
On the Security of RSA Encryption in TLS

Jakob Jonsson and Burton S. Kaliski Jr.

RSA Laboratories, 20 Crosby Drive, Bedford, MA 01730, USA
{jjonsson, bkaliski}@rsasecurity.com

Abstract. We show that the security of the TLS handshake protocol
based on RSA can be related to the hardness of inverting RSA given
a certain “partial-RSA” decision oracle. The reduction takes place in
a security model with reasonable assumptions on the underlying TLS
pseudo-random function, thereby addressing concerns about its construc-
tion in terms of two hash functions. The result is extended to a wide class
of constructions that we denote tagged key-encapsulation mechanisms.

Keywords: key encapsulation, RSA encryption, TLS.

1 Introduction

One of the most popular methods for establishing secret information between two
parties with no prior shared secret is the handshake protocol used in the Secure
Sockets Layer (SSL) [15] and Transport Layer Security (TLS) [10] protocols
(which we will refer to jointly as TLS). These protocols support a variety of
algorithms (called “cipher suites”). In the suite of interest to this paper, the
handshake protocol is based on the RSA-PKCS-1v1 5 (abbreviated RSA-P1)
encryption scheme introduced in the PKCS #1 v1.5 [31] specification, which in
turn is based on the RSA trapdoor permutation [30].

Due to their widespread use, both the TLS handshake protocol and the un-
derlying encryption scheme RSA-P1 have been subject to a significant amount
of cryptanalysis. A number of weaknesses in RSA-P1 for general message en-
cryption have been found, including the results given in [3, 5, 6, 8]. These results
suggest that RSA-P1 must be equipped with certain countermeasures to provide
an adequate level of security.

Briefly, the common case of the TLS protocol we will analyze has the following
form. A server has a public key / private key pair. A client establishes a secret
s with the server through the following key agreement scheme (omitting certain
details):

1. The client and server select a new nonce ρ, to which they both contribute.
2. The client generates a pre-master secret r, encrypts r with the server’s public
key under RSA-P1 to obtain a ciphertext y, and sends y to the server. The
server decrypts y to recover r.

3. The client and the server both derive a master secret t from r.
4. The client and the server compute separate tags z and z′ from t and ρ,
exchange the tags, and verify them.

128 J. Jonsson and B.S. Kaliski Jr.

5. If the tags are correct, the client and the server both derive a shared secret
s from the master secret t.

Only the server has a public key, and hence only the server is authenticated in
this scheme. The scheme follows reasonable design principles, such as including a
nonce for freshness and a tag for assurance that the client knows the pre-master
secret [24]. However, we are not aware of any formal security proof relating the
difficulty of “breaking” this scheme to any underlying problem, e.g., RSA.

To facilitate a proof, we will model the interaction between the client and the
server as a tagged key-encapsulation mechanism (TKEM), which may be viewed
as an extension to key encapsulation mechanisms as defined in [28]. The client’s
steps are considered as an encryption operation that produces a ciphertext, a
tag, and a secret from the nonce. A decryption operation corresponding to the
server’s steps produces the same secret from the ciphertext, the tag, and the
nonce if the tag is correct. (We omit the tag computed by the server in this
model as it is not needed for the proof, and in any case is no more helpful to
an adversary than the one computed by the client.) The security of the key
agreement scheme is thus transformed to the indistinguishability of the TKEM
against a chosen-ciphertext attack.

Using this model, we show that the security of the TKEM underlying TLS
can be related via a reasonably tight reduction to the hardness of inverting RSA
with the assistance of a “partial-RSA decision oracle”. This oracle takes as input
an RSA ciphertext y and a bit string r of length 384 bits and checks whether r is
equal to the last 384 bits of the RSA decryption of y. While based on a stronger
assumption than the corresponding proofs for RSA-OAEP [2, 16], RSA-OAEP+
[27], RSA-KEM [32, 1, 28], RSA-REACT [23], and RSA-GEM [7], this is the first
security proof relating an RSA-P1-based application to the RSA problem.

We consider two TKEMs in this paper. The first TKEM is based on a single
pseudo-random function, which we model as a random oracle. However, TLS
actually uses the xor of two pseudo-random functions, each based on a different
hash function, to address the risk that one of the pseudo-random functions might
turn out to be weak. The second TKEM we consider follows this design, and we
model only one of the pseudo-random functions as a random oracle and assume
no specific properties of the other. As a result, we are able to show that the TLS
handshake is secure even if one of the hash functions turns out to be weak. This
addresses a concern [18] about the TLS pseudo-random function construction.

