
Perfect Hiding and Perfect Binding Universally

Composable Commitment Schemes with

Constant Expansion Factor

Ivan Damg̊ard and Jesper Buus Nielsen?

BRICS
?? Department of Computer Science

University of Aarhus
Ny Munkegade

DK-8000 Arhus C, Denmark

Abstract. Canetti and Fischlin have recently proposed the security no-
tion universal composability for commitment schemes and provided two
examples. This new notion is very strong. It guarantees that security is
maintained even when an unbounded number of copies of the scheme
are running concurrently, also it guarantees non-malleability and secu-
rity against adaptive adversaries. Both proposed schemes use Θ(k) bits
to commit to one bit and can be based on the existence of trapdoor
commitments and non-malleable encryption.

We present new universally composable commitment (UCC) schemes
based on extractable q one-way homomorphisms. These in turn exist
based on the Paillier cryptosystem, the Okamoto-Uchiyama cryptosys-
tem, or the DDH assumption. The schemes are efficient: to commit to k
bits, they use a constant number of modular exponentiations and commu-
nicates O(k) bits. Furthermore the scheme can be instantiated in either
perfectly hiding or perfectly binding versions. These are the first schemes
to show that constant expansion factor, perfect hiding, and perfect bind-
ing can be obtained for universally composable commitments.

We also show how the schemes can be applied to do efficient zero-
knowledge proofs of knowledge that are universally composable.

1 Introduction

The notion of commitment is one of the most fundamental primitives in both
theory and practice of modern cryptography. In a commitment scheme, a com-
mitter chooses an element m from some finite set M , and releases some infor-
mation about m through a commit protocol to a receiver. Later, the committer
may release more information to the receiver to open his commitment, so that
the receiver learns m. Loosely speaking, the basic properties we want are first
that the commitment scheme is hiding: a cheating receiver cannot learn m from

? {ivan,buus}@brics.dk.
?? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

584 I. Damg̊ard and J.B. Nielsen

the commitment protocol, and second that it is binding: a cheating committer
cannot change his mind about m, the verifier can check in the opening that the
value opened was what the committer had in mind originally. Each of the two
properties can be satisfied unconditionally or relative to a complexity assump-
tion. A very large number of commitment schemes are known based on various
notions of security and various complexity assumptions.

In [?] Canetti and Fischlin proposed a new security measure for commitment
schemes called universally composable commitments. This is a very strong no-
tion: it guarantees that security is maintained even when an unbounded number
of copies of the scheme are running concurrently and asynchronous. It also guar-
antees non-malleability and maintains security even if an adversary can decide
adaptively to corrupt some of the players and make them cheat. The new secu-
rity notion is based on the framework for universally composable security in [?].
In this framework one specifies desired functionalities by specifying an idealized
version of them. An idealized commitment scheme is modeled by assuming a
trusted party to which both the committer and the receiver have a secure chan-
nel. To commit to m, the committer simply sends m to the trusted party who
notifies the receiver that a commitment has been made. To open, the committer
asks the trusted party to reveal m to the receiver. Security of a commitment
scheme now means that the view of an adversary attacking the scheme can be
simulated given access to just the idealized functionality.

It is clearly important for practical applications to have solutions where only
the two main players need to be active. However, in [?] it is shown that universal
composability is so strong a notion that no universally composable commitment
scheme for only two players exist. However, if one assumes that a common ref-
erence string with a prescribed distribution is available to the players, then
two-player solutions do exist and two examples are given in [?]. Note that com-
mon reference strings are often available in practice, for instance if a public key
infrastructure is given.

The commitment scheme(s) from [?] uses Ω(k) bits to commit to one bit,
where k is a security parameter, and it guarantees only computational hiding
and binding. In fact, as detailed later, one might even get the impression from
the construction that perfect hiding, respectively binding cannot be achieved.
Here, by perfect, we mean that an unbounded receiver gets zero information
about m, respectively an unbounded committer can change his mind about m
with probability zero.

Our contribution is a new construction of universally composable commit-
ment schemes, which uses O(k) bits of communication to commit to k bits.
The scheme can be set up such that it is perfectly binding, or perfectly hiding,
without loosing efficiency1. The construction is based on a new primitive which
we call a mixed commitment scheme. We give a general construction of mixed

1 [?] also contains a scheme which is statistically binding and computationally hid-
ing, the scheme however requires a new setup of the common reference string per
commitment and is thus mostly interesting because it demonstrates that statistically
binding can be obtained at all.

Universally Composable Commitment Schemes with Constant Expansion 585

commitments, based on any family of so called extractable q one-way homomor-
phisms, and show two efficient implementations of this primitive, one based on
the Paillier cryptosystem and one based on the Okamoto-Uchiyama cryptosys-
tem. A third example based on the DDH assumption is less efficient, but still
supports perfect hiding or binding. Our commitment protocol has three moves,
but the two first messages can be computed independently of the message com-
mitted to and thus the latency of a commitment is still one round as in [?].
We use a “personalized” version of the common reference string model where
each player has a separate piece of the reference string assigned to him. It is an
open question if our results can also be obtained with a reference string of size
independent of the number of players.

As a final contribution we show that if a mixed commitment scheme comes
with protocols in a standard 3-move form for proving in zero-knowledge rela-
tions among committed values, the resulting UCC commitment scheme inherits
these protocols, such that usage of these is also universally composable. For our
concrete schemes, this results in efficient protocols for proving binary Boolean
relations among committed values and also (for the version based on Paillier en-
cryption) additive and multiplicative relations modulo N . We discuss how this
can be used to construct efficient universally composable zero-knowledge proofs
of knowledge for NP, improving the complexity of a corresponding protocol from
[?].

