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Abstract. Preneel, Govaerts, and Vandewalle [?] considered the 64 most
basic ways to construct a hash function H: {0, 1}∗ → {0, 1}n from a
block cipher E: {0, 1}n × {0, 1}n → {0, 1}n. They regarded 12 of these
64 schemes as secure, though no proofs or formal claims were given. The
remaining 52 schemes were shown to be subject to various attacks. Here
we provide a formal and quantitative treatment of the 64 constructions
considered by PGV. We prove that, in a black-box model, the 12 schemes
that PGV singled out as secure really are secure: we give tight upper
and lower bounds on their collision resistance. Furthermore, by stepping
outside of the Merkle-Damg̊ard approach to analysis, we show that an
additional 8 of the 64 schemes are just as collision resistant (up to a
small constant) as the first group of schemes. Nonetheless, we are able to
differentiate among the 20 collision-resistant schemes by bounding their
security as one-way functions. We suggest that proving black-box bounds,
of the style given here, is a feasible and useful step for understanding the
security of any block-cipher-based hash-function construction.

1 Introduction

Background. The most popular collision-resistant hash-functions (eg., MD5
and SHA-1) iterate a compression function that is constructed from scratch
(i.e., one that doesn’t use any lower-level cryptographic primitive). But there is
another well-known approach, going back to Rabin [?], wherein one makes the
compression function out of a block cipher. This approach has been less widely
used, for a variety of reasons. These include export restrictions on block ciphers,
a preponderance of 64-bit block lengths, problems attributable to “weak keys”,
and the lack of popular block ciphers with per-byte speeds comparable to that
of MD5 or SHA-1. Still, the emergence of the AES has somewhat modified this
landscape, and now motivates renewed interest in finding good ways to turn a
block cipher into a cryptographic hash function. This paper casts some fresh
light on the topic.



322 J. Black, P. Rogaway, and T. Shrimpton

The PGV paper. We return to some old work by Preneel, Govaerts, and Van-
dewalle [?] that considered turning a block cipher E: {0, 1}n×{0, 1}n → {0, 1}n

into a hash function H: ({0, 1}n)∗ → {0, 1}n using a compression function
f : {0, 1}n×{0, 1}n → {0, 1}n derived from E. For v a fixed n-bit constant, PGV
considers all 64 compression functions f of the form f(hi−1,mi) = Ea(b)⊕ c
where a, b, c ∈ {hi−1, mi, hi−1 ⊕mi, v}. Then define the iterated hash of f as:

function H (m1 · · ·m`)
for i← 1 to ` do hi← f (hi−1,mi)
return h`

Here h0 is a fixed constant, say 0
n, and |mi| = n for each i ∈ [1..`]. Of the 64

such schemes, the authors of [?] regard 12 as secure. Another 13 schemes they
classify as backward-attackable, which means they are subject to an identified
(but not very severe) potential attack. The remaining 39 schemes are subject to
damaging attacks identified by [?] and others.

Some missing results. The authors of [?] focused on attacks, not proofs. All
the same, it seems to be a commonly held belief that it should be possible to
produce proofs for the schemes they regarded as secure. Indeed [?] goes so far as
to say that “For each of these schemes it is possible to write a ‘security proof’
based on a black box model of the encryption algorithm, as was done for the
Davies-Meyer scheme [by Winternitz [?]]”. This latter paper uses a black-box
model of a block cipher—a model dating back to Shannon [?]—to show that
the scheme we will later call H5 is secure in the sense of preimage-resistance.
Specifically, [?] shows that any algorithm (with E and E−1 oracles) that always
finds a preimage under H5 for a fixed value y ∈ {0, 1}

n will necessarily make at
least 2n−1 expected oracle queries.

The model introduced by Winternitz for analyzing block-cipher-based hash
functions was subsequently used by Merkle [?]. He gives black-box model ar-
guments for H1, and other functions, and considers questions of efficiency and
concrete security. The black-box model of a block cipher has also found use in
other contexts, such as [?, ?]. But, prior to the current work, we are unaware
of any careful analysis in the literature, under any formalized model, for the
collision-resistance of any block-cipher-based hash-function.

Summary of our results. This paper takes a more proof-centric look at the
schemes from PGV [?], providing both upper and lower bounds for each. Some
of our results are as expected, while others are not.

First we prove collision-resistance for the 12 schemes singled out by PGV as
secure (meaning those marked “X” or “FP” in [?]). We analyze these group-1

schemes, {H1, . . . , H12}, within the Merkle-Damg̊ard paradigm. That is, we show
that for each group-1 scheme Hı its compression function fı is already collision
resistant, and so Hı must be collision resistant as well.

PGV’s backward-attackable schemes (marked “B” in [?]) held more surprises.
We find that eight of these 13 schemes are secure, in the sense of collision resis-
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tance. In fact, these eight group-2 schemes, {H13, . . . , H20}, are just as collision-
resistant as the group-1 schemes.

Despite having essentially the same collision-resistance, the group-1 and
group-2 schemes can be distinguished based on their security as one-way func-
tions: we get a better bound on inversion-resistance for the group-1 schemes than
we get for the group-2 schemes. Matching attacks (up to a constant) demonstrate
that this difference is genuine and not an artifact of the security proof.