2 Basic Concepts

In Section 2.1, we provide basic concepts and definitions related to trapdoor
mappings; the special case RSA-P1, intended for use within the TKEM2 mecha-
nism introduced in Section 3.2, is defined in Section 2.2. In Section 2.3 we define
plaintext-checking oracles instrumental for the security reductions.

On the Security of RSA Encryption in TLS 129

Notation

A bit string is an ordered sequence of elements from B = {0, 1}. For n ≥ 0,
Bn = {0, 1}n denotes the set of bit strings of length n. An octet is an element
in B8. Let B∗ denote the set of all bit strings. Bit strings and octet strings
are identified with the integers they represent in base 2 and 28, respectively. Zn

denotes the set {0, . . . , n− 1}; Zn is the additive group of integers modulo n. To
denote that an element a is chosen uniformly at random from a finite set A, we

write a
R
← A.

2.1 Randomized Trapdoor Mappings

Here we give a brief introduction to randomized trapdoor mappings, generalizing
the concept of trapdoor permutations; a trapdoor mapping is invertible but not
necessarily deterministic. Let k be a security parameter. For each k, let Ek be
a finite family of pairs (E,D) with the property that E is a randomized and
reversible algorithm with inverse D. E takes as input an element r in a set
R = RE and returns an element y in a set Y = YE , possibly via randomness
generated within the algorithm; we will write y ← E(r). D is a deterministic
algorithm Y → R ∪ {φ} such that D(y) = r if y ← E(r) for some r ∈ R and
D(y) = φ otherwise. Each output y from E corresponds to at most one input r.
y is valid if D(y) 6= φ and invalid otherwise. We assume that the running time
of each of E and D is polynomial in k.

Let G be a probabilistic polynomial-time (PPT) algorithm that on input
1k (i.e., k uniformly random bits) outputs a pair (E,D) ∈ Ek. G is a trapdoor

mapping generator. An E-inverter I is an algorithm that on input (E, y) tries
to compute D(y) for a random y ∈ Y . I has success probability ε = ε(k) and
running time T = T (k) if

Pr
(

(E,D)← G(1k), r
R
← RE , y ← E(r) : I(E, y) = r

)

≥ ε

and the running time for I is at most T . In words, I should be able to compute
D(y) with probability ε within time T , where (E,D) is derived via the trapdoor
mapping generator and y is random. I solves the E problem.
Ek is a trapdoor mapping family with respect to (ε, T) if the E-problem is

(ε, T)-hard, meaning that there is no E-inverter with success probability ε within
running time T . The individual mapping E is referred to as a trapdoor mapping.
A trapdoor permutation is a deterministic trapdoor mapping E with YE = RE .

An RSA permutation f : ZN → ZN is defined in terms of an RSA public

key (N, e) as f(x) = xe mod N . N is the RSA modulus, a product of two secret
integer primes p and q, while e is an odd (typically small) integer such that
gcd(e, (p− 1)(q− 1)) = 1. RSA permutations are widely believed to be trapdoor
permutations. This means that it is presumably hard to compute f−1(y) on a
random input y ∈ ZN provided N is large enough and generated at random.
Yet, given secret information (e.g., the prime factors of N), the inverse f−1(y)
is easy to compute.

130 J. Jonsson and B.S. Kaliski Jr.

2.2 RSA-PKCS-1v1 5

Here we describe the specific trapdoor mapping RSA-P1 (RSA-PKCS-1v1 5)
introduced in PKCS #1 v1.5, which is based on the RSA permutation. For the
purposes of this paper, the input to the RSA-P1 encryption operation has a fixed
length; in PKCS #1 v1.5, the input may have a variable length.

Let lN be the octet length of the RSA modulus N . The encryption operation
takes as input an element r ∈ B8lr , where lr ≤ lN − 11; put kr = 8lr. (In TLS,
lr = 48 and kr = 384.) The trapdoor mapping RSA-P1 is defined as follows; 00
and 02 are octets given in hexadecimal notation. Note that P is an octet string
of length lN − lr − 3 ≥ 8 consisting of nonzero octets.

RSA-P1-Encrypt(r)

– P
R
←

(

B8 \ {00}
)lN−lr−3

;
– x← 00‖02‖P‖00‖r;
– y ← xe mod N ;
– Return the integer y.

