (whose mem-
bership is controlled by a special party, called the group manager), the user may
sign messages on behalf of the group, without revealing his individual identity;
however, under appropriate circumstances, the identity of the individual who
actually signed a particular message may be revealed (using a special party,

Practical Verifiable Encryption of Discrete Logs 131

called the anonymity revocation manager, which may be distinct from the group
manager).

Without going into too many details, verifiable encryption may be used in
the following way as a component in such a system. When a group member
signs a message, he encrypts enough information under the public key of the
anonymity revocation manager, so that later, if the identity of the signer needs
to be revealed, this information can be decrypted. To prove that this information
correctly identifies the signer, he makes a Pedersen commitment to this informa-
tion, proves that the committed value identifies the user, encrypts the opening
of the commitment, and proves that the ciphertext decrypts to an opening of the
commitment. To turn this into a signature scheme, one must use the Fiat-Shamir
heuristic [FS87] to make it non-interactive (the interactive version is called an
identity escrow scheme).

Although one can implement group signatures without it, by using verifiable
encryption, one can build a more modular system, in which the group manager
and anonymity manager are separate entities with independently generated pub-
lic keys. As pointed out in [KP97,CM99b,ASW00] such separability in system
design is highly desirable in practice. Verifiable decryption can be used both to
ensure the correct behavior of the anonymity revocation manager (preventing
it from “framing” innocent users), and to allow even more fine-grained control
of anonymity revocation: instead of simply revealing the identity of a particular
signer, the anonymity revocation manager can state (and prove) whether or not
a particular signature was generated by a particular user.

Credential systems [Cha85,CL01] are a generalization of group signatures
that allow users to show credentials to various organizations, and obtain new cre-
dentials, without revealing their identity, except through the use of an anonymity
revocation manager. Verifiable encryption can be used as a component in such
systems in a manner similar to that described above for group signatures. In
fact, our verifiable encryption scheme is used in a prototype credential system
developed at IBM called IDEMIX [CVH02].

1.2 Previous work and further discussion

In all applications mentioned in §1.1, it is essential that the underlying encryp-
tion scheme provide security against chosen ciphertext attacks. As pointed out in
[ASW00], the earlier work on verifiable encryption in [Sta96,BG96,YY98] over-
looked this fact, as does [PS00].

Our encryption scheme and proof protocols are quite efficient. In par-
ticular, the proof protocols are conventional “Σ-protocols,” rather than
the generally more expensive “cut and choose” protocols, such as in
[Sta96,BG96,YY98,ASW00], that have been previously designed for the prob-
lem of verifiable encryption. Moreover, our verifiable encryption scheme actually
produces a proof that a given ciphertext is correct, as opposed to the paradigm
followed in [Sta96,BG96,YY98,ASW00], which intertwines the process of en-
crypting and proving, so that the entire transcript of the proof must be retained

132 J. Camenisch, V. Shoup

by the verifier in lieu of a (short) ciphertext. Additionally, the combined encrypt-
ing/proving paradigm makes it much harder to incorporate any type of verifiable
decryption protocol.
Our verifiable decryption protocols are the first practical schemes of their

kind.
Unlike, e.g., the schemes in [Sta96,YY98], we do not require that all users of

the system work with the same algebraic group — in our system, there are no
“double decker” discrete logarithms, and the encryption keys may be used with
any group or groups, provided certain reasonable size restrictions are met.
To give the reader a rough idea of the complexity of of our protocols, consider

a setting in which the discrete logarithms being encrypted are with respect to an
element of order ρ, where ρ is, say, around `′ ≈ 160 bits. For such a ρ, it suffices to
work with a modulus n of around ` ≈ 1024 bits for the Paillier encryption scheme.
Counting just squarings, which are all that matter asymptotically, and ignoring
lower order terms, the encryption algorithm takes 3` squarings mod n2, and the
decryption algorithm takes 5` squarings mod n2. For the verifiable encryption
protocol, the prover performs 2` squarings mod n, 3` squarings mod n2, and
`′ squarings in the underlying group; the verifier performs 3` squarings mod
n2, ` squarings mod n, and `′ squarings in the group. The verifiable decryption
protocols are several times slower than this. For representations with respect to
several bases, the complexity of the encryption and decryption algorithms, and
the corresponding proof protocols, grows linearly in the number of bases, as one
would expect.
Our decryption procedure can be implemented as a threshold decryption pro-

tocol. This allows one to minimize the trust placed in the decryptor, and in some
applications this may be a preferable alternative to verifiable decryption.

2 Preliminaries

2.1 Notation

For a real number a, bac denotes the largest integer b ≤ a, dae the smallest
integer b ≥ a, and dac the largest integer b ≤ a+ 1/2. For positive real numbers
a and b, [a] denotes the set {0, . . . , bac− 1} and [a, b] the set {bac, . . . , bbc}, and
[−a, b] the set {−bac, . . . , bbc}.
Let a, b, and c be integers, with b > 0. Then c = a mod b denotes a− ba/bcb

(and we have 0 ≤ c < b), and c = a rem b denotes a − da/bcb (and we have
−b/2 ≤ c < b/2).