The remaining 44 = 64 − 20 hash functions considered by PGV are com-
pletely insecure: for these group-3 schemes one can find a (guaranteed) colli-
sion with two or fewer queries. This includes five of PGV’s backward-attackable
schemes, where [?] had suggested a (less effective) meet-in-the-middle attack (see
Appendix A).

Other surprises emerged in the mechanics of carrying out our analyses. Unlike
the group-1 schemes, we found that the group-2 schemes could not be analyzed
within the Merkle-Damg̊ard paradigm; in particular, these schemes are collision
resistant even though their compression functions are not. We also found that,
for one set of schemes, the “obvious attack” on collision resistance needed some
subtle probabilistic reasoning to rigorously analyze.

The security of the 64 PGV schemes is summarized in Fig. 1 and Fig. 2,
which also serve to define the different hash functions Hı and their compression
functions fı. Fig. 3 gives a more readable description of f1, . . . , f20. A high-level
summary of our findings is given by the following chart. The model (and the
meaning of q) will be described momentarily.

PGV Category Our Category Collision Bound OWF Bound

Xor FP (12 schemes) group-1: H1..12 (12 schemes) Θ(q2/2n) Θ(q/2n)

group-2: H13..20 (8 schemes) Θ(q2/2n) Θ(q2/2n)
B (13 schemes)

group-3 (44 schemes) Θ(1) Θ(1)
F, P, or D (39 schemes)

Black-box model. Our model is the one dating to Shannon [?] and used for
works like [?, ?, ?]. Fix a key-length κ and a block length n. An adversary A is
given access to oracles E and E−1 where E is a random block cipher E: {0, 1}κ×
{0, 1}n → {0, 1}n and E−1 is its inverse. That is, each key k ∈ {0, 1}κ names
a randomly-selected permutation Ek = E(k, ·) on {0, 1}n, and the adversary is
given oracles E and E−1. The latter, on input (k, y), returns the point x such
that Ek(x) = y.

For a hash functionH that depends on E, the adversary’s job in attacking the
collision resistance ofH is to find distinctM,M ′ such thatH(M) = H(M ′). One
measures the optimal adversary’s chance of doing this as a function of the number
of E or E−1 queries it makes. Similarly, the adversary’s job in inverting H is to
find an inverse under H for a random range point Y ∈ {0, 1}n. (See Section 2 for
a justification of this definition.) One measures the optimal adversary’s chance
of doing this as a function of the total number of E or E−1 queries it makes.
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ı  hi = CR low-bnd CR up-bnd IR low-bnd IR up-bnd

1 Emi
(mi)⊕ v 1 1 a

2 Ehi−1
(mi)⊕ v 1 1 b

13 3 Ewi
(mi)⊕ v .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

4 Ev(mi)⊕ v 1 1 a

5 Emi
(mi)⊕mi 1 1 a

1 6 Ehi−1
(mi)⊕mi .039(q−1)(q−3)/2n q(q+1)/2n 0.4q/2n 2q/2n d

9 7 Ewi
(mi)⊕mi .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

8 Ev(mi)⊕mi 1 1 a

9 Emi
(mi)⊕ hi−1 1 1 f

10 Ehi−1
(mi)⊕ hi−1 1 1 b

11 11 Ewi
(mi)⊕ hi−1 .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

12 Ev(mi)⊕ hi−1 1 1 b

13 Emi
(mi)⊕ wi 1 1 f

3 14 Ehi−1
(mi)⊕ wi .039(q−1)(q−3)/2n q(q+1)/2n 0.4q/2n 2q/2n d

14 15 Ewi
(mi)⊕ wi .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

16 Ev(mi)⊕ wi 1 1 f

15 17 Emi
(hi−1)⊕ v .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

18 Ehi−1
(hi−1)⊕ v 1 1 a

16 19 Ewi
(hi−1)⊕ v .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

20 Ev(hi−1)⊕ v 1 1 a

17 21 Emi
(hi−1)⊕mi .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

22 Ehi−1
(hi−1)⊕mi 1 1 b

12 23 Ewi
(hi−1)⊕mi .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

24 Ev(hi−1)⊕mi 1 1 b

5 25 Emi
(hi−1)⊕ hi−1 .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

26 Ehi−1
(hi−1)⊕ hi−1 1 1 a

10 27 Ewi
(hi−1)⊕ hi−1 .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

28 Ev(hi−1)⊕ hi−1 1 1 a

7 29 Emi
(hi−1)⊕ wi .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

30 Ehi−1
(hi−1)⊕ wi 1 1 b

18 31 Ewi
(hi−1)⊕ wi .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

32 Ev(hi−1)⊕ wi 1 1 b

Fig. 1. Summary of results. Column 1 is our number ı for the function (we write fı for
the compression function andHı for its induced hash function). Column 2 is the number
from [?] (we write f̂ and Ĥ). Column 3 defines fı(hi−1,mi) and f̂(hi−1,mi). We
write wi formi⊕hi−1. Columns 4–7 give our collision-resistance and inversion-resistance
bounds. Column 8 comments on collision-finding attacks: (a) H(M) is determined by
the last block only; two E queries; (b) Attack uses two E queries and one E−1 query;
(c) Attack uses q/2 E queries and q/2 E−1 queries; (d) Attack given by Theorem 3;
(e) Attack given by Theorem 4; (f) H(M) independent of block order; two E queries;
(g) Attack uses (at most) two E queries. We do not explore inversion resistance for
schemes that are trivially breakable in the sense of collision resistance.
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ı  hi = CR low-bnd CR up-bnd IR low-bnd IR up-bnd