Aligning with the terminology in Section 2.1, an RSA-P1 inverter solves the
RSA-P1 problem, whereas an RSA inverter solves the RSA problem.

2.3 Plaintext-Checking and Partial-RSA Decision Oracles

One property of many trapdoor mappings as defined in Section 2.1 is that it is
presumably hard to tell for a given pair (r, y) whether D(y) = r if D is secret.
For example, RSA-P1 defined in Section 2.2 appears to have this property. The
reason is that there might be many possibilities for E(r) for each r as soon as E
is randomized. While this may appear to be an attractive feature of a trapdoor
mapping, in our setting it is in fact a drawback. Namely, to reduce an E-inverter
to a chosen-ciphertext attack against the tagged key-encapsulation mechanisms
introduced in Section 3, we must be able to simulate an oracle that on input
(r, y) tells whether D(y) = r. There is no generic solution to this problem.

To address this concern, we make use of the plaintext-checking oracle concept
introduced in [22, 23]. This oracle, which we denote POE , takes as input a pair
(r, y) ∈ R × Y and checks whether r = D(y). If this is true, the oracle outputs
the bit 1. Otherwise it outputs the bit 0. The plaintext-checking oracle is correct
on each input with probability 1.

For the specific RSA trapdoor permutation f , we introduce also a partial-

RSA decision oracle. For any integer k0 < k (k is the bit length of the modulus),
this oracle DOf,k0

takes as input a string r ∈ Bk0 and a ciphertext y ∈ ZN and
checks whether

f−1(y) mod 2k0 = r .

Thus this oracle compares a string r with a “partial” RSA inverse of y.
An interesting question is whether this oracle helps an adversary invert RSA.

If k0 is almost as large as k, the oracle clearly does not help since the adver-
sary can simulate it efficiently, either by guessing or by applying the reduction

On the Security of RSA Encryption in TLS 131

technique of Coppersmith [5]. The latter case can accommodate k0 down to the
range of k(1− 1/e), where e is the RSA encryption exponent. If k0 is small (say,
smaller than 80), the oracle clearly does help: After a brute-force search using
the oracle at most 2k0 times, the adversary will be able to determine the last
k0 bits of the RSA inverse. Applying the method described in Appendix A, the
adversary will then easily determine the whole of the inverse via another k− k0

applications of the oracle.

For TLS, we have k0 = 192 or 384 (depending on how we model the underly-
ing pseudo-random function) and typically k ≥ 1024, which implies that neither
of the above extreme cases apply. Our conjecture is that k0 is large enough to
render the oracle useless.

An algorithm is PO(q)-assisted (resp. DO(q)-assisted) if it has access to a
plaintext-checking oracle PO (resp. decision oracle DO) that accepts at most
q queries. A POE-assisted E-inverter solves the gap-E problem. For example, a
PORSA−P1-assisted RSA-P1 inverter solves the gap-RSA-P1 problem. A DOf,k0

-
assisted RSA inverter solves the gap-partial-RSA problem with parameter k0.

3 Tagged Key-Encapsulation Mechanisms

In this section we discuss the concept of tagged key-encapsulation mechanisms
(TKEM), which are useful for modeling key agreement schemes such as the one
in the TLS handshake protocol. Section 3.1 is devoted to a TKEM defined in
terms of a trapdoor mapping and a pseudo-random function approximating the
mechanism underlying TLS, while Section 3.2 concentrates on identifying the
specific RSA-P1-based TKEM within TLS. (The Diffie-Hellman [11] version of
the TLS handshake, which is based on ElGamal [13] key agreement as defined
in [21], can also be modeled with a TKEM; however, we do not address that
version here.)

A TKEM consists of an encryption operation and a decryption operation.
The encryption operation TKEM-Encrypt takes as input a public key Kpub, a
nonce ρ, and possibly some other parameters and returns a triple (y, z, s), where
y is the ciphertext, z is the tag, and s is the secret. The decryption operation
TKEM-Decrypt takes as input a private (secret) key Kpriv, a ciphertext y, a
tag z, a nonce ρ, and possibly some other parameters and returns the secret s
or “Error” if the ciphertext is not valid or the tag is inconsistent with the nonce
and the other information. Each new application of TKEM-Decrypt requires
a nonce that has not been used before.