An Intuitive Explanation of some Main Ideas In the simplest type of
commitment scheme, both committing and opening are non-interactive, so that
committing just consists of running an algorithm commitK , keyed by a public
key K, taking as input the message m to be committed to and a uniformly
random string r. The committer computes c ← commitK(m, r), and sends c to
the receiver. To open, the committer sends m and r to the receiver, who checks
that c = commitK(m, r). For this type of scheme, hiding means that given just
c the receiver does not learn m and binding means that the committer cannot
change his mind by computing m′, r′, where c = commit(m′, r′) and m′ 6= m.

In a trapdoor scheme however, to each public key K a piece of trapdoor
information tK is associated which, if known, allows the committer to change
his mind. We will call such schemes equivocable. One may also construct schemes
where a different type of trapdoor information dK exists, such that given dK , one
can efficiently computem from commitK(m, r). We call such schemes extractable.
Note that equivocable schemes cannot be perfect binding and that extractable
schemes cannot be perfect hiding.

As mentioned, the scheme in [?] guarantees only computational binding and
computational hiding. Actually this is important to the construction: to prove
security, we must simulate an adversary’s view of the real scheme with access to
the idealized functionality only. Now, if the committer is corrupted by the adver-
sary and sends a commitment c, the simulator must find out which message was
committed to, and send it to the idealized functionality. The universally com-
posable framework makes very strict demands to the simulation implying that
rewinding techniques cannot be used for extracting the message. A solution is to

586 I. Damg̊ard and J.B. Nielsen

use an extractable scheme, have the public key K in the reference string, and set
things up such that the simulator knows the trapdoor dk. A similar consideration
leads to the conclusion that if instead the receiver is corrupt, the scheme must
be equivocable with trapdoor tK known to the simulator, because the simulator
must generate a commitment on behalf of the honest committer before finding
out from the idealized functionality which value was actually committed to. So to
build universally composable commitments it seems we must have a scheme that
is simultaneously extractable and equivocable. This is precisely what Canetti’s
and Fischlin’s ingenious construction provides.

In this paper, we propose a different technique for universally composable
commitments based on what we call a mixed commitment scheme. A mixed
commitment scheme is basically a commitment scheme which on some of the
keys is perfectly hiding and equivocable, we call these keys the E-keys, and on
some of the keys is perfectly binding and extractable, we call these keys the
X-keys. Clearly, no key can be both an X- and an E-key, so if we were to put the
entire key in the common reference string, either extractability or equivocability
would fail and the simulation could not work. We remedy this by putting only
a part of the key, the so-called system key, in the reference string. The rest of
the key is set up once per commitment using a two-move protocol. This allows
the simulator to force the key used for each commitment to be an E-key or an
X-key depending on whether equivocability or extractability is needed.

Our basic construction is neither perfectly binding nor perfectly hiding be-
cause the set-up of keys is randomized and is not guaranteed to lead to any
particular type of key. However, one may add to the reference string an extra
key that is guaranteed to be either an E- or an X-key. Using this in combination
with the basic scheme, one can obtain either perfect hiding or perfect binding.

2 Mixed Commitments

We now give a more formal description of mixed commitment schemes. The most
important difference to the intuitive discussion above is that the system key N
comes with a trapdoor tN that allows efficient extraction for all X-keys. The
E-keys, however, each come with their own trapdoor for equivocability.

Definition 1. By a mixed commitment scheme we mean a commitment scheme
commitK with some global system key N , which determines the message space
MN and the key space KN of the commitments. The key space contains two sets,
the E-keys and the X-keys, for which the following holds:

Key generation One can efficiently generate a system key N along with the so-
called X-trapdoor tN . One can, given the system key N , efficiently generate
random keys from KN and given tN one can sample random X-keys. Given
the system key, one can efficiently generate an E-key K along with the so-
called E-trapdoor tK .

Key indistinguishability Random E-keys and random X-keys are both com-
putationally indistinguishable from random keys from KN as long as the
X-trapdoor tN is not known.

Universally Composable Commitment Schemes with Constant Expansion 587

Equivocability Given E-key K and E-trapdoor tK one can generate fake com-
mitments c, distributed exactly as real commitments, which can later be
opened arbitrarily, i.e. given a message m one can compute uniformly ran-
dom r for which c = commitK(m, r).

Extraction Given a commitment c = commitK(m, r), where K is an X-key,
one can given the X-trapdoor tN efficiently compute m.

Note that the indistinguishability of random E-keys, random X-keys, and
random keys from KN implies that as long as the X-trapdoor is not known the
scheme is computationally hiding for all keys and as long as the E-trapdoor is
not known either the scheme is computationally binding for all keys.

For the construction in the next section we will need a few special require-
ments on the mixed commitment scheme. First of all we will assume that the
message space MN and the key space KN are finite groups in which we can
compute efficiently. We denote the group operation by +. Second we need that
the number of E-keys over the total number of keys is negligible and that the
number of X-keys over the total number of keys is negligibly close to 1. Note that
this leaves only a negligible fraction which is neither X-keys nor E-keys. We call
a mixed commitment scheme with these properties a special mixed commitment

scheme.
The last requirement is that the scheme has two ’independent’ E-trapdoors

per E-key. We ensure this by a transformation. The keys will be of the form
(K1,K2). We let the E-keys be the pairs of E-keys and let the X-keys be the pairs
of X-keys. The message space will be the same. Given a messagem we commit as
(commitK1

(m1), commitK2
(m2)), wherem1 andm2 are uniformly random values

for which m = m1 +m2. If both keys are E-keys and the E-trapdoor of one of
them, say Kb, is known a fake commitment is made by committing honestly to
random m1−b under K1−b and making a fake commitment cb under Kb. Then to
open to m, open cb to mb = m1−b −m. Note that the distribution of the result
is independent of b — this will become essential later. All requirements for a
special mixed commitment scheme are maintained under the transformation.