2.2 Σ-protocols

A Σ-protocol [Cra96] is a protocol between a prover and a verifier, where y is
their common input and x is the prover’s additional input, which consists of three
moves: in the first move the prover sends the verifier a “commitment” message t,
in the second move the verifier sends the prover a random “challenge” message
c, and in the third move the prover sends the verifier a “response” message s.

Practical Verifiable Encryption of Discrete Logs 133

Such a protocol is special honest verifier zero knowledge if there exists a
simulator that, on input (y, c), outputs (t, s) such that the distribution of the
triple (t, c, s) is is indistinguishable from that of an actual conversation, con-
ditioned on the event that the verifier’s challenge is c. This property implies
(ordinary) honest verifier zero knowledge, and also allows the protocol to be
easily and efficiently transformed into one that satisfies much stronger notions
of zero knowledge.
Such a protocol is said to satisfy the special soundness condition with respect

to a property θ if it is computationally infeasible to find two valid conversations
(t, c, s) and (t, c′, s′), with c 6= c′, unless the input y satisfies θ. Via standard
rewinding arguments, this notion of soundness implies the more general notion
of computational soundness.
We use notation introduced by Camenisch and Stadler [CS97] for the various

proofs of relations among discrete logarithms. For instance,

PK{(a, b, c) : y = gahb ∧ y = gahc ∧ (u ≤ a ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers a, b, and c such that
y = gahb, y = gahc, and u ≤ a ≤ v holds,” where y, g, h, y, g, and h are elements
of some groups G = 〈g〉 = 〈h〉 and G = 〈g〉 = 〈h〉. The convention is that the
elements listed in the round brackets denote quantities the knowledge of which
is being proved (and are in general not known to the verifier), while all other
parameters are known to the verifier. Using this notation, a proof-protocol can
be described by just pointing out its aim while hiding all details.

2.3 Secure Public-Key Encryption

We need the notion of a public-key encryption scheme secure against chosen
ciphertext attacks [RS92] that supports labels [Sho01]. A label is an arbitrary
bit string that is input to the encryption and decryption algorithms, specifying
the “context” in which the encryption or decryption operation is to take place.
The definition of security for such a scheme is the same as the one without labels
except that now the adversary is given a target ciphertext ψ∗ and a target label
L∗ and is then allowed to submit any queries (ψ,L) subject to (ψ,L) 6= (ψ∗, L∗).

3 The Encryption Scheme

3.1 Background

Let p, q, p′, and q′ be distinct odd primes with p = 2p′ + 1 and q = 2q′ + 1, and
where p′ and q′ are both ` bits in length. Let n = pq and n′ = p′q′. Consider the
group Z∗

n2 and the subgroup P of Z∗
n2 consisting of all nth powers of elements

in Z∗
n2 .
Paillier’s Decision Composite Residuosity (DCR) assumption [Pai99] is that

given only n, it is hard to distinguish random elements of Z∗
n2 from random

elements of P.

134 J. Camenisch, V. Shoup

We can decompose Z∗
n2 as an internal direct product Z∗

n2 = Gn ·Gn′ ·G2 ·T,
where each group Gτ is a cyclic group of order τ , and T is the subgroup of
Z∗
n2 generated by (−1 mod n2). This decomposition is unique, except for the
choice of G2 (there are two possible choices). For any x ∈ Z∗

n2 , we can express x
uniquely as x = x(Gn)x(Gn′)x(G2)x(T), where for each Gτ , x(Gτ) ∈ Gτ , and
x(T) ∈ T.
Note that the element h = (1+n mod n2) ∈ Z∗

n2 has order n, i.e., it generates
Gn, and that h

a = (1 + an mod n2) for 0 ≤ a < n. Observe that P = Gn′G2T.

3.2 The Scheme

Let ` be a system parameter. The scheme makes use of a keyed hash scheme
H that uses a key hk, chosen at random from some key space; the resulting
hash function Hhk(·) maps a triple (u, e, L) to a number in the set [2

`]. We shall
assume that H is collision resistant, i.e., given a randomly chosen hash key hk, it
is computationally infeasible to find two triples (u, e, L) 6= (u′, e′, L′) such that
Hhk(u, e, L) = Hhk(u

′, e′, L′).
Let abs : Z∗

n2 → Z∗
n2 map (a mod n2), where a ∈ [n2], to (n2 − a mod n2)

if a > n2/2, and to (a mod n2), otherwise. Note that v2 = (abs(v))2 holds for
all v ∈ Z∗

n2 . We now describe the key generation, encryption, and decryption
algorithms of the encryption scheme.

Key Generation. Select two random `-bit Sophie Germain primes p′ and q′, with
p′ 6= q′, and compute p := (2p′+1), q := (2q′+1), n := pq, and n′ := p′q′. Choose
random x1, x2, x3 ∈R [n

2/4], choose a random g′ ∈R Z∗
n2 , compute g := (g′)2n,

y1 := gx1 , y2 := gx2 , and y3 := gx3 . Also, generate a hash key hk from the key
space of the hash scheme H. The public key is (hk, n, g, y1, y2, y3). The secret
key is (hk, n, x1, x2, x3).
In the rest of the paper, let h = (1 + n mod n2) ∈ Z∗

n2 , which as discussed
above, is an element of order n.