As noted above, the security of the key agreement scheme in the TLS hand-
shake can be transformed to the indistinguishability of the underlying TKEM.
In particular, the key agreement scheme is secure against an adversary sending
ciphertexts to the server if the underlying TKEM is secure against an adversary
sending ciphertexts to a decryption oracle simulating TKEM-Decrypt. It is
clear that the latter adversary is at least as strong as the former adversary as
she is allowed to select the entire nonce herself (as long as it is new).

132 J. Jonsson and B.S. Kaliski Jr.

3.1 TKEM1

We introduce the tagged key-encapsulation scheme TKEM1 as a first approxima-
tion to the TLS handshake. TKEM1 is defined in terms of a trapdoor mapping
E; write R = RE and Y = YE . Let h : B

∗ × B∗ × Z → B∗ be a pseudo-
random function; h(r, σ, l) is a string of length l (there might be restrictions
on the sizes of the inputs and outputs). Fix parameters ks, kt, kz, kδ, and kρ;
these parameters denote bit lengths of different strings used within TKEM1. Let
∆ : B∗ × B∗ × B∗ → bkδ be an arbitrary function; we will refer to the output
from ∆ as a digest (this reflects the way ∆ is used within TLS). ∆ is part of the
tag derivation construction. Let Qs, Qt, and Qz be three distinct strings such
that no string is a prefix of any of the others. This is to ensure that the inputs
to the different applications of h are distinct.

The TKEM1 encryption operation takes as input a nonce ρ ∈ Bkρ and a
label L ∈ B∗. ρ provides freshness; each application of TKEM1 uses a new
nonce. L contains public information that is intended to be integrity-protected
by TKEM1. The TKEM1 encryption operation is defined as follows.

TKEM1-Encrypt(ρ, L)

– r
R
← R;

– y ← E(r);
– t← h(r,Qt‖ρ, kt);
– z ← h(t,Qz‖∆(ρ, L, y), kz);
– s← h(t,Qs‖ρ, ks);
– Return the ciphertext y, the tag z, and the secret s.

The corresponding decryption operation TKEM1-Decrypt is defined in the
obvious way: First, r = D(y) is recovered (if D(y) = φ, then an error message is
returned). Second, a tag z′ is computed from r, ρ, L, and y. If z′ = z, then the
secret s is recovered and returned; otherwise, an error message is returned.

Since the output length of h is uniquely determined by the prefix of the second
input (the prefix is either Qs, Qt, or Qz) we will suppress the third argument of
h below.

In practice, to thwart implementation attacks such as [3] and [20], the decryp-
tion operation should not output “Error” immediately if D(y) = φ. Instead, the
operation should proceed with a new r generated uniformly at random. With
high probability, z will not match z′, and “Error” will be output at the end,
without revealing whether D(y) = φ or z′ is incorrect.

3.2 TKEM2

TKEM2 is the specific TKEM used within TLS and may be viewed as a special
case of TKEM1. However, while our security model for TKEM1 will assume
that h is a strong pseudo-random function, the corresponding function in TLS,
denoted Ω, has a seemingly more fragile structure, which will require special
treatment.

On the Security of RSA Encryption in TLS 133

Ω is defined as follows on input (w, σ, l) ∈ B2∗ × B∗ × Z (B2∗ is the set of
strings with an even bit length). Write w = wL‖wR, where the bit length of each
of the strings wL and wR is half the bit length of w. Then

Ω(w, σ, l) = g(wL, σ, l)⊕ h(wR, σ, l) ,

where g and h are pseudo-random functions defined in terms of HMAC [19]
based on MD5 [26] and SHA-1 [29], respectively. We refer the interested reader
to [10] for details. The rationale for the Ω construction is to achieve a reasonable
amount of security even if one of the underlying pseudo-random functions turns
out to be weak.

The function ∆ outputs the concatenation of a SHA-1 hash value and an
MD5 hash value of a string derived from the input nonce, label, and ciphertext;
L corresponds to all messages in the handshake other than ρ and y. However,
our results do not depend on the function ∆.

Let RSA-P1 denote the encryption scheme specified in Section 2.2. Let N be
an RSA modulus and let e be an RSA public exponent; define f(x) = xe mod N .
With notation as in TKEM1, we fix R = B384, kt = kr = 384 and kz =
96, whereas ks depends on the chosen cipher suite. An application of TKEM2
requires a version number v, a bit string of length 16. For simplicity, we assume
that the version number is fixed. The nonce ρ is the concatenation of two strings
ρ1 and ρ2 (one provided by the client and the other by the server). Each string
is 32 octets long; the first 4 octets denote the number of seconds since 1/1/1970,
and the rest are generated at random. Given the nonce ρ and a label L, the
TKEM2 encryption operation proceeds as follows; the decryption operation is
defined in alignment with TKEM1-Decrypt.