Special Mixed Commitment Scheme based on q One-Way Homomor-
phisms Our examples of special mixed commitment schemes are all based on q
one-way homomorphism generators, as defined in [?]. Here we extend the notion
to extractable q one-way homomorphisms. In a nutshell, we want to look at an
easily computable homomorphism f : G → H between Abelian groups G,H
such that H/f(G) is cyclic and has only large prime factors in its order. And
such that random elements in f(G) are computationally indistinguishable from
random elements chosen from all of H (which in particular implies that f is hard
to invert). However, given also a trapdoor associated with f , it becomes easy to
extract information about the status of an element in H.

More formally, a family of extractable q one-way homomorphisms is given by
a probabilistic polynomial time (PPT) generator G which on input 1k outputs
a (description of a) tuple (G,H, f, g, q, b, b′, t), where G and H are groups, f :
G→ H is an efficiently computable homomorphism, g ∈ H \ f(G), q, b, b′ ∈N ,

588 I. Damg̊ard and J.B. Nielsen

and t is a string called the trapdoor. Let F = f(G). We require that gF gen-
erates the factor group H/F and let ord(g) = |H/F |. We require that ord(g)
is superpolynomial in k (e.g. 2k), that q is a multiple of ord(g), and that b is a
public lower bound on ord(g), i.e., we require that 2 ≤ b ≤ ord(g) ≤ q. We say
that a generator has public order if b = ord(g) = q. Also b′ is superpolynomial
in k (e.g. 2k/2) and it is a public lower bound on the primefactors in ord(g),
i.e., all primefactors in ord(g) are at least b′. We write operations in G and H
multiplicatively and we require that in both groups one can multiply, exponenti-
ate, take inverses, and sample random elements in PPT given (G,H, f, g, q, b, b′).
The final central requirements are as follows:

Indistinguishability. Random elements from F are computationally indistin-
guishable from random elements from H given (G,H, f, g, q, b, b′).

Extractability. This comes in two flavors. We call the generator fully ex-
tractable if given (G,H, f, g, q, b, b′, t) and y = gif(r) one can compute
i mod ord(g) in PPT. Note that, given (G,H, f, g, q, b, b′, t), one can compute
ord(g) easily. We call a generator 0/1-extractable if given (G,H, f, g, q, b, b′, t)
and y = gif(r) one can determine whether i = 0 in PPT.

q-invertibility Given (G,H, f, g, q, b, b′) and y ∈ H, it is easy to compute x
such that yq = f(x). Note that this does not contradict indistinguishability:
since q is a multiple of ord(g), it is always the case that yq ∈ F .

We give three examples of extractable q one-way homomorphism generators:

Based on Paillier encryption: Let n = PQ be an RSA modulus, where P
and Q are k/2-bit primes. Let G = Z∗

n, let H = Z∗
n2 , and let f(r) =

rn mod n2. Let g = (n + 1), let b = q = n, b′ = 2k/2−1,and let t = (P,Q).
Then it follows directly from [?] that relative to the DCRA assumption we
have a fully extractable generator with public order.

Based on Okamoto-Uchiyama encryption: Now let N = Pn = P 2Q. Let
G = Z∗

n, let H = Z∗
N , and let f(r) = rN mod N . Let g = (N + 1), q = N ,

b = b′ = 2k/2−1 and t = (P,Q). Then it follows directly from [?] that relative
to the p-subgroup assumption we have a fully extractable generator.

Based on Diffie-Hellman encryption: Let 〈α〉 be a group of prime order Q.
Let β = αx for uniformly random x ∈ Z∗

Q. Let G = ZQ, let H = 〈α〉 × 〈α〉,
and let f(r) = (αr, βr). Let g = (1, β), b = b′ = q = Q and t = x. Then
the scheme is 0/1-extractable: let (A,B) = gmf(r) = (αr, βr+m), then Ax =
B iff m = 0. Relative to the DDH assumption we have a 0/1-extractable
generator with public order.

We now show how to transform an extractable generator into a special mixed
commitment scheme. We treat fully extractable and 0/1-extractable generators
in parallel, as the differences are minimal.

The key space will be H, the message space will be Zb for fully extractable
schemes and Z2 for 0/1-extractable schemes. We commit as commitK(m, r) =
Kmf(r), where r is uniformly random in H. The E-keys will be the set F =
f(G) and the E-trapdoor will be f−1(K). By the requirement that ord(g) is

Universally Composable Commitment Schemes with Constant Expansion 589

superpolynomial in k, the set of E-keys is a negligible fraction of the keyspace
as required. For equivocability, we generate a fake commitment as c = f(rc) for
uniformly random rc ∈ H. Assume that K = f(rK) and that we are given m ∈
Zb. Compute r = r−mK rc. Then r is uniformly random and c = commitK(m, r).

For a fully extractable generator the X-keys will be the elements of form
K = gif(rK), where i is invertible in Zord(g). By the requirement that ord(g)
only has large primefactors, the X-keys are the entire key-space except for a
negligible fraction as required. They can be sampled efficiently given the trap-
door since then ord(g) is known. Assume that we are given c = Kmf(r) for
m ∈ Zb. Using fully extractability we can from c compute im mod ord(g) and
from K we can compute i mod ord(g). Since i is invertible we can then com-
pute m mod ord(g) = m. For a 0/1-extractable generator the X-keys will be
the elements of the form K = gif(rK), where i ∈ Zord(g) \ {0}. By the 0/1-
extractability these keys can be efficiently sampled given t. For extraction, note
that commitK(0, r) ∈ F and commitK(1, r) 6∈ F and use the 0/1-extractability
of the generator. For the fully extractable construction and the 0/1-extractable
construction, the indistinguishability of the key-spaces follows directly from the
indistinguishability requirement on the generator. The transformed scheme is
given by commitK1,K2

(m, (r1, r2,m1)) = (Km1

1 f(r1),K
m2

2 f(r2)), where m2 =
m−m1 mod q.