19 33 Emi
(wi)⊕ v .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

34 Ehi−1
(wi)⊕ v 1 1 b

35 Ewi
(wi)⊕ v 1 1 g

36 Ev(wi)⊕ v 1 1 b

20 37 Emi
(wi)⊕mi .3q(q−1)/2n 3q(q+1)/2n 0.15q2/2n 9(q+3)2/2n c

4 38 Ehi−1
(wi)⊕mi .039(q−1)(q−3)/2n q(q+1)/2n 0.4q/2n 2q/2n d

39 Ewi
(wi)⊕mi 1 1 g

40 Ev(wi)⊕mi 1 1 g

8 41 Emi
(wi)⊕ hi−1 .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

42 Ehi−1
(wi)⊕ hi−1 1 1 b

43 Ewi
(wi)⊕ hi−1 1 1 g

44 Ev(wi)⊕ hi−1 1 1 b

6 45 Emi
(wi)⊕ wi .3q(q−1)/2n q(q+1)/2n 0.6q/2n 2q/2n e

2 46 Ehi−1
(wi)⊕ wi .039(q−1)(q−3)/2n q(q+1)/2n 0.4q/2n 2q/2n d

47 Ewi
(wi)⊕ wi 1 1 g

48 Ev(wi)⊕ wi 1 1 g

49 Emi
(v)⊕ v 1 1 a

50 Ehi−1
(v)⊕ v 1 1 a

51 Ewi
(v)⊕ v 1 1 g

52 Ev(v)⊕ v 1 1 a

53 Emi
(v)⊕mi 1 1 a

54 Ehi−1
(v)⊕mi 1 1 b

55 Ewi
(v)⊕mi 1 1 g

56 Ev(v)⊕mi 1 1 a

57 Emi
(v)⊕ hi−1 1 1 f

58 Ehi−1
(v)⊕ hi−1 1 1 a

59 Ewi
(v)⊕ hi−1 1 1 g

60 Ev(v)⊕ hi−1 1 1 a

61 Emi
(v)⊕ wi 1 1 f

62 Ehi−1
(v)⊕ wi 1 1 b

63 Ewi
(v)⊕ wi 1 1 g

64 Ev(v)⊕ wi 1 1 b

Fig. 2. Summary of results, continued. See the caption of Fig. 1 for an explanation of
the entries in this table.
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Fig. 3. The compression functions f1, . . . , f20 for the 20 collision-resistant hash func-
tions H1, . . . , H20. A hatch marks the location for the key.
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Discussion. As with [?], we do not concern ourselves with MD-strengthening
[?, ?], wherein strings are appropriately padded so that any M ∈ {0, 1}∗ may
be hashed. Simple results establish the security of the MD-strengthened hash
function H∗ one gets from a secure multiple-of-block-length hash-function H.
All of our attacks work just as well in the presence of MD-strengthening.

It is important not to read too much or too little into black-box results.
On the one hand, attacks on block-cipher-based hash-functions have usually
treated the block cipher as a black box. Such attacks are doomed when one has
strong results within the black-box model. On the other hand, the only structural
aspect of a block cipher captured by the model is its invertibility, so one must
be skeptical about what a black-box-model result suggests when using a block
cipher with significant structural properties, such as weak keys. With a block
cipher like AES, one hopes for better. Overall, we see the black-box model as an
appropriate first step in understanding the security of block-cipher-based hash-
functions. Of course it would be nice to make due with standard assumptions,
such as the block cipher being a pseudorandom function, but that assumption
is insufficient for our purposes, and no sufficient assumption has been proposed.

Future directions. Though we spoke of AES as rekindling interest in block-
cipher-based hash-function designs, we do not address what we regard as the
most interesting practical problem in that vein: namely, how best to use an
n-bit block cipher to make a hash function with output length larger than n
bits. (Many people see n = 128 bits as an inadequate output length for a hash
function, particularly in view of [?].) The current work does not answer this
question, but it does lay the groundwork for getting there.

2 Definitions

Basic notions. Let κ, n ≥ 1 be numbers. A block cipher is a map E: {0, 1}κ×
{0, 1}n → {0, 1}n where, for each k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) is
a permutation on {0, 1}n. If E is a block cipher then E−1 is its inverse, where
E−1
k (y) is the string x such that Ek(x) = y. Let Bloc(κ, n) be the set of all block
ciphers E: {0, 1}κ × {0, 1}n → {0, 1}n.

A (block-cipher-based) hash function is a map H: Bloc(κ, n)×D → R where
κ, n, c ≥ 1, D ⊆ {0, 1}∗, and R = {0, 1}c. The function H must be given by a
program that, given M , computes HE(M) = H(E,M) using an E-oracle. Hash
function f : Bloc(κ, n)×D → R is a compression function if D = {0, 1}a×{0, 1}b

for some a, b ≥ 1 where a + b ≥ c. Fix h0 ∈ {0, 1}
a. The iterated hash of

compression function f : Bloc(κ, n) × ({0, 1}a × {0, 1}b) → {0, 1}a is the hash
function H: Bloc(κ, n) × ({0, 1}b)∗ → {0, 1}a defined by HE(m1 · · ·m`) = h`
where hi = fE(hi−1,mi). Set H

E(ε) = h0. If the program for f uses a single
query E(k, x) to compute fE(m,h) then f (and its iterated hash H) is rate-1.
We often omit the superscript E to f and H.