TKEM2-Encrypt(ρ, L)

– r0 ← v ∈ {0, 1}16; r1
R
← {0, 1}kr−16; r = r0‖r1;

– y ← RSA-P1(r);
– t← Ω(r, “master secret”‖ρ, kt);
– z ← Ω(t, “client finished”‖∆(ρ, L, y), kz);
– s← Ω(t, “key expansion”‖ρ, ks);
– Return the ciphertext y, the tag z, and the secret s.

4 Reduction from the Gap-Partial-RSA Problem to the

Gap-RSA-P1 Problem

Before proceeding with security proofs for TKEM1 and TKEM2, we show how
a POE-assisted RSA-P1-inverter (E = RSA-P1 with parameter kr) can be ex-
tended to a DOf,kr -assisted RSA inverter. Thus we reduce the gap-partial-RSA
problem with parameter kr to the gap-RSA-P1 problem.

1

1 The related problem of finding a reduction from a POE-assisted RSA inverter to a
POE-assisted RSA-P1-inverter is substantially more complex but can be solved via
lattice reduction; consider the generalization in [9] of the approach in [16].

134 J. Jonsson and B.S. Kaliski Jr.

Due to the shape of RSA-P1, the two oracles POE and DOf,kr act equiv-
alently except on inputs (r, y) such that D(y) = φ. In this case POE always
outputs the bit 0, while DOf,kr outputs the bit 1 if f

−1(y) mod 2kr = r.
Let Y0 be the set of valid ciphertexts y. Such ciphertexts have the property

that f−1(y) = 00‖02‖P‖00‖r for some r ∈ Bkr and some string P of nonzero
octets. Assuming that kr and the bit length k of the RSA modulus are multiples
of 8, the size of Y0/2

k is

2−24
(

1− 2−8
)(k−kr−24)/8

> 2−24
(

2−1/177
)(k−kr−24)/8

= 2−24−(k−kr−24)/1416 ,

which implies that |Y0|/|Y | is at least 2
−24−(k−kr−24)/1416, where Y = ZN . This

is a lower bound on the probability that a uniformly random y ∈ ZN is a valid
RSA-P1 ciphertext. The reduction is as follows; the result is easily generalized
to other RSA-based trapdoor mappings where the padding is prepended to the
plaintext r. The proof is given in Appendix A.

Theorem 1. Let E be an RSA-P1 trapdoor mapping, let k be the bit length of

the RSA modulus N , and let q be a parameter. Assume that there is a POE(q)-
assisted E-inverter with running time at most T ′ and success probability at least

ε′. Then there is a DOf,kr ((q + 1)(k − kr + 1))-assisted f -inverter with running

time at most T that is successful with probability at least ε, where

ε = ε′ ·
|Y0|

|Y |
;

T = T ′ +O((q + 1)(k − kr + 1) · TDOf,kr
) +O((q + 1)k3) ;

TDOf,kr
is the running time for the partial-RSA decision oracle DOf,kr .

5 Security of TKEM1

5.1 TKEM1 Security Model

We define an attack model employing an adversary against TKEM1 who is given
free access to a decryption oracle; hence we consider the family of adaptive
chosen-ciphertext attacks (CCA2; see [17]). The task for the adversary is to
distinguish a secret s∗0 corresponding to a certain ciphertext y

∗ with parameters
(z∗, ρ∗, L∗) from a random string.

The decryption oracle responds to a query (y, z, ρ, L) with the corresponding
secret s = h(t,Qs‖ρ) if y is a valid ciphertext and the tag z is correct (t =
h(D(y), Qt‖ρ)); otherwise, the oracle responds with a generic error message.
The decryption oracle accepts any query, except that previous nonces must not
be reused.

We will not make any specific assumptions about the digest function ∆. How-
ever, the function h will be instantiated as a random oracle. Thus the adversary
has no information about h(r, σ) unless she sends the query (r, σ) to an oracle
instantiating h. The h-oracle responds to queries with strings chosen uniformly

On the Security of RSA Encryption in TLS 135

at random and independent from earlier queries and responses, except that a
string that is repeatedly queried to the oracle should have the same response
every time. To distinguish between different h-oracle queries, we let hs-queries
be queries prefixed by Qs, while ht-queries and hz-queries are queries prefixed
by Qt and Qz, respectively.