Proofs of Relations For the mixed commitment schemes we exhibit in this
paper, there are efficient protocols for proving in zero-knowledge relations among
committed values. As we shall see, it is possible to have the derived universally
composable commitment schemes inherit these protocols while maintaining uni-
versal composability. In order for this to work, we need the protocols to be
non-erasure Σ-protocols.

A non-erasure Σ-protocol for relation R is a protocol for two parties, called the
prover P and the verifier V . The prover gets as input (x,w) ∈ R, the verifier gets
as input x, and the goal is for the prover to convince the verifier that he knows
w such that (x,w) ∈ R, without revealing information about w. We require that
it is done using a protocol of the following form. The prover first computes a
message a← A(x,w, ra), where ra is a uniformly random string, and sends a to
V . Then V returns a random challenge e of length l. The prover then computes
a responds to the challenge z ← Z(x,w, ra, e), and sends z to the verifier. The
verifier then runs a program B on (x, a, e, z) which outputs b ∈ {0, 1} indicating
where to believe that the prover knows a valid witness w or not. Besides the
protocol being of this form we furthermore require that the following hold:

Completeness If (x,w) ∈ R, then the verifier always accepts (b = 1).

Special honest verifier zero-knowledge There exists a PPT algorithm, the
honest verifier simulator hvs, which given instance x (where there exists w
such that (x,w) ∈ R) and any challenge e generates (a, z) ← hvs(x, e, r),
where r is a uniformly random string, such that (x, a, e, z) is distributed
identically to a successful conversation where e occurs as challenge.

590 I. Damg̊ard and J.B. Nielsen

State construction Given (x,w, a, e, z, r), where (a, z) = hvs(x, e, r) and
(x,w) ∈ R it should be possible to compute uniformly random ra for which
a = A(x,w, ra) and z = Z(x,w, ra, e).

Special soundness There exists a PPT algorithm, which given x, (a, e, z), and
(a, e′, z′), where e 6= e′, B(x, a, e, z) = 1, and B(x, a, e′, z′) = 1, outputs w
such that (x,w) ∈ R.

In [?] it is shown how to use Σ-protocols in a concurrent setting. This is
done by letting the first message be a commitment to a and then letting the
third message be (a, r, z), where (a, r) is an opening of the commitment and z is
computed as usual. If the commitment scheme used is a trapdoor commitment
scheme this will allow for simulation using the honest verifier simulator. In an
adaptive non-erasure setting, where an adversary can corrupt parties during
the execution, it is also necessary with the State Construction property as the
adversary is entitled to see the internal state of a corrupted party.

Proofs of Relations for the Schemes based on q One-Way Homomor-
phisms The basis for the proofs of relations between commitments will be the
following proof of knowledge which works for fully extractable generators with
public order, so we have (G,H, f, g, q, b, b′, t), with b = ord(g) = q. Assume that
the prover is given K ∈ H, m ∈ Zb and r ∈ G, and the verifier is given K and
C = Kmf(r). To prove knowledge of m, r, we do as follows:

1. The prover sends C = Kmf(r) for uniformly random m ∈ Zq and r ∈ G.
2. The verifier sends a uniformly random challenge e from Zb′ , where b

′ is the
public bound on the smallest primefactor in ord(g).

3. The prover replies with m̃ = em + m mod q and r̃ = f−1(Kq)ĩrer, where
ĩ = em+m div q. The verifier accepts iff Km̃f(r̃) = CeC.

We argue that this is a non-erasure Σ-protocol: The completeness is imme-
diate. For special soundness assume that we have two accepting conversations
(C, e, m̃, r̃) and (C, e′, m̃′, r̃′). By the requirement that b′ is smaller than the
smallest primefactor of q we can compute α, β s.t. 1 = αq + β(e − e′). By our
assumptions, we can compute rc = f−1(Cq) and r′K = f−1(Kq). Then compute
n = (m̃− m̃′)β, m = n mod q, and r = (r̃/r̃′)βrαc (r

′
K)

n div q. Then C = Kmf(r).
For special honest verifier zero-knowledge, given C and e, pick m̃ ∈ Zq and r̃ ∈ G
at random and let C = Km̃f(r̃)C−e. For the state construction, assume that
we are then given m, r such that C = Kmf(r). Then let m = m̃ − em mod q,

ĩ = em+mdiv q, r = r̃f−1(Kq)ĩr−e. Then all values have the correct distribu-
tion.

We extend this scheme to prove relations between committed values. Assume
that the prover knows K1,m1, r1, . . . ,Kl,ml, rl where

∑l
i=1 aimi = a0 mod q for

a0, . . . , al ∈ Zq, and assume that the verifier knows Ki and Ci = Kmi

i f(ri) for
i = 1, . . . , l and knows a0, . . . , al. The prover proves knowledge as follows: Run
a proof of knowledge as that described above for each of the commitments using
the same challenge e in them all. Let m̃i be the m̃-value of the protocol for Ci.

Universally Composable Commitment Schemes with Constant Expansion 591

We furthermore instruct the verifier to check that
∑l

i=1 aim̃i = ea0. For special
soundness assume that we have accepting conversations for the two challenges
e 6= e′. Then we can compute mi = (m̃i − m̃′

i)(e− e′)−1 mod q and ri as above

such that Ci = Kmi

i f(ri). Furthermore
∑l

i=1 aimi = (e − e′)−1(
∑l

i=1 aim̃i −∑l
i=1 aim̃

′
i) = (e− e

′)−1(ea0− e
′a0) = a0. The other properties of a non-erasure

Σ-protocol follows using similar arguments.