We write x
$
← S for the experiment of choosing a random element from the

finite set S and calling it x. An adversary is an algorithm with access to one or
more oracles. We write these as superscripts.
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Collision resistance. To quantify the collision resistance of a block-cipher-
based hash function H we instantiate the block cipher by a randomly chosen E ∈
Bloc(κ, n). An adversary A is given oracles for E(·, ·) and E−1(·, ·) and wants to
find a collision for HE—that is,M,M ′ whereM 6=M ′ but HE(M) = HE(M ′).
We look at the number of queries that the adversary makes and compare this
with the probability of finding a collision.

Definition 1 (Collision resistance of a hash function). Let H be a block-
cipher-based hash function, H: Bloc(κ, n)×D → R, and let A be an adversary.
Then the advantage of A in finding collisions in H is the real number

Advcoll
H (A) = Pr

[
E

$
← Bloc(κ, n); (M,M ′)

$
←AE,E−1

:

M 6=M ′ ∧ HE(M) = HE(M ′)
]

♦

For q ≥ 1 we write Advcoll
H (q) = maxA{Adv

coll
H (A)} where the maximum is

taken over all adversaries that ask at most q oracle queries (ie, E-queries + E−1

queries). Other advantage functions are silently extended in the same way.
We also define the advantage of an adversary in finding collisions in a com-

pression function f : Bloc(κ, n) × {0, 1}a × {0, 1}b → {0, 1}c. Naturally (h,m)
and (h′,m′) collide under f if they are distinct and fE(h,m) = fE(h′,m′), but
we also give credit for finding an (h,m) such that fE(h,m) = h0, for a fixed
h0 ∈ {0, 1}

c. If one treats the hash of the empty string as the constant h0 then
fE(h,m) = h0 amounts to having found a collision between (h,m) and the
empty string.

Definition 2 (Collision resistance of a compression function). Let f be
a block-cipher-based compression function, f : Bloc(κ, n) × {0, 1}a × {0, 1}b →
{0, 1}c. Fix a constant h0 ∈ {0, 1}

c and an adversary A. Then the advantage
of A in finding collisions in f is the real number

Advcomp
f (A) = Pr

[
E

$
← Bloc(κ, n); ((h,m), (h′,m′))

$
←AE,E−1

:
(
(h,m) 6= (h′,m′) ∧ fE(h,m) = fE(h′,m′)

)
∨ fE(h,m) = h0

]
♦

Inversion resistance. Though we focus on collision resistance, we are also
interested in the difficulty of inverting hash functions. We use the following
measure for the difficulty of inverting a hash function at a random point.

Definition 3 (Inverting random points). Let H be a block-cipher-based
hash function, H: Bloc(κ, n) × D → R, and let A be an adversary. Then the
advantage of A in inverting H is the real number

Advinv
H (A) = Pr

[
E

$
← Bloc(κ, n); σ

$
←R;M ←AE,E−1

(σ) : HE(M) = σ
]
♦

The PGV hash functions. Fig. 1 and Fig. 2 serve to define fı[n]: Bloc(κ, n)×

{0, 1}n × {0, 1}n → {0, 1}n and f̂[n]: Bloc(κ, n)× ({0, 1}
n × {0, 1}n)→ {0, 1}n
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for ı ∈ [1..20] and  ∈ [1..64]. These compression functions induce hash functions
Hı[n] and Ĥ[n]. Usually we omit writing the [n].

Discussion. The more customary formalization for a one-way function speaks
to the difficulty of finding a preimage for the image of a random domain point
(as opposed to finding a preimage of a random range point). But a random-
domain-point definition becomes awkward when considering a function H with
an infinite domain: in such a case one would normally have to partition the
domain into finite sets and insist that H be one-way on each of them. For each
of the functions H1, . . . , H20, the value H

E
ı (M) is uniform or almost uniform in

{0, 1}n when M is selected uniformly in ({0, 1}n)m and E is selected uniformly
in Bloc(n, n). Thus there is no essential difference between the two notions in
these cases. This observation justifies defining inversion resistance in the manner
that we have. See Appendix B.

Definition 3 might be understood as giving the technical meaning of preimage

resistance. However, a stronger notion of preimage resistance also makes sense,
where the range value σ is a fixed point, not a random one, and one maximizes
over all such points. Similarly, the usual, random-domain-point notion for a one-
way function (from the prior paragraph) might be understood as a technical
meaning of 2nd preimage resistance, but a stronger notion makes sense, where
the domain pointM is a fixed string, not a random one, and one must maximize
over all domain points of a given length. A systematic exploration of different
notions of inversion resistance is beyond the scope of this paper.