Encryption. To encrypt a message m ∈ [n] with label L ∈ {0, 1}∗ under a public
key as above, choose a random r ∈R [n/4] and computes the ciphertext (u, e, v)
as follows.

u := gr , e := yr1h
m , and v := abs

(

(y2y
Hhk(u,e,L)
3)r

)

.

Decryption. To decrypt a ciphertext (u, e, v) ∈ Z∗
n2×Z∗

n2×Z∗
n2 with label L under

a secret key as above, first check that abs(v) = v and u2(x2+Hhk(u,e,L)x3) = v2.
If this does not hold, then output reject and halt. Next, let t = 2−1 mod n, and
compute m̂ := (e/ux1)2t. If m̂ is of the form hm for some m ∈ [n], then output
m; otherwise, output reject.

This scheme differs from the DCR-based schemes presented in [CS01], be-
cause in our situation, special attention must be paid to the treatment of el-
ements of order 2 in the Z∗

n2 , as these can cause some trouble for the proof

Practical Verifiable Encryption of Discrete Logs 135

systems we discuss in the next sections. Because of these differences, the above
encryption scheme does not exactly fit into the general framework of [CS01],
even though the basic ideas are the same. We therefore analyze the security
of the scheme starting from first principles, rather than trying to modify their
framework.
We remark on one of the more peculiar aspects of the scheme, namely, the

role of the abs(·) function in the encryption and decryption algorithms. If one
left this out, i.e., replaced abs(·) by the identity function, then the scheme would
be malleable, as (u, e, v) is an encryption of some message m with label L, then
so is (u, e,−v). This particular type of malleability [ADR02,Sho01] is in fact
rather “benign,” and would be acceptable in most applications. However, we
prefer to achieve non-malleability in the strictest sense, and because this comes
at a marginal cost, we do so.

Theorem 1. The above scheme is secure against adaptive chosen ciphertext
attack provided the DCR assumption holds, and provided H is collision resistant.

We refer to the full version of the paper [CS02] for the proof of Theorem 1.
Our scheme can easily be transformed to provide threshold decryption, where

it comes in handy that the knowledge of the factorization of n is not required for
decryption. This allows one to reduce the trust assumption for the TTP. This
can be done either along the lines in [SG98], which requires a random oracle
security argument, or along the lines in [CG99], which does not require that
argument, but for which the decryption protocol is less efficient.

4 Verifiable Encryption

4.1 Definitions

At a high level, a verifiable encryption scheme for a binary relationR is a protocol
that allows a prover to convince a verifier that a ciphertext ψ is an encryption
under a given public key PK and label L of a value w such that (δ, w) ∈ R for a
given δ. Here, the common input to the prover and the verifier consists of PK,
L, ψ, and δ, and the prover has as additional input the “witness” w and the
random bit string that was used to create ψ. We shall require that the protocol
is a Σ-protocol that is special honest verifier zero knowledge, and that satisfies
the special soundness condition for the property described above.
We refer the reader to the full version of the paper [CS02] for a more detailed

definition, but we briefly mention a few subtle points that apply here, as well as
in other definitions in this paper: (1) our notion of security is computational, even
to the extent that the we quantify “computationally” (rather than universally)
over the common input to the prover and verifier in the definition of honest
verifier zero knowledge and special soundness; (2) we assume that the public
key/secret key pair for the encryption scheme is generated by a trusted party
using the appropriate key generation algorithm; (3) in defining soundness, we
only require that the proof convinces the verifier that plaintext can be easily
transformed into a witness using some scheme-specific reconstruction routine.

136 J. Camenisch, V. Shoup

4.2 The protocol

Let (hk, n, g, y1, y2, y3) be a public key of the encryption scheme provided in §3.
Recall that the message space associated with this public key is [n].
Let Γ be a cyclic group of order ρ generated by γ. We assume that γ and

ρ are publicly known, and that ρ is prime. Let W = [ρ] and ∆ = Γ , and let
R = {(w, δ) ∈ W × ∆ : γw = δ}. The “discrete logarithm” relation R is the
relation with respect to which we want to verifiably encrypt.
We shall of course require that n > ρ (in fact, we will make a stronger

requirement). The reconstruction routine will map a plaintext m ∈ [n] to the
integer (m remn) mod ρ, i.e., it computes the balanced remainder of m modulo
n, and then computes the least non-negative remainder of this modulo ρ.

Setup. Our protocol requires the auxiliary parameters n, which must the product
of two safe (l+1)-bit primes p = 2p′+1 and q = 2q′+1, and g and h, which are
two generators of Gn

′ ⊂ Z∗
n
, where n′ = p′q′; Gn

′ is the subgroup of Z∗
n
of order

n′, and l is an additional system parameter.
One may view n, g, and h as additional components of the public key of

the encryption scheme, or as system parameters generated by a trusted party.
Depending on the setting, we may simply put n := n and g := g. In any event,
the prover should not be privy to the factorization of n.
Let k and k′ be further system parameters, where 2−k and 2−k′

are negligible
({0, 1}k is the “challenge space” of the verifier and k′ controls the quality of
the zero-knowledge property). We require that 2k < min{p′, q′, p′, q′, ρ} holds.
Finally, we require that ρ < n2−k−k′−3 holds, i.e., that logγ δ “comfortably fits
into an encryption.”