This handles proofs of knowledge for the basic scheme. Recall, however, that
in our UCC construction we need a transformed scheme where pairs of basic
commitments are used, as described above. So assume, for instance, that we
are given transformed commitments (C1, C2), (C3, C4), (C5, C6) and we want to
prove that the value committed to by (C1, C2) is the sum modulo q of the
values committed by (C3, C4) and (C5, C6). This can be done by using the above
protocol to prove knowledge of m1, . . . ,m6 contained in C1, . . . , C6 such that
(m1+m2)−(m3+m4)−(m5+m6) = 0. All linear relations between transformed
commitments can be dealt with in a similar manner.

By extending the proof of multiplicative relations from [?] in a manner equiv-
alent to what we did for the additive proof we obtain a non-erasure Σ-protocol
for proving multiplicative relations between transformed commitments.

Now for schemes without public order, the Σ-protocols given above do not
directly apply because we were assuming that b = ord(g) = q. However, we
can modify the basic protocol by setting m = m = m̃ = 0. This results in a
non-erasure Σ-protocol which allows the prover to prove knowledge of r, where
C = f(r) is known by the verifier. I.e. the prover can prove that C ∈ F , in other
words that C commits to 0. Given C = Kf(r) the prover can using the same
protocol prove that CK−1 ∈ F , i.e. prove that C ∈ KF , in other words that C
commits to 1. Using the technique from [?] for monotone logical combination of
Σ-protocols we can then combine such proofs. Let C1, . . . , Cl be commitments
and let R = {(bi1, . . . , b

i
l)}

a
i=1 ⊂ {0, 1}

l be a Boolean relation. We can then prove

that C1, . . . , Cl commits to (m1, . . . ,ml) ∈ R by proving
∨a
i=1

∧l
i=1 Ci ∈ K

miF .
Let in particular 0 = {(0, 0), (1, 1)} and let 1 = {(0, 1), (1, 0)}. Then proving
knowledge of (m1,m2) ∈ 0 for transformed commitment C = (C1, C2) proves
that C commits to 0, similar for 1. Then using the relation And = 0× 0× 0 ∪
0×0×1∪0×1×0∪1×1×1, we can prove that three transformed commitments
C1, C2, C3 commits to bits m1,m2,m3 s.t. m1 = m2 ∧m3. All Boolean relations
of arity O(log(k)) can handled in a similar manner. This will work for both fully
and 0/1-extractable schemes.

The following theorem summarizes what we have argued:

Theorem 1. If there exists a fully (0/1) extractable q one-way homomorphism
generator, then there exists a special mixed commitment scheme with message
space Zb (Z2) as described above and with proofs of relations of the form m =
f(m1,m2, . . . ,ml) where f is a Boolean predicate and l = O(log(k)). If the
scheme is with public order b = ord(g) = q and is fully extractable, we also have
proofs of additive and multiplicative relations modulo q.

592 I. Damg̊ard and J.B. Nielsen

3 Universally Composable Commitments

In the framework from [?] the security of a protocol is defined by comparing its
real-life execution to an ideal evaluation of its desired behavior.

The protocol π is modeled by n interactive Turing Machines P1, . . . , Pn called
the parties of the protocol. In the real-life execution of π an adversary A and an
environment Z modeling the environment in which A is attacking the protocol
participates. The environment gives inputs to honest parties, receives outputs
from honest parties, and can communication with A at arbitrary points in the
execution. The adversary can see all messages and schedules all message deliver-
ies. The adversary can corrupted parties adaptively. When a party is corrupted,
the adversary learns the entire execution history of the corrupted party, includ-
ing the random bits used, and will from the point of corruption send messages
on behalf of the corrupted party. Both A and Z are PPT interactive Turing
Machines.

Second an ideal evaluation is defined. In the ideal evaluation an ideal func-
tionality F is present to which all the parties have a secure communication line.
The ideal functionality is an interactive Turing Machine defining the desired
input-output behavior of the protocol. Also present is an ideal model adversary
S, the environment Z, and n so-called dummy parties P̃1, . . . , P̃n — all PPT in-
teractive Turing Machines. The only job of the dummy parties is to take inputs
from the environment and send them to the ideal functionality and take mes-
sages from the ideal functionality and output them to the environment. Again
the adversary schedules all message deliveries, but can now not see the contents
of the messages. This basically makes the ideal process a trivially secure protocol
with the same input-output behavior as the ideal functionality. The framework
also defines the hybrid models, where the execution proceeds as in the real-life
execution, but where the parties in addition have access to an ideal functionality.
An important property of the framework is that these ideal functionalities can
securely be replaced with sub-protocols securely realizing the ideal functional-
ity. The real-life model including access to an ideal functionality F is called the
F-hybrid model.

At the beginning of the protocol all parties, the adversary, and the envi-
ronment is given as input the security parameter k and random bits. Further-
more the environment is given an auxiliary input z. At some point the envi-
ronment stops activating parties and outputs some bit. This bit is taken to
be the output of the execution. We use REALπ,A,Z(k, z) to denote the output
of Z in the real-life execution and use IDEALF,S,Z(k, z) to denote the output
of Z in the ideal evaluation. Let REALπ,A,Z denote the distribution ensemble
{REALπ,A,Z(k, z)}k∈N ,z∈{0,1}∗ and let IDEALF,S,Z(k, z) denote the distribu-
tion ensemble {IDEALF,S,Z(k, z)}k∈N ,z∈{0,1}∗ .