The attack experiment runs as follows. First, the adversary is given a trap-
door mapping E generated via a trapdoor mapping generator G. The adversary
is allowed to send queries to the h-oracle and the decryption oracle during the
entire attack. At any time of the attack – but only once – the adversary sends a
query (ρ∗, L∗) to a challenge generator 2. Here, ρ∗ must not be part of any pre-
vious or later decryption query. The challenge generator applies the TKEM1-

Encrypt operation, producing a ciphertext y∗, a tag z∗, and a secret s∗0. In
addition, the generator selects a uniformly random string s∗1 and flips a fair coin
b. The generator returns (y∗, z∗) and s∗b ; thus the response depends on b.

At the end, the adversary outputs a bit b′. The distinguishing advantage of the
adversary is defined as Pr(b′ = b)−Pr(b′ 6= b) = 2Pr(b′ = b)−1; the probability is
computed over all possible trapdoor mappings for a given security parameter k.
The adversary is an IND-CCA2 adversary [17, 25] (IND = indistinguishability).

5.2 Reduction from a POE-Assisted E-Inverter to an IND-CCA2

Adversary Against TKEM1

In the full version of this paper, we show how to reduce a POE-assisted E-
inverter to an IND-CCA2 adversary against TKEM1. If E is equal to RSA-P1,
the result is easily translated into a reduction from the gap-partial-RSA problem
to the security of TKEM1 via Theorem 1. Let kr = dlog2 |R|e. The result is as
follows; the proof is suppressed in this extended abstract.

Theorem 2. Let qs, qt, qz, qD be parameters. Assume that there is an IND-

CCA2 adversary against TKEM1 with advantage at least ε′ within running time

T ′ making at most qs, qt, qz, and qD number of hs-queries, ht-queries, hz-
queries, and decryption queries, respectively. Then there is a POE(2qt)-assisted
E-inverter with running time at most T that is successful with probability at least

ε, where

ε = ε′ − ((qD + 2)(qD + qz) + qs) · 2
−kt − qD · 2

−kz ;

T = T ′ +O(2qt · TPOE
) + τ ;

TPOE
is the running time for the plaintext-checking oracle POE, while τ is the

time needed for O(qD + qt + qs + qz) elementary table operations.

Remark. If E is deterministic, the E-inverter can implement POE directly by
applying E; thus we may replace TPOE

with the running time for an application
of E. Note that when E is the RSA trapdoor permutation, we obtain a tight

2 Some authors denote this generator as an encryption oracle; since we find this no-
tation somewhat confusing, we have chosen another term.

136 J. Jonsson and B.S. Kaliski Jr.

reduction from the ordinary RSA problem to the security of TKEM1. This result
aligns with prior work on RSA-based key encapsulation mechanisms in [28, 23].

6 Security of TKEM2

In this section we restrict our attention to the TKEM2 mechanism defined in
Section 3.2. Let f be an RSA permutation; f(x) = xe mod N , where (N, e) is an
RSA public key. Let E denote the corresponding RSA-P1 trapdoor mapping with
RE = Bkr . We want to relate the security of TKEM2 to the gap-partial-RSA
problem with parameter kr.

Ideally, we would like to analyze the security of TKEM2 assuming that Ω
is a random oracle. Indeed, with this assumption TKEM2 would be a special
case of TKEM1. Unfortunately however, as the discussion in [18] indicates, this
assumption does not seem appropriate for the specific PRF in TLS. First, the
xor construction weakens the pseudo-randomness of the PRF output in terms of
the input. Second, MD5 is known to have certain theoretical weaknesses [4, 12],
which makes the random oracle assumption even less reasonable.