The protocol. The common input of the prover and verifier is: the public key
(hk, n, g, y1, y2, y3), the augmented public key (n, g, h), a group element (δ), a
ciphertext (u, e, v), and a label L. The prover has additional inputs m = logγ δ

and r ∈R [n/4] such that u = gr, e = yr1h
m, and v = abs ((y2y

Hhk(u,e,L)
3)r).

1. The prover chooses a random s ∈R [n/4] and computes k := gmhs. The
prover sends k to the verifier.

2. Then the prover and verifier engage in the following protocol.
(a) The prover chooses random r′ ∈R [−n2

k+k′−2, n2k+k′−2],
s′ ∈R [−n2k+k′−2, n2k+k′−2], and m′ ∈R [−ρ2

k+k′

, ρ2k+k′

].

The prover computes u′ := gr
′

, e′ := yr
′

1 h
m′

, v′ := (y2y
Hhk(u,e,L)
3)r

′

,

δ′ := γm
′

, and k′ := gm
′

hs
′

.
The prover sends u′, e′, v′, δ′, and k′ to the verifier.

(b) The verifier chooses a random challenge c ∈R {0, 1}
k and sends c to the

prover.
(c) The prover replies with r̃ := r′ − cr, s̃ := s′ − cs, and m̃ := m′ − cm

(computed in Z).
(d) The verifier checks whether the relations u′

2
= u2cg2r̃, e′

2
= e2cy2r̃

1 h
2m̃,

v′
2
= v2c(y2y

Hhk(u,e,L)
3)2r̃, δ′ = δcγm̃, k′ = kcgm̃hs̃, and −n/4 < m̃ < n/4

hold. If any of them does not hold, the verifier stops and outputs 0.

Practical Verifiable Encryption of Discrete Logs 137

3. If v = abs v the verifier outputs 1; otherwise she outputs 0.

Using notation from [CS97] we denote the sub-protocol of step 2 as

PK{(r,m, s) : u2 = g2r ∧ e2 = y2r
1 h

2m ∧ v2 = (y2y
Hhk(u,e,L)
3)2r ∧

δ = γm ∧ k = gmhs ∧ −n/2 < m < n/2} .

Theorem 2. Under the strong RSA assumption, the above system is a verifiable
encryption scheme.

We refer to the full version of the paper [CS02] for the proof of Theorem 2.

4.3 Extensions

It is straightforward to extend the above verifiable encryption scheme to a veri-
fiable encryption scheme that encrypts a representation of a group element with
respect to several bases. Further, all of these protocols can be easily adapted to
the case where the order of the group Γ is not known, i.e., a subgroup of of Z∗

N

for an RSA-modulus N , provided the order is not divisible by any small primes.

5 Proving the Inequality of Discrete Logarithms

Our protocol for verifiable decryption (below) requires that one party proves to
another party whether or not two discrete logarithms are equal, where one of
the discrete logarithms might not be known to the prover (that is, in the case
the discrete logarithms are not equal). There are well-known, efficient, special
honest-verifier zero-knowledge proof systems for proving that two discrete loga-
rithms are equal (see [CP93]), so we focus on the problem of proving that two
discrete logarithms are unequal. We discuss an efficient protocol for this problem
separately as it is of independent interest and as the algebraic setting here is
simpler than the one in the next section.
LetG = 〈g〉 be a group of prime order q. The prover and verifier have common

inputs g, h, y, z ∈ G, where g and h are generators for G, and logg y 6= logh z.
The prover has the additional input x = logg y. The prover and verifier then
engage in the following protocol.

1. The prover chooses r ∈R Zq, computes the auxiliary commitment C =
(hx/z)r, and sends C to the verifier.

2. The prover executes the protocol denoted PK{(α, β) : C = hα
(

1
z

)β
∧ 1 =

gα
(

1
y

)β
} with the verifier.

3. The verifier accepts if it accepts in step 2, and if C 6= 1; otherwise, the
verifier rejects.

Theorem 3. The above protocol is a special honest-verifier proof system for
proving that satisfies the special soundness condition for the property logg y 6=
logh z.

138 J. Camenisch, V. Shoup

We refer to the full version of this paper [CS02] for the proof of Theorem 3.
Let us discuss related work. Independently of our work, Bresson and

Stern [BS02] provide a protocol to prove that two discrete logarithms are not
equal that is similar to ours. However, their protocol is about a factor of two less
efficient than ours and is only computationally sound. We finally note that the
(efficient) protocol proposed by Michels and Stadler [MS98] to prove whether or
not two discrete logarithms are equal is not zero-knowledge because it reveals
the value hx.

6 Verifiable Decryption

In this section we provide a protocol that allows the decryptor to prove that she
decrypted correctly. In particular, we provide a protocol that allows the decryp-
tor to prove whether or not a given ciphertext decrypts to a given plaintext. We
then extend the protocol to one for proving whether or not a given ciphertext
decrypts to the discrete logarithm of a given group element.