Definition 2 ([?]). We say that π securely realizes F if for all real-life adver-
saries A there exists an ideal model adversary S such that for all environments
Z we have that IDEALF,S,Z and REALπ,A,Z are computationally indistinguish-
able.

Universally Composable Commitment Schemes with Constant Expansion 593

An important fact about the above security notion is that it is maintained
even if an unbounded number of copies of the protocol (and other protocols)
are carried out concurrently — see [?] for a formal statement and proof. In
proving the composition theorem it is used essentially that the environment and
the adversary can communicate at any point in an execution. The price for this
strong security notion, which is called universal composability in [?], is that
rewinding cannot be used in the simulation.

The Commitment Functionality We now specify the task that we want to
implement as an ideal functionality. We look at a slightly different version of the
commitment functionality than the one in [?]. The functionality in [?] is only for
committing to one bit. Here we generalize. The domain of our commitments will
be the domain of the special mixed commitment used in the implementation.
Therefore the ideal functionality must specify the domain by initially giving a
system key N . For technical reasons, in addition, the X-trapdoor of N is revealed
to the the ideal model adversary, i.e., the simulator. This is no problem in the
ideal model since here the X-trapdoor cannot be used to find committed values
– the ideal functionality stores committed values internally and reveals nothing
before opening time. The simulator, however, needs the X-trapdoor in order
to do the simulation of our implementation. The implementation, on the other
hand, will of course keep the X-trapdoor of N hidden from the real-life adversary.
The ideal functionality for homomorphic commitments is named FHCOM and is
as follows.

0. Generate a uniformly random system key N along with the X-trapdoor tN .
Send N to all parties and send (N, tN) to the adversary.

1. Upon receiving (commit, sid, cid, Pi, Pj ,m) from P̃i, where m is in the do-
main of system key N , record (cid, Pi, Pj ,m) and send the message

(receipt, sid, cid, Pi, Pj) to P̃j and the adversary. Ignore subsequent
(commit, sid, cid, . . .) messages. The values sid and cid are a session id and
a commitment id.

2. Upon receiving the message (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida) from

P̃i, where (cid1, Pi, Pj ,m1), . . . , (cida, Pi, Pj ,ma) have been recorded, R is
an a-ary relation with a non-erasure Σ-protocol, and (m1,m2, . . . ,ma) ∈ R,
send the message (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida) to P̃j and the ad-
versary.

3. Upon receiving a message (open, sid, cid, Pi, Pj) from P̃i, where (cid, Pi,

Pj ,m) has been recorded, send the message (open, sid, cid, Pi, Pj ,m) to P̃j
and the adversary.

It should be noted that a version of the functionality where N and tN are not
specified by the ideal functionality could be used. We could then let the domain
of the commitments be a domain contained in (or easy to encode in) the domain
of all the system keys.

The Common Reference String Model As mentioned in the introduction
we cannot hope to construct two-party UCC in the plain real-life model. We

594 I. Damg̊ard and J.B. Nielsen

need a that a common reference string (CRS) with a prescribed distribution
is available to the players. It is straightforward to model a CRS as an ideal
functionality FCRS, see e.g. [?].

4 UCC with Constant Expansion Factor

Given a special mixed commitment scheme com we construct the following pro-
tocol UCCcom.

The CRS The CRS is (N,K1, . . . ,Kn), where N is a random system key and
K1, . . . ,Kn are n random E-keys for the system key N , K i for Pi.

Committing

C.1 On input (commit, sid, cid, Pi, Pj ,m) party Pi generates a random com-
mitment key K1 for system key N and commits to it as c1 =
commitKi

(K1, r1), and sends (com1, sid, cid, c1) to Pj .
2

R.1 Pj replies with (com2, sid, cid,K2) for random key K2.

C.2 Pi computes K = K1 + K2 and c2 = commitK(m, r2) for random
r2, and records (sid, cid, Pj ,K,m, r2) and sends the message
(com3, sid, cid,K1, r1, c2) to Pj .

R.2 Pj checks that c1 = commitKi
(K1, r1), and if so computes K = K1+K2,

records (sid, cid, Pj ,K, c2), and outputs (receipt, sid, cid, Pi, Pj).

Opening

C.3 On input (open, sid, cid, Pi, Pj), Pi sends (open, sid, cid,m, r2) to Pj .

R.3 Pj checks that c2 = commitK(m, r2), and if so outputs (open, sid, cid, Pi,
Pj ,m).

Proving Relation

C.4 On input (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida), where
(sid, cid1, Pj ,K1,m1, r1), . . ., (sid, cida, Pj ,Ka,ma, ra) are recorded com-
mitments, compute the first message, a, of the Σ-protocol from the
recorded witnesses and compute c3 = commitKi

(a, r3) for random r3
and send (prv1, sid, cid,R, cid1, . . . , cida, c3) to Pj .

R.4 Pj generates a random challenge e and sends (prv2, sid, cid, Pj , e) to Pi.

C.5 Pi computes the answer z and sends (prv3, sid, cid, a, r3, z) to Pj .

R.5 Pj checks that c3 = commitKi
(a, r3) and that (a, e, z) is an accepting

conversation. If so Pj outputs (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida).

Theorem 2. If com is a special mixed commitment scheme, then the protocol
UCCcom securely realizes FHCOM in the CRS-hybrid model.

2 We assume that the key space is a subset of the message space. If this is not the
case the message space can be extended to a large enough Ml

N by committing to l
values in the original scheme.

Universally Composable Commitment Schemes with Constant Expansion 595

Proof. We construct a simulator S running a real-life adversary A and simulates
to it a real-life execution consistent with the values input to and output from the
ideal functionality in ideal-world in which S is running. The main requirements
is that S given |m| can simulate a commitment to m in such a way that it can
later open the commitment to any value of m; That S can extract from the
commitments given by A the value committed to; And that S does not rewind
A as this is not possible in the model from [?].