Instead, we will assume that only h based on SHA-1 is a random oracle; g
based on MD5 will be treated as an ordinary function with no specific properties.
It is possible to obtain a proof in case g is a random oracle and h is an ordinary
function, but the reduction and the underlying decision oracle will be slightly
different. Introduce six functions gt, ht, gs, hs, gz, hz defined as

ht(r
R, ρ) = h(rR, “master secret”‖ρ, kt) ;

hs(t
R, ρ) = h(tR, “key expansion”‖ρ, ks) ;

hz(t
R, δ) = h(tR, “client finished”‖δ, kz) ,

and analogously for gt, gs, and gz. Let h
L
t (r

R, ρ) denote the first kr/2 bits of
ht(r

R, ρ) and let hR
t (r

R, ρ) denote the last kr/2 bits. Use the corresponding
notation for the two halves of gt(r

L, ρ). With notations as in Section 3.2, note
that

s = gs
(

gL
t (r

L, ρ)⊕ hL
t (r

R, ρ), ρ
)

⊕ hs
(

gR
t (r

L, ρ)⊕ hR
t (r

R, ρ), ρ
)

;

the tag z satisfies a similar relation in terms of gt, ht, gz and hz.
Now, assume that ht, hs, and hz are random oracles, while the other functions

are just ordinary functions. Since we apply a random oracle only to the second
half of the RSA-P1 input r, we will relate the security of TKEM2 to a gap-
partial-RSA inverter with parameter kr/2 rather than kr. This is due to the
PRF construction; with a stronger PRF, we would be able to give a security
proof in terms of DOf,kr or POE . The result is as follows; a proof sketch is
given in Appendix B (see the full version of this paper for complete details).

Theorem 3. Let qt, qs, qz, qD be parameters. Assume that there is an IND-

CCA2 adversary against TKEM2 with advantage at least ε′ within running time

On the Security of RSA Encryption in TLS 137

T ′ making at most qt, qs, qz, and qD queries to the ht-oracle, hs-oracle, hz-
oracle, and decryption oracle, respectively. Let q′ = 2qt + (k − kr/2)(qD + 1).
Then there is a DOf,kr/2(q

′)-assisted RSA inverter with running time at most

T that is successful with probability at least ε, where

ε = c ·
(

ε′ − ((qD + 2)(qD + qz) + qs) · 2
−kt/2 − qD · 2

−kz
)

;

T = T ′ +O
(

q′ · TDOf,kr/2

)

+O((qD + 1)k
3) + τ ;

c = 2−40−(k−kr−24)/1416. TDOf,kr/2
is the running time for the partial-RSA de-

cision oracle DOf,kr/2, while τ is the time needed for O(qD + qt + qs + qz)
elementary table operations.

Remark. The RSA problem is randomly self-reducible [14]: If an RSA inverter
fails on an input y, one may run the inverter on new random inputs of the form
y′ = (f(α) · y) mod N until the inverter is successful; f−1(y) is easy to derive
from f−1(y′) = (α · f−1(y)) mod N . The constant c in Theorem 3 is a lower
bound on the probability that the inverter will not trivially fail just because
the target ciphertext y is not a valid RSA-P1 ciphertext. Via 1/c applications
of the random self-reducibility principle, the inverter in Theorem 3 can hence
be translated into a new inverter with success probability and running time
approximately

(

1− (1− c)1/c
)

ε′ > ε′/2 and T ′/c, respectively.

7 Discussion and Conclusion

We have provided a security reduction from a variant of the RSA problem to
the tagged key-encapsulation scheme based on RSA-P1 used within TLS. As a
byproduct we have addressed the concern about the underlying function Ω. In
particular, our proof holds even if MD5 is insecure.

An important aspect of any security reduction is what it implies in practice.
Here, we might start with the typical assumption that the RSA problem, for
1024-bit keys, requires about 280 steps to break. Assuming that the gap-partial-
RSA problem is just as hard, and with typical parameters, Theorem 3 indicates
that no IND-CCA2 adversary against TKEM2 can succeed in fewer than about
240 steps. Of course, this does not mean that there is an attack that succeeds
in so few steps, and perhaps there is a better proof than ours that results in a
better bound.3

The security of RSA-P1 used within TLS depends on the difficulty of the gap-
partial-RSA problem. We conjecture that for typical parameters the gap-partial-
RSA problem is as hard as the RSA problem. However, this problem needs
further study. Indeed, an efficient solution to the problem might well lead to an
effective chosen-ciphertext attack on TLS servers. The study of this problem is
thus important in practice as well as in theory.

3 In fact, we can get a better bound simply by changing assumptions: if we assume
that the gap-partial-RSA problem for a random, valid RSA-P1 ciphertext is as hard
as the RSA problem, then the bound will again be about 280.