6.1 Definition of Verifiable Decryption

At a high level, a verifiable decryption scheme for a binary relation R is a
protocol that allows a prover to convince a verifier whether or not a ciphertext
ψ is an encryption under a given public key PK and label L of a value w such
that (δ, w) ∈ R for a given δ. Here, the common input to the prover and the
verifier consists of PK, L, ψ, and δ, and the prover has as additional input the
“witness” w and the secret key SK corresponding to PK. We shall require that
the protocol is a Σ-protocol that is special honest verifier zero knowledge, and
that satisfies the special soundness condition for the property described above.
We refer the reader to the full version of the paper [CS02] for a more detailed

definition, but that as for verifiable encryption, the statement being proved (or
disproved) is whether the plaintext reconstructs to a witness using the specified
reconstruction routine. We also point out that since the prover tells whether or
not the given condition holds, the zero-knowledge simulator must be given this
one bit of information as well.

6.2 Verifiable Decryption of a Matching Plaintext

We give a protocol for the decryptor to prove whether or not a ciphertext (u, e, v)
decrypts to a message m with label L, i.e., using this protocol she can show that
she did correctly decrypt. This is a special case of verifiable decryption in which
the relation R is equality and the reconstruction routine is the identity function.
For our encryption scheme in §3, this proof corresponds to proving whether

or not the two equations

u2(x2+Hhk(u,e,L)x3)/v2 = 1 and (e/ux1)2/h2m = 1 (1)

Practical Verifiable Encryption of Discrete Logs 139

hold (assuming that the public test abs(v) = v is satisfied). If the ciphertext is
invalid, one or both of the two statements do not hold. If the ciphertext is valid
but decrypts to another message, the first statements holds but the second one
does not.
Proving that both of these equations hold is a fairly straightforward applica-

tion of known techniques.
To prove that at least one of the equations does not hold, we can use the

“proof of partial knowledge” technique of [CDS94], combined with the technique
developed in §5. However, because in the present setting the group has non-prime
order we can not prove the relationship among the secrets in the same way as
in §5 and, more importantly, the resulting protocol would not be zero-knowledge.
The former problem can be solved using an auxiliary group Gn

′ ⊂ Z∗
n
as we did

in §4. We consider the latter problem. Depending on the values of the secret keys
x1, x2, and x3, the left hand sides of the equations (1), and thus the auxiliary
commitments to be provided in the protocol, lie in different (sub-)groups, i.e.,
in Gn, Gn′ , or GnGn′ . As the simulator does to know the values of x1, . . . , x3,
it can not simulate these auxiliary commitments. We solve this problem using
the fact that for all elements a ∈ GnGn′ we have a 6= 1 ⇔ (an ∈ Gn′ ∧ an 6=
1) ∨ (a ∈ Gn ∧ a 6= 1). Thus, to prove that (at least) one of the equations (1)
does not hold, we prove that either

(u2(x2+Hhk(u,e,L)x3)

v2

)n

6= 1 (2)
or

(u2(x2+Hhk(u,e,L)x3)

v2

)n

= 1 and
u2(x2+Hhk(u,e,L)x3)

v2
6= 1 (3)

or

((e/ux1)2

h2m

)n

= (e/ux1)2n 6= 1 (4)
or

((e/ux1)2

h2m

)n

= 1 and
(e/ux1)2

h2m
6= 1 (5)

holds. Now, whenever one of the four cases applies it is always well defined in
which group the left-hand sides of the inequalities lie and we can apply the
ideas underlying the protocol in Section 5. We remark that the case where the
Statements (2-4) are false but the Statement (5) is true corresponds to the case,
where the ciphertexts is a valid encryption of a message different from m.
We are now ready to describe the protocol between the decryptor and a ver-

ifier. Their common input is
(

(hk, n, g, y1, y2, y3), (n, g, h), (u, e, v),m, L
)

and the
additional input to the decryptor is (x1, x2, x3). The triple (n, g, h) is an auxil-
iary parameter as in §4.2. (As we assume here that n is generated by a trusted
party as well, i.e., that the decryptor is not provided with n’s factorization; also,
n and n could be identical.) In the following description we assume that all the
messages the prover sends to the verifier prior to the execution of one of the

140 J. Camenisch, V. Shoup

possible PK protocols will in fact be bundled with the first message of that
PK protocol. Here we provide the proof-protocols only by high-level notation;
deriving the actual protocols is easily derived from it.