Conventions. For the remainder of this paper we assume the following signifi-
cant conventions. First, an adversary does not ask any oracle query in which the
response is already known; namely, if A asks a query Ek(x) and this returns y,
then A does not ask a subsequent query of Ek(x) or E

−1
k (y); and if A asks

E−1
k (y) and this returns x, then A does not ask a subsequent query of E−1

k (y) or
Ek(x). Second, when a (collision-finding) adversary A for H outputsM andM ′,
adversary A has already computed HE(M) and HE(M ′), in the sense that A
has made the necessary E or E−1 queries to compute HE(M) and HE(M ′).
Similarly, we assume that a (collision-finding) adversary A for the compression
function f computes fE(h,m) and fE(h′,m′) prior to outputting (h,m) and
(h′,m′). Similarly, when an (inverting adversary) A for H outputs a messageM ,
we assume that A has already computed HE(M), in the sense that A has made
the necessary E or E−1 queries to compute this value. These assumption are all
without loss of generality, in that an adversary A not obeying these conventions
can easily be modified to given an adversary A′ having similar computational
complexity that obeys these conventions and has the same advantage as A.

3 Collision Resistance of the Group-1 Schemes

The group-1 hash-functions H1, . . . , H12 can all be analyzed using the Merkle-
Damg̊ard paradigm. Our security bound is identical for all of these schemes.



330 J. Black, P. Rogaway, and T. Shrimpton

Theorem 1 (Collision resistance of the group-1 hash functions). Fix
n ≥ 1 and ı ∈ [1..12]. Then Advcoll

Hı[n](q) ≤ q(q + 1)/2n for any q ≥ 1. 3

The proof combines a lemma showing the collision-resistance of f1, . . . , f12 with
the classical result, stated for the black-box model, showing that a hash function
is collision resistant if its compression function is.

Lemma 1 (Merkle-Damg̊ard [?, ?] in the black-box model). Let f be a
compression function f : Bloc(n, n) × {0, 1}n × {0, 1}n → {0, 1}n and let H be
the iterated hash of f . Then Advcoll

H (q) ≤ Advcomp
f (q) for all q ≥ 1. 3

Lemma 2 (Collision resistance of the group-1 compression functions).
Fix n ≥ 1 and ı ∈ [1..12]. Then Advcomp

fı[n] (q) ≤ q(q + 1)/2n for any q ≥ 1. 3

Proof of Lemma 2: Fix a constant h0 ∈ {0, 1}
n. We focus on f = f1;

assume that case. Let A?,? be an adversary attacking the compression func-
tion f . Assume that A asks its oracles a total of q queries. We are interested

in A’s behavior when its left oracle is instantiated by E
$
← Bloc(n, n) and its

right oracle is instantiated by E−1. That experiment is identical, from A’s per-
spective, to the one defined in Fig. 4. Define ((x1, k1, y1), . . . , (xq, kq, yq), out)
by running SimulateOracles(A,n). If A is successful it means that A outputs
(k,m), (k′,m′) such that one of the following holds: (k,m) 6= (k′,m′) and
f(k,m) = f(k′,m′), or else f(k,m) = h0. By our definition of f this means
that Ek(m)⊕m = Ek′(m

′)⊕m′ for the first case, or Ek(m)⊕m = h0 for the
second. By our conventions at the end of Section 2, either there are distinct r, s ∈
[1..q] such that (xr, kr, yr) = (m, k,Ek(m)) and (xs, ks, ys) = (m′, k′, Ek′(m

′))
and Ekr

(mr)⊕mr = Eks
(ms)⊕ms or else there is an r ∈ [1..q] such that

(xr, kr, yr) = (m, k, h0) and Ekr
(xr) = h0. We show that this event is unlikely.

In the execution of SimulateOracles(A,n), for any i ∈ [1..q], let Ci be the
event that yi ⊕ xi = h0 or that there exists j ∈ [1..i − 1] such that either
yi ⊕ xi = yj ⊕ xj . In carrying out the simulation of A’s oracles, either yi or xi
was randomly selected from a set of at least size 2n−(i−1), so Pr[Ci] ≤ i/(2n−i).

Algorithm SimulateOracles(A,n)
Initially, i← 0 and Ek(x) = undefined for all (k, x) ∈ {0, 1}n × {0, 1}n

Run A?,?, answering oracle queries as follows:
When A asks a query (k, x) to its left oracle:

i← i+ 1; ki← k; xi← x; yi
$
← Range(Ek); Ek(x)← yi; return yi to A

When A asks a query (k, y) to its right oracle:

i← i+ 1; ki← k; yi← y; xi
$
←Domain(Ek); Ek(xi)← y; return xi to A

When A halts, outputting a string out:
return ((x1, k1, y1), ..., (xi, ki, yi), out)

Fig. 4. Simulating a block-cipher oracle. Domain(Ek) is the set of points x where Ek(x)
is no longer undefined and Domain(Ek) = {0, 1}

n − Range(Ek). Range(Ek) is the set
of points where Ek(x) is no longer undefined and Range(Ek) = {0, 1}

n − Range(Ek).
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By the contents of the previous paragraph, we thus have that Advcomp
f [n] (A) ≤

Pr[C1 ∨ . . . ∨ Cq] ≤
∑q

i=1 Pr[Ci] ≤
∑q

i=1
i

2n−(i−1) ≤
1

2n−2n−1

∑q
i=1 i if q ≤ 2

n−1.

Continuing, our expression is at most 1
2n−1

q(q+1)
2 = q(q+1)

2n . Since the above
inequality is vacuous when q > 2n−1, we may now drop the assumption that
q ≤ 2n−1. We conclude that Advcomp

f [n] (q) ≤ q(q + 1)/2n.