The simulator S sets up the CRS s.t. the keys K i are E-keys for which S
knows the E-trapdoor, and such that the X-trapdoor is known too. When S is
simulating a honest party acting as the committing party it use the E-trapdoor
to open c1 to K1 = K − K2, where K is generated as a random E-key with
known E-trapdoor. Then S generates c2 as an equivocable commitment, which
it can later open to the actual committed value once it becomes known. When
S is simulating a honest party acting as the receiver in a commitment it simply
follows the protocol. Since no trapdoors are known to the adversary, the resulting
key K will be random and in particular it will be an X-key except with negligible
probability since all but a negligible fraction of the keys are X-keys. So, since
S knows the X-trapdoor, it can compute from the c2 sent by the adversary the
value m committed to except with negligible probability.

For the proofs of relations, when A is giving a proof, S simply follows the pro-
tocol. The proofs given by honest Pi are simulated by S. Here the non-rewinding
simulation technique from [?] applies. If the party Pi is later corrupted, the mes-
sages which should have been committed to are learned. Using the E-trapdoor
the simulator then opens the commitments in the relation appropriately. Then
given the messages and the random bits (the witnesses of the proof), the state
construction property of the proof allows to construct a consistent internal state
to show to the adversary.

The main technical problem in proving this simulation indistinguishable from
the real-life execution is that the X-trapdoor is used by the simulator, so we
cannot do reductions to the computational binding of the mixed commitment
scheme. We deal with this by defining a hybrid distribution that is generated by
the following experiment: Run the simulation except do not use the X-trapdoor.
Each time the adversary makes a commitment instead simply use the message
0 as input to the ideal functionality. When the adversary then opens the com-
mitment to m, simply change the ideal-world communication to make it look as
if m was the committed value. Up to the time of opening, the entire execution
seen from the the environment and A is independent of whether 0 or m was
given to the ideal functionality, and hence this hybrid is distributed exactly as
the simulation. It is therefore enough to prove this hybrid indistinguishable from
the real-life execution, which is possible using standard techniques. ut

Perfect Hiding and Perfect Binding The scheme described above has nei-
ther perfect binding nor perfect hiding. Here we construct a version of the com-
mitment scheme with both perfect hiding and perfect binding. The individual
commitments are obviously not simultaneously perfect hiding and perfect bind-
ing, but it can be chosen at the time of commitment whether a commitment

596 I. Damg̊ard and J.B. Nielsen

should be perfect binding or perfect hiding and proofs of relations can include
both types of commitments. We sketch the scheme and the proof of its security.
The details are left to the reader.

In the extended scheme we add to the CRS a random E-keyKE and a random
X-key KX (both for system key N). Then to do a perfect binding commitment
to m the committer will in Step C.2 compute c2 = commitK(m, r2) as before,
but will in addition compute c3 = commitKX

(m, r3). To open the commitment
the committer will then have to send both a correct opening (m, r2) of c2 and a
correct opening (m, r3) of c3. This is perfect binding as the X-key commitment
is perfect binding.

To do a perfect hiding commitment the committer computes a uniformly
random message m and commits with c2 = commitK(m + m, r2) and c3 =
commitKE

(m, r3). To open tom the committer must then send a correct opening
(m2, r2) of c2 and a correct opening (m3, r3) of c3 for which m2 = m3+m. This
is perfect hiding because c3 hides m perfectly and m+m thus hides m perfectly.

To do the simulation simply let the simulator make the excusable mistake of
letting KE be a random X-key and letting KX be a random E-key. This mistake
will allow to simulate and cannot be detected by the fact that E-keys and X-
keys are indistinguishable. For perfect binding commitments both K and KX

will then be E-keys when the simulator does a commitment, which allows to
fake. When the adversary does a commitment K will (except with negligible) be
an X-key and the simulator can extract m from commitK(m). For perfect hiding
commitments both K and KE will (except with negligible probability) be X-
keys when the adversary does a commitment, which allows to extract. When
the simulator commits, K will be an E-key, which allows to fake an opening by
faking commitK(m).

For perfect binding commitments the proofs of relations can be used directly
for the modified commitments by doing the proof on the commitK(m) values.
For perfect hiding commitments there is no general transformation that will
carry proofs of relations over to the modified system. If however there is a proof
of additive relation, then one can publish commitK(m) and prove that the sum
of the values committed to by commitK(m) and commitKE

(m) is committed to
by commitK(m +m), and then use the commitment commitK(m) when doing
the proofs of relations.

5 Efficient Universally Composable Zero-Knowledge

Proofs

In [?] Canetti and Fischlin showed how universally composable commitments can
be used to construct simple zero-knowledge (ZK) protocols which are universally
composable. This is a strong security property, which implies concurrent and
non-malleable ZK proof of knowledge.

The functionality FRZK for universally composable zero-knowledge (for binary
relation R) is as follows.

Universally Composable Commitment Schemes with Constant Expansion 597

1. Wait to receive a value (verifier, id, Pi, Pj , x) from some party Pi. Once
such a value is received, send (verifier, id, Pi, Pj , x) to S, and ignore all
subsequent (verifier, . . .) values.

2. Upon receipt of a value (prover, id, Pj , Pi, x
′, w) from Pj , let v = 1 if x = x′

and R(x,w) holds, and v = 0 otherwise. Send (id, v) to Pi and S, and halt.