1. If m 6∈ [n] or the ciphertext is malformed, (e.g., if v 6= abs(v)), the verifier
outputs −1, and the protocol stops.

2. If (u, e, v) is a valid ciphertext with label L and decrypts to m, the decryptor
sends 1 to the verifier, and then engages in the protocol denoted

PK{(x1, x2, x3) : y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

v2 = u2x2u2Hhk(u,e,L)x3 ∧ e2/h2m = u2x1}

with the verifier.
3. If (u, e, v) is an invalid ciphertext w.r.t. the label L or decrypts to some
message different from m, then the decryptor sends −1 to the verifier. They
proceed as follows.
(a) The decryptor chooses a1 ∈R [n/4], a2 ∈R [n

2/4], a3 ∈R [n/4], and a4 ∈R

[n2/4], along with b1, b2, b3, b3 ∈R [n/4]. She then computes C1 := ga1hb1 ,
C2 := ga2hb2 , C3 := ga3hb3 , and C4 := ga4hb4 . She chooses C1 ∈R Gn′ ,
C2 ∈R Gn, C3 ∈R Gn′ , and C4 ∈R Gn.
Furthermore,

if u2n(x2+Hhk(u,e,L)x3) 6= v2n, she sets C1 := (u
x2+Hhk(u,e,L)x3/v)2na1 ,

else if u2(x2+Hhk(u,e,L)x3) 6= v2, she sets C2 := (u
x2+Hhk(u,e,L)x3/v)2a2 ,

else if (ux1/e)2 6∈ 〈h〉, she sets C3 := (u
x1/e)2na3 ,

else (ux1/e)2 6= h2m, and she sets C4 := (u
x1hm/e)2a4 .

The decryptor sends C1, C2, C3, C4, C1, C2, C3, and C4 to the verifier.
(b) The decryptor and the verifier carry out the protocol denoted

PK
{

(x1, x2, x3, a1, . . . , a4, b1, . . . , b4, r1, . . . , r4 s1, . . . , s4) :
[

y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C1 = u2nr1(
1

v
)2na1 ∧ C1 = ga1hb1 ∧ 1 = (

1

C1
)x2(

1

C1
)Hhk(u,e,L)x3gr1hs1

]

∨
[

y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C2 = u2r2(
1

v
)a2 ∧ C2 = ga2hb2 ∧ 1 = (

1

C2
)x2(

1

C2
)Hhk(u,e,L)x3gr2hs2

]

∨
[

y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C3 = u2nr3(
1

e
)2na3 ∧ C3 = ga3hb3 ∧ 1 = (

1

C3
)x1gr3hs3

]

∨
[

y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C4 = u2r4(
hm

e
)2a4 ∧ C4 = ga4hb4 ∧ 1 = (

1

C4
)x1gr4hs4

]}

,

Practical Verifiable Encryption of Discrete Logs 141

where r1, . . . , r4, s1, . . . , s4 are temporary secrets (i.e., r1 = a1(x2 +
Hhk(u, e, L)x3), s1 = b1(x2+Hhk(u, e, L)x3), r2 = a2(x2+Hhk(u, e, L)x3),
s2 = b2(x2+Hhk(u, e, L)x3), r3 = x1a3, s3 = x1b3, r4 = x1a4, s4 = x1b4,
(all computed in Z)). (To derive the actual protocol one has to apply
the techniques by Cramer et al. [CDS94] for realizing the ∨’s.)

(c) The verifier checks that C2
1 6= 1, C

2
2 6= 1, C

2
3 6= 1, and C

2
4 6= 1.

The computational load of the prover and the verifier is about one to four
times the load in the protocol for verifiable encryption described in §4.2 (de-
pending on whether step 2 or step 3 gets carried out).

Theorem 4. Assuming factoring is hard, the above scheme is a verifiable de-
cryption scheme (for matching plaintexts).

We refer to the full version of this paper [CS02] for the proof of Theorem 4.

6.3 Verifiable Decryption of a Discrete Logarithm

We now describe how the protocol provided in the previous section can be mod-
ified to obtain a protocol for verifiable decryption of a discrete logarithm. The
setting and notation are as in §4.2; in particular, we make use of the same relation
R and the same reconstruction routine.
We need to modify the protocol from the previous section only for the cases

where the ciphertext is valid. That is, instead of proving that the ciphertext
decrypts (or does not decrypt) to a given message, the decryptor now has to prove
that it decrypts (or does not decrypt) to a value m such that (m remn) ≡ logγ δ
(mod ρ). This corresponds to proving whether or not the three equations

u2(x2+Hhk(u,e,L)x3)/v2 = 1 ,
(e

ux1

)2n
= 1 , and δ = γ(logh2 (e/ux1)2 remn) (6)

hold. Note that logh2(e/ux1)2 exist if and only if (e/ux1)2n = 1. The first two
statements of (6) can be handled as in §4.2. The last one can be handled by
proving knowledge of a secret, say m, that (1) equals the encrypted message
modulo n, (2) equals (or doesn’t equal) logγ δ modulo q, and (3) lies in the
interval [−(n − 1)/2, (n − 1)/2]. The first two properties can be proved under
the strong RSA assumption using additional parameters (n, g, h) as in §4.2. We
discuss proving the last one. Different from the interval-proof used for verifiable
encryption, this interval-proof needs to be exact, i.e., if we allowed for the same
sloppiness, then the prover could for instance add a multiple of n to m and then
show that (u, e, v) does not (or does) decrypt to logγ δ.
Boudot [Bou00] presents several protocols to prove that in integer m lies ex-

actly in an interval [a, b]. One protocol uses the fact that x ∈ [a, b] is equivalent
to b − x ≥ 0 and x − a ≥ 0 and that one can show that an integer is positive
by proving knowledge of four values the squares of which sum up to the con-
sidered integer (in Z), again under the strong RSA assumption using additional
parameters (n, g, h). Lagrange proved the an integer can always be represented as

142 J. Camenisch, V. Shoup

four squares and Rabin and Shallit [RS86] provide an efficient algorithm to find
these squares. We note that in our case the interval is symmetric and it therefore
suffices to prove that ((n− 1)/2)2 −m2 ≥ 0 holds, which is more efficient.