The above concludes the proof for the case of f1. Compression functions f2..12

are similar.

4 Collision Resistance of the Group-2 Schemes

We cannot use the Merkle-Damg̊ard paradigm for proving the security of H13..20

because their compression functions are not collision-resistant. Attacks for each
compression function are easy to find. For example, one can break f17(h,m) =
Em(h)⊕m as a compression function by choosing any two distinct m,m′ ∈
{0, 1}n, computing h = E−1

m (m) and h′ = E−1
m′ (m

′), and outputting (h,m) and
(h′,m′). All the same, hash functions H13..20 enjoy almost the same collision-
resistance upper bound as H1..12.

Theorem 2 (Collision resistance of the group-2 hash functions). Fix
n ≥ 1 and ı ∈ [13..20]. Then Advcoll

Hı[n](q) ≤ 3q(q + 1)/2
n for all q ≥ 1. 3

Proof of Theorem 2: Fix constants h0, v ∈ {0, 1}
n. We prove the theorem for

the case of H13, where f(h,m) = f13(h,m) = Eh⊕m(m)⊕ v.

We define a directed graph G = (VG, EG) with vertex set VG = {0, 1}
n×{0, 1}n×

{0, 1}n and an arc (x, k, y)→ (x′, k′, y′) in EG if and only if k
′ ⊕ x′ = y ⊕ v.

Let A?,? be an adversary attacking H13. We analyze the behavior of A when its

left oracle is instantiated by E
$
← Bloc(n, n) and its right oracle is instantiated

by E−1. Assume that A asks its oracles at most q total queries. We must show
that Advcoll

H13[n](A) ≤ 3q(q + 1)/2
n. Run the algorithm SimulateOracles(A,n).

As A executes with its (simulated) oracle, color the vertices of G as follows:

Initially, each vertex of G is uncolored.

When A asks an E-query (k, x) and this returns a value y, or when A asks
an E−1-query of (k, y) and this returns x, then: if x⊕ k = h0 then vertex
(x, k, y) gets colored red ; otherwise vertex (x, k, y) gets colored black.

According to the conventions at the end of Section 2, every query the adver-
sary asks results in exactly one vertex getting colored red or black, that vertex
formerly being uncolored.

We give a few additional definitions. A vertex of G is colored when it gets colored
red or black. A path P in G is colored if all of its vertices are colored. Vertices
(x, k, y) and (x′, k′, y′) are said to collide if y = y′. Distinct paths P and P ′ are
said to collide if all of their vertices are colored and they begin with red vertices
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ı hi = (x, k, y) → (x′, k′, y′) if (x, k, y) red if (x, k, y), (x′, k′, y′) collide if

13 Ewi
(mi)⊕ v y ⊕ v = x′ ⊕ k′ x⊕ k = h0 y = y′

14 Ewi
(mi)⊕ wi k ⊕ y = x′ ⊕ k′ x⊕ k = h0 k ⊕ y = k′ ⊕ y′

15 Emi
(hi−1)⊕ v y ⊕ v = x′ x = h0 y ⊕ v = x′

16 Ewi
(hi−1)⊕ v y ⊕ v = x′ x = h0 y ⊕ v = x′

17 Emi
(hi−1)⊕mi k ⊕ y = x

′ x = h0 k ⊕ y = k′ ⊕ y′

18 Ewi
(hi−1)⊕ wi k ⊕ y = x

′ x = h0 k ⊕ y = k′ ⊕ y′

19 Emi
(wi)⊕ v y ⊕ v = x′ ⊕ k′ x⊕ k = h0 y = y′

20 Emi
(wi)⊕mi k ⊕ y = x′ ⊕ k′ x⊕ k = h0 k ⊕ y = k′ ⊕ y′

Fig. 5. Rules for the existence of arcs, the coloring of a vertex red, and when vertices
are said to collide. These notions are used in the proof of Theorem 2.

and they end with colliding vertices. Let C be the event that, as a result of the
adversary’s queries, there are formed in G some two colliding paths.

Claim 1. Advcoll
H13[n](A) ≤ Pr[C] .

Claim 2. Pr[C] ≤ 3q(q + 1)/2n.

The theorem follows immediately from these two claims, whose proofs can be
found in the full paper [?]. Proofs for for H14..20 can be obtained by adapting
the proof for H13 using the rules from Fig. 5.

5 Matching Attacks on Collision Resistance

In this section we show that the security bounds given in Sections 3 and 4 are
tight: we devise and analyze attacks that achieve advantage close to the earlier
upper bounds. Our results are as follows.

Theorem 3 (Finding collisions in H1..4). Let ı ∈ [1..4] and n ≥ 1. Then
Advcoll

Hı[n](q) ≥ 0.039(q − 1)(q − 3)/2
n for any even q ∈ [1..2(n−1)/2]. 3

Let Perm(n) be the set of all permutations on {0, 1}n. Let Pq({0, 1}
n) denote the

set of all q-element subsets of {0, 1}n. The proof of Theorem 3 uses the following
technical lemma whose proof appears in the full paper [?].