Exploiting the Multi-Bit Commitment Property In [?] a protocol for
Hamiltonian-Cycle (HC) is given and proven to securely realize FHC

ZK . The pro-
tocol is of a common cut-and-choose form. It proceeds in t rounds. In each round
the prover commits to l bits m ∈ {0, 1}l. Then the verifier sends a bit b as chal-
lenge. If b = 0 then the prover opens all commitments and if b = 1 the prover
opens some subset of the challenges. Say that the subset is given by S ∈ {0, 1}l,
where Si = 1 if commitment number i should be revealed. Then if b = 0 the
prover should see m and if b = 1 the prover should see (S,m ∧ S). The verifier
has two predicates V0 and V1 for verifying the reply from the prover. If b = 0
it verifies that V0(m) = 1 and if b = 1 it verifies that V1(S,m ∧ S) = 1. The
protocol is such that seeing m or (S,m∧S) reveals no knowledge about the wit-
ness (Hamiltonian cycle), but if V0(m) = 1 and V1(S,m ∧ S) = 1, then one can
compute a witness from m and S. The verifier accepts if it can verify the reply
in each of the t rounds. Obviously S should be kept secret when b = 0 — other-
wise m and S would reveal the witness. This makes it hard to use the multi-bit
commitments to commit to the l bits in such a way that just the subset S can
be opened later. However, in [?] Kilian, Micali, and Ostrovski presented a gen-
eral technique for transforming a multi-bit commitment scheme into a multi-bit
commitment scheme with the property that individual bits can be open indepen-
dently. Unfortunately their technique adds one round of interaction. However,
we do not need the full generality of their result. This allows us to modify the
technique to avoid the extra round of interaction.

We commit by generating a uniformly random pad m1 ∈ {0, 1}
l and commit-

ting to the four values S, m1, m2 = m⊕m1, and m3 = m1∧S individually using
multi-bit commitments. The verifier then challenges uniformly with b ∈ {0, 1, 2}.
If b = 0, then reveal m1 and m2 and verify that V0(m1 ⊕m2) = 1. If b = 1 then
reveal S, m2, m3 and verify that V1(S,m2 ∧ S ⊕m3) = 1. Finally, if b = 2, then
reveal S, m1, and m3 and verify that m3 = m1 ∧ S. This is still secure as at
no time are S and m revealed at the same time. For the soundness, note that if
V0(m1⊕m2) = 1, V1(S,m2∧S⊕m3) = 1, andm3 = m1∧S, then form = m1⊕m2

we have that V0(m) = 1 and V1(S,m ∧ S) = 1 and can thus compute a witness.
If we increase the number of rounds by a factor log3/2(2) < 1.71 we will get
cheating probability no larger than for t rounds with cheating probability 1/2 in
each round. The number of bits committed to in each round is 4l for a total of
less than 6.84tl bits. However, now the bits can be committed to k bits at a time
using the multi-bit commitment scheme. Therefore, if we implement the modi-
fied protocol using our commitment scheme, we get communication complexity
O((l+k)t). This follows because we can commit to O(l) bits by sending O(l+k)
bits. This is an improvement by a factor θ(lk

l+k) = θ(min(l, k)) over [?].

598 I. Damg̊ard and J.B. Nielsen

Exploiting Efficient Proofs of Relations We show how we can use the
efficient proofs of relations on committed values to reduce the communication
complexity and the round complexity in a different way. This can simply be
done by the parties agreeing in a Boolean circuit for the relation. Then the
prover commits to the witness and the evaluation of the circuit on the witness
and instance bit by bit and proves for each gate in the circuit that the committed
values are consistent with the gate. The commitment to the output gate is opened
and the prover then takes the revealed value as its output.

This protocol will have no messages of its own. All interaction is done through
the ideal commitment functionality FHCOM. Let l be the size of the gate used.
This protocol requires O(l) commitments to single bits, each of which require
O(k) bits of communication. Then we need to do O(l) proofs of relations, each
of which require O(k) bits of communication. This amounts to O(lk) bits of
communication, and is an improvement over the O(lkt) bits when using the
scheme of [?] by a factor O(t).

References

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42th Annual Symposium on Foundations of Computer

Science. IEEE, 2001.
[CD98] Ronald Cramer and Ivan Damgaard. Zero-knowledge proofs for finite field

arithmetic, or: Can zero-knowledge be for free. In Hugo Krawczyk, editor,
Advances in Cryptology - Crypto ’98, pages 424–441, Berlin, 1998. Springer-
Verlag. Lecture Notes in Computer Science Volume 1462.

[CDS94] R. Cramer, I. B. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Yvo Desmedt, editor,
Advances in Cryptology - Crypto ’94, pages 174–187, Berlin, 1994. Springer-
Verlag. Lecture Notes in Computer Science Volume 839.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
J. Kilian, editor, Advances in Cryptology - Crypto 2001, pages 19–40, Berlin,
2001. Springer-Verlag. Lecture Notes in Computer Science Volume 2139.

[Dam00] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string
model. In Bart Preneel, editor, Advances in Cryptology - EuroCrypt 2000,
pages 418–430, Berlin, 2000. Springer-Verlag. Lecture Notes in Computer
Science Volume 1807.

[KMO89] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-
knowledge proofs (extended abstract). In 30th Annual Symposium on Foun-

dations of Computer Science, pages 474–479, Research Triangle Park, North
Carolina, 30 October–1 November 1989. IEEE.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem
as secure as factoring. In K. Nyberg, editor, Advances in Cryptology - Eu-

roCrypt ’98, pages 308–318, Berlin, 1998. Springer-Verlag. Lecture Notes in
Computer Science Volume 1403.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residue
classes. In Jacques Stern, editor, Advances in Cryptology - EuroCrypt ’99,
pages 223–238, Berlin, 1999. Springer-Verlag. Lecture Notes in Computer
Science Volume 1592.