With these observations one can obtain a protocol for verifiable decryption
of a discrete logarithm from the protocol presented in §4.2. For lack of space,
we refer the reader to the full version of this paper [CS02] for the details. We
also note that it is straightforward to adapt this protocol to verifiably decrypt
representations with respect to several bases. One can also “mix and match,”
proving whether or not ψ decrypts to a representation, one or more components
of which match specified values.

References

[ACJT00] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, A practical and provably
secure coalition-resistant group signature scheme, Advances in Cryptology —
CRYPTO 2000, LNCS, vol. 1880, Springer Verlag, 2000, pp. 255–270.

[ADR02] J. H. An, Y. Dodis, and T. Rabin, On the security of joint signature and
encryption, Advances in Cryptology: EUROCRYPT 2002, LNCS, vol. 2332,
Springer, 2002, pp. 83–107.

[ASW97] N. Asokan, M. Schunter, and M. Waidner, Optimistic protocols for fair ex-
change, 4th ACM Conference on Computer and Communication Security,
1997, pp. 6–17.

[ASW00] N. Asokan, V. Shoup, and M. Waidner, Optimistic fair exchange of digital
signatures, IEEE Journal on Selected Areas in Communications 18 (2000),
no. 4, 591–610.

[BDM98] F. Bao, R. Deng, and W. Mao, Efficient and practical fair exchange pro-
tocols with off-line TTP, IEEE Symposium on Security and Privacy, IEEE
Computer Society Press, 1998, pp. 77–85.

[BG96] M. Bellare and S. Goldwasser, Encapsulated key escrow, Preprint, 1996.

[Bou00] F. Boudot, Efficient proofs that a committed number lies in an interval,
Advances in Cryptology — EUROCRYPT 2000, LNCS, vol. 1807, Springer
Verlag, 2000, pp. 431–444.

[BP90] H. Bürk and A. Pfitzmann, Digital payment systems enabling security and
unobservability, Computer & Security 9 (1990), no. 8, 715–721.

[BS02] E. Bresson and J. Stern, Proofs of knowledge for non-monotone discrete-
log formulae and applications, Information Security (ISC 2002), LNCS, vol.
2433, Springer Verlag, 2002, pp. 272–288.

[CD00] J. Camenisch and I. Damg̊ard, Verifiable encryption, group encryption, and
their applications to group signatures and signature sharing schemes, Ad-
vances in Cryptology — ASIACRYPT 2000, LNCS, vol. 1976, Springer Ver-
lag, 2000, pp. 331–345.

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers, Proofs of partial knowledge
and simplified design of witness hiding protocols, Advances in Cryptology —
CRYPTO ’94, LNCS, vol. 839, Springer Verlag, 1994, pp. 174–187.

[CF01] R. Canetti and M. Fischlin, Universally composable commitments, Advances
in Cryptology — CRYPTO 2001, LNCS, vol. 2139, Springer Verlag, 2001,
pp. 19–40.

Practical Verifiable Encryption of Discrete Logs 143

[CG98] D. Catalano and R. Gennaro, New efficient and secure protocols for veri-
fiable signature sharing and other applications, Advances in Cryptology —
CRYPTO ’98 (Berlin), LNCS, vol. 1642, Springer Verlag, 1998, pp. 105–120.

[CG99] R. Canetti and S. Goldwasser, An efficient threshold public key cryptosystem
secure against adaptive chosen ciphertext attack, Advances in Cryptology —
EUROCRYPT ’99, LNCS, vol. 1592, Springer Verlag, 1999, pp. 90–106.

[Cha85] D. Chaum, Security without identification: Transaction systems to make big
brother obsolete, Communications of the ACM 28 (1985), no. 10, 1030–1044.

[Cha94] D. Chaum, Designated confirmer signatures, Advances in Cryptology — EU-
ROCRYPT ’94, LNCS, vol. 950, Springer Verlag Berlin, 1994, pp. 86–91.

[CL01] J. Camenisch and A. Lysyanskaya, Efficient non-transferable anonymous
multi-show credential system with optional anonymity revocation, Advances
in Cryptology — EUROCRYPT 2001, LNCS, vol. 2045, Springer Verlag,
2001, pp. 93–118.

[CM99a] J. Camenisch and M. Michels, Proving in zero-knowledge that a number n is

the product of two safe primes, Advances in Cryptology — EUROCRYPT
’99, LNCS, vol. 1592, Springer Verlag, 1999, pp. 107–122.

[CM99b] J. Camenisch and M. Michels, Separability and efficiency for generic group
signature schemes, Advances in Cryptology — CRYPTO ’99, LNCS, vol.
1666, Springer Verlag, 1999, pp. 413–430.