Lemma 3. Fix n ≥ 1. Then

Pr
[
π

$
← Perm(n); Q

$
←Pq({0, 1}

n) : ∃x, x′ ∈ Q such that x 6= x′ and

π(x)⊕ x = π(x′)⊕ x′
]
≥ .039(q − 1)(q − 3)/2n

for any even q ∈ [1..2(n−1)/2]. 3
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Proof of Theorem 3: Consider the case HE = HE
1 and fix h0 ∈ {0, 1}

n. Let A

be an adversary with the oracles E,E−1. Let A select m1, . . . ,mq
$
←{0, 1}n and

compute yj = Eh0
(mj)⊕mj , j ∈ [1..q]. If A finds r, s ∈ [1..q] such that r < s

and yr = ys then it returns (mr,ms); otherwise it returns (m1,m1) (failure).
Let π = Eh0

. By definition π is a uniform element in Perm(n), so we can invoke
Lemma 3 to see that the probability that A succeeds to find a collision among
m1, . . . ,mq under H is at least .039(q − 1)(q − 3)/2n.

This attack and analysis extends to H2..4 by recognizing that for each scheme
and distinct one-block messages m and m′ we have HE(m) = HE(m′) if and
only if π(x)⊕ x = π(x′)⊕ x′ where π = Eh0

and x, x′ are properly defined. For
example, for HE

2 define x = h0 ⊕m and x′ = h0 ⊕m′.

Analysis of collision-finding attacks on H5..20 is considerably less technical than
for H1..4. The crucial difference is that in each of H5..20 the block cipher is
keyed in the first round by either the message m, or m⊕ h0, where h0 is a fixed
constant. Hence when A hashes q distinct one-block messages it always observes
q random values. See the full paper [?] for a proof of the following.

Theorem 4 (Finding collisions in H5..20). Let ı ∈ [5..20] and n ≥ 1. Then
Advcoll

Hı[n](q) ≥ 0.3q(q − 1)/2
n for any q ∈ [1..2n/2]. 3

6 Security of the Schemes as OWFs

From the perspective of collision resistance there is no reason to favor any par-
ticular scheme from H1..20. However, in this section we show that these schemes
can be separated based on their strength as one-way functions. In particular, for
an n-bit block cipher, an adversary attacking a group-1 hash function requires
nearly 2n oracle queries to do well at inverting a random range point, while an
adversary attacking a group-2 hash function needs roughly 2n/2 oracle queries
to do the same job.

We begin with the theorem establishing good inversion-resistance for the
group-1 schemes. The theorem is immediate from the two lemmas that follow it.
The first result is analogous to Lemma 1. The second result shows that f1..12 have
good inversion-resistance. All omitted proofs can be found in the full version of
the paper [?].

Theorem 5 (OWF security of the group-1 hash functions). Fix n ≥ 1
and ı ∈ [1..12]. Then Advinv

Hı[n](q) ≤ q/2n−1 for any q ≥ 1. 3

Lemma 4 (Merkle-Damg̊ard for inversion resistance). Let f be a com-
pression function f : Bloc(n, n) × {0, 1}n × {0, 1}n → {0, 1}n and let H be the
iterated hash of f . Then Advinv

H (q) ≤ Advinv
f (q) for all q ≥ 1. 3

Lemma 5 (Inversion resistance of the group-1 compression functions).
Fix n ≥ 1 and ı ∈ [1..12]. Then Advinv

fı[n](q) ≤ q/2n−1 for any q ≥ 1. 3
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Proof of Lemma 5: Fix a constant h0 ∈ {0, 1}
n. We focus on compression

function fE = fE1 ; assume that case. Let A be an adversary with oracles E,E
−1

and input σ. Assume that A asks its oracles q total queries.

Define ((x1, k1, y1), . . . , (xq, kq, yq), out) by running SimulateOracles(A,n). By
our conventions at the end of Section 2, if A outputs (h,m) such that
E(h,m)⊕m = σ then (m,h,E(h,m)) = (xi, ki, yi) for some i ∈ [1..q]. Let
Ci be the event that (xi, ki, yi) is such that xi ⊕ yi = σ. In carrying out
the simulation of A’s oracles, either xi or yi was randomly assigned from
a set of at least size 2n − (i − 1), so Pr[Ci] ≤ 1/(2n − (i − 1)). Thus

Pr[(h,m)←AE,E−1

(z) : E(h,m)⊕m = σ] ≤ Pr[C1 ∨ . . .∨Cq] ≤
∑q

i=1 Pr[Ci] ≤∑q
i=1

1
2n−(i−1) ≤

q
2n−2n−1 if q ≤ 2n−1. Continuing, our expression is at most

q
2n−1 . Since the above inequality is vacuous when q > 2n−1, we may now drop
the assumption that q ≤ 2n−1.

The above concludes the proof for the case of f1. Compression functions f2..12

are similar.

We cannot use Lemma 4 to prove the security of the group-2 schemes because
the associated compression functions are not inversion-resistant. An attack for
each is easy to find. For example, consider f13(h,m) = E(h⊕m,m)⊕ v. For
any point σ, the adversary fixes k = 0, computes m = E−1

0 (σ ⊕ v), and returns
(m,m), which is always a correct inverse to σ. Still, despite these compression
functions being invertible with a single oracle query, there is a reasonable security
bound for the group-2 schemes.

Theorem 6 (OWF security of the group-2 hash functions). Fix n ≥ 1
and ı ∈ [13..20]. Then Advinv

Hı[n](q) ≤ 9(q + 3)
2/2n for any q > 1. 3

The proof of Theorem 6 makes use of the following lemma, which guarantees
that, up to a constant, for messages of length greater than n-bits, the bounds
we have computed for collision resistance hold for inversion resistance as well.

Lemma 6 (Collision resistance ⇒ inversion resistance). Fix ı ∈ [1..20]
and n ≥ 1. Let H̃ = Hı[n] restricted to domain Bloc(n, n)×

⋃
i≥2{0, 1}

in. Then

Advinv
H̃
(q) ≤ 3Advcoll

H (q + 2) + q/2n−1 for any q ≥ 1. 3

Finally, we prove that the security bounds given in Theorems 5 and 6 are tight,
by describing adversaries that achieve advantage very close to the upper bounds.
The analysis falls into three groupings.

Theorem 7 (Attacking H1..4 as OWFs). Fix n ≥ 1 and ı ∈ [1..4]. Then
Advinv

Hı[n](q) ≥ 0.4q/2
n for any q ∈ [1..2n−2]. 3

Theorem 8 (Attacking H5..12 as OWFs). Fix n ≥ 1 and ı ∈ [5..12]. Then
Advinv

Hı[n](q) ≥ 0.6q/2
n for any q ∈ [1..2n − 1]. 3

Theorem 9 (Attacking H13..20 as OWFs). Fix n ≥ 1 and ı ∈ [13..20]. Then
Advinv

Hı[n](q) ≥ 0.15q
2/2n for any even q ∈ [2..2n/2]. 3

The proofs for the above three theorems appear in the full paper.



Black-Box Analysis of the Hash-Function Constructions from PGV 335

Acknowledgments

Thanks to the anonymous reviewers for helpful comments and references.
John Black received support from NSF CAREER award CCR-0133985. This

work was carried out while John was at the University of Nevada, Reno.
Phil Rogaway and his student Tom Shrimpton received support from NSF

grant CCR-0085961 and a gift from CISCO Systems. Many thanks for their kind
support.

A Fatal Attacks on Five of PGV’s B-Labeled Schemes

In [?] there are a total of 13 schemes labeled as “backward attackable.” We
have already shown that eight of these, H13..20, are collision resistant. But the
remaining five schemes are completely insecure; each can be broken with two
queries. Consider, for example, H = Ĥ39, constructed by iterating the compres-
sion function f = f̂39 defined by fE(hi−1,mi) = Emi ⊕ hi−1

(mi ⊕ hi−1)⊕mi.
For any c ∈ {0, 1}n the strings (h0 ⊕ c) ‖ (Ec(c)⊕ h0) hashes to h0, and so
it so it takes only two queries to produce a collision. Variants of this attack,
break the schemes Ĥ40, Ĥ43, Ĥ55 and Ĥ59 defined in Fig. 1. Namely, for Ĥ40,
messages (h0 ⊕ c) ‖ (Ev(c)⊕ h0) collide; for Ĥ43, (h0 ⊕ c) ‖ (Ec(c)⊕ h0 ⊕ c); for
Ĥ55, (h0 ⊕ c) ‖ (Ec(v)⊕ h0); for Ĥ59, (h0 ⊕ c) ‖ (Ec(v)⊕ h0 ⊕ c).

B Two Notions of Inversion Resistance

We defined Advinv
H by giving the adversary a random range point σ ∈ {0, 1}n

and asking the adversary to find an H-preimage for σ. The usual definition for a
one-way function has one choose a random domain point M , apply H, and ask
then ask the adversary to invert the result.

Definition 4 (Conventional definition of a OWF). Let H be a block-
cipher-based hash function, H: Bloc(κ, n) × D → R, and let ` be a number
such that {0, 1}` ⊆ D. Let A be an adversary. Then the advantage of A in in-
verting H on the distribution induced by applying H to a random `-bit string
is the real number

Advowf
H (A, `) = Pr

[
E

$
← Bloc(κ, n);M

$
← ({0, 1}n)`; σ←HE(M);

M ′←AE,E−1

(σ) : HE(M ′) = σ
]

♦

For q ≥ 0 a number, Advowf
H (q, `) is defined in the usual way, as the maximum

value of Advowf
H (A, `) over all adversaries A that ask at most q queries.

Though the Advowf and Advinv measures can, in general, be far apart, it is
natural to guess that they coincide for “reasonable” hash-functions like H1..20. In
particular, one might think that the random variable HE

ı (M) is uniformly dis-

tributed in {0, 1}n if M
$
←{0, 1}n` and E

$
← Bloc(n, n). Interestingly, this is not

true. For example, experiments show that when E
$
← Bloc(2, 2) andM

$
←{0, 1}4
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the string HE
1 (M) takes on the value 00 more than a quarter of the time (in

fact, 31.25% of the time) while each of the remaining three possible outputs (01,
10, 11) occur less than a quarter of the time (each occurs 22.916% of the time).
Still, for H1..20, the two notions are close enough that we have used Definition 3
as a surrogate for Definition 4. The result is as follows.

Lemma 7. Fix n ≥ 1 and ı ∈ [1..20]. Then for any q, ` ≥ 1,

∣∣∣Advinv
Hı[n](q)−Adv

owf
Hı[n](q, `)

∣∣∣ ≤ `/2n−1 ♦

The proof of Lemma 7 is found in [?].