[CM00] J. Camenisch and M. Michels, Confirmer signature schemes secure against
adaptive adversaries, Advances in Cryptology — EUROCRYPT 2000,
LNCS, vol. 1807, Springer Verlag, 2000, pp. 243–258.

[CP93] D. Chaum and T. P. Pedersen,Wallet databases with observers, Advances in
Cryptology — CRYPTO ’92, LNCS, vol. 740, Springer-Verlag, 1993, pp. 89–
105.

[Cra96] R. Cramer, Modular design of secure yet practical cryptographic protocols,
Ph.D. thesis, University of Amsterdam, 1996.

[CS97] J. Camenisch and M. Stadler, Efficient group signature schemes for large
groups, Advances in Cryptology — CRYPTO ’97, LNCS, vol. 1296, Springer
Verlag, 1997, pp. 410–424.

[CS01] R. Cramer and V. Shoup, Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption, http://eprint.iacr.org/
2001/108, 2001.

[CS02] J. Camenisch and V. Shoup, Practical verifiable encryption and decryption
of discrete logarithms, http://eprint.iacr.org/2002/161, 2002.

[CVH02] J. Camenisch and E. Van Herreweghen, Design and implementation of the
idemix anonymous credential system, Proc. 9th ACM Conference on Com-
puter and Communications Security, 2002.

[Dam00] I. Damg̊ard, Efficient concurrent zero-knowledge in the auxiliary string
model, Advances in Cryptology — EUROCRYPT 2000, LNCS, vol. 1807,
Springer Verlag, 2000, pp. 431–444.

[DF02] I. Damg̊ard and E. Fujisaki, An integer commitment scheme based on groups
with hidden order, Advances in Cryptology — ASIACRYPT 2002‘, LNCS,
vol. 2501, 2002.

[FO97] E. Fujisaki and T. Okamoto, Statistical zero knowledge protocols to prove
modular polynomial relations, Advances in Cryptology — CRYPTO ’97,
LNCS, vol. 1294, Springer Verlag, 1997, pp. 16–30.

[FR95] M. Franklin and M. Reiter, Verifiable signature sharing, Advances in Cryp-
tology — EUROCRYPT ’95, LNCS, vol. 921, Springer Verlag, 1995, pp. 50–
63.

144 J. Camenisch, V. Shoup

[FS87] A. Fiat and A. Shamir, How to prove yourself: Practical solution to identi-
fication and signature problems, Advances in Cryptology — CRYPTO ’86,
LNCS, vol. 263, Springer Verlag, 1987, pp. 186–194.

[KP97] J. Kilian and E. Petrank, Identity escrow, Theory of Cryptography Library,
Record Nr. 97-11, http://theory.lcs.mit.edu/~tcryptol, August 1997.

[KP98] J. Kilian and E. Petrank, Identity escrow, Advances in Cryptology —
CRYPTO ’98 (Berlin), LNCS, vol. 1642, Springer Verlag, 1998, pp. 169–
185.

[Mic] S. Micali, Efficient certificate revocation and certified e-mail with transparent
post offices, Presentation at the 1997 RSA Security Conference.

[MS98] M. Michels and M. Stadler, Generic constructions for secure and efficient
confirmer signature schemes, Advances in Cryptology — EUROCRYPT ’98,
LNCS, vol. 1403, Springer Verlag, 1998, pp. 406–421.

[Pai99] P. Paillier, Public-key cryptosystems based on composite residuosity classes,
Advances in Cryptology — EUROCRYPT ’99, LNCS, vol. 1592, Springer
Verlag, 1999, pp. 223–239.

[Ped92] T. P. Pedersen, Non-interactive and information-theoretic secure verifiable
secret sharing, Advances in Cryptology – CRYPTO ’91, LNCS, vol. 576,
Springer Verlag, 1992, pp. 129–140.

[PS00] G. Poupard and J. Stern, Fair encryption of RSA keys, Advances in Cryptol-
ogy: EUROCRYPT 2000, LNCS, vol. 1087, Springer Verlag, 2000, pp. 173–
190.

[RS86] M. O. Rabin and J. O. Shallit, Randomized algorithms in number theory,
Communications on Pure and Applied Mathematics 39 (1986), 239–256.

[RS92] C. Rackoff and D. R. Simon, Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack, Advances in Cryptology: CRYPTO ’91,
LNCS, vol. 576, Springer, 1992, pp. 433–444.

[SG98] V. Shoup and R. Gennaro, Securing threshold cryptosystems against chosen
ciphertext attack, Advances in Cryptology: EUROCRYPT ’98, LNCS, vol.
1403, Springer, 1998.

[Sho01] V. Shoup, A proposal for an ISO standard for public key encryption, http:
//eprint.iacr.org/2001/112, 2001.

[Sta96] M. Stadler, Publicly verifiable secret sharing, Advances in Cryptology —
EUROCRYPT ’96, LNCS, vol. 1070, Springer Verlag, 1996, pp. 191–199.

[YY98] A. Young and M. Young, Auto-recoverable auto-certifiable cryptosystems.,
Advances in Cryptology — EUROCRYPT ’98, LNCS, vol. 1403, Springer
Verlag, 1998, pp. 17–31.