138 J. Jonsson and B.S. Kaliski Jr.

Though the security reduction for TKEM2 does not say very much for typical
key sizes, the reduction does show, at least intuitively, that there is some strength
in the way the RSA algorithm is employed in TLS. It also helps show how the
algorithm might be employed better. First, we need to get a tighter bound. This
can be done by reducing the number of fixed octets in the input to the RSA
operation (there are currently up to five fixed octets). Second, we need to get to
the ordinary RSA problem. This can be done by processing all of the input to the
RSA operation with a secure function h. Essentially, TLS should use TKEM1
rather than TKEM2.

Security protocols have sometimes been designed with proofs of security in
mind, and sometimes only according to “reasonable design principles.” TLS was
designed originally according to the latter philosophy, but we have shown that
the former benefit is achieved as well, though this is somewhat accidental. In
general we would argue for an approach that considers both philosophies at the
same time.

Acknowledgements

We thank H̊akan Andersson, Ari Juels, Mike Szydlo and the anonymous referees
for valuable comments on preliminary versions of this paper. Phil Rogaway and
Johan H̊astad provided helpful feedback on aspects of this research. Don John-
son’s observation about the hash function construction in TLS motivated our
focus on TKEM2; Johnson also provided useful suggestions for the final version
of this paper.

References

1. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. Proceedings of the First Annual Conference on Computer
and Communications Security. ACM, 1993.

2. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt
with RSA. Advances in Cryptology – Eurocrypt ’94, pp. 92 – 111. Springer Verlag,
1994.

3. D. Bleichenbacher. Chosen Ciphertext Attacks against Protocols Based on the RSA
Encryption Standard PKCS #1. Advances in Cryptology – Crypto ’98, pp. 1 – 12.
Springer Verlag, 1998.

4. B. den Boer and A. Bosselaers. Collisions for the Compression Function of MD5.
Advances in Cryptology – Eurocrypt ’93, pp. 293-304. Springer Verlag, 1994.

5. D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. Journal of Cryptology, 10, pp. 233 – 260, 1997.

6. D. Coppersmith, M. Franklin, J. Patarin and M. Reiter. Low-Exponent RSA with
Related Messages. Advances in Cryptology – Eurocrypt ’96, pp. 1 – 9. Springer
Verlag, 1996.

7. J.-S. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval and C. Tymen.
GEM: a Generic Chosen-Ciphertext Secure Encryption Method. Topics in Cryp-
tology – CT-RSA 2002, pp. 263 – 276. Springer Verlag, 2002.

On the Security of RSA Encryption in TLS 139

8. J.-S. Coron, M. Joye, D. Naccache and P. Paillier. New Attacks on PKCS #1 v1.5
Encryption. Advances in Cryptology – Eurocrypt 2000, pp. 369 – 379. Springer
Verlag, 2000.

9. J.-S. Coron, M. Joye, D. Naccache and P. Paillier. Universal Padding Schemes for
RSA. Advances in Cryptology – Crypto 2002, these proceedings.

10. T. Dierks and C. Allen. IETF RFC 2246: The TLS Protocol Version 1.0. January
1999.

11. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT–22(6), pp. 644 – 654. November 1976.

12. H. Dobbertin. Cryptanalysis of MD5 Compress. Presented at the rump session of
Eurocrypt ’96, May 14, 1996.

13. T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Transactions on Information Theory, IT–31(4), pp. 469 –
472. July 1985.

14. J. Feigenbaum. Locally Random Reductions in Interactive Complexity Theory.
Advances in Computational Complexity, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 13, pp. 73–98, 1993.

15. A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Protocol Version 3.0. Netscape
Communications Corp., November 1996.

16. E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern. RSA-OAEP Is Secure un-
der the RSA Assumption. Advances in Cryptology – Crypto 2001, pp. 260 – 274.
Springer Verlag, 2001.

17. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28 (2). April 1984.

18. D. B. Johnson. Theoretical Security Concerns with TLS Use of MD5. Contribution
to ANSI X9F1 working group. June 21, 2001.

19. H. Krawczyk, M. Bellare and R. Canetti. IETF RFC 2104: HMAC: Keyed-Hashing
for Message Authentication. February 1997.

20. J. Manger. A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1 v2.0. Advances in Cryptology –
Crypto 2001, pp. 260 – 274. Springer Verlag, 2001.

21. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of Applied Cryp-
tography, CRC Press, 1996.

22. T. Okamoto and D. Pointcheval. The Gap-Problems: a New Class of Problems
for the Security of Cryptographic Schemes. Proceedings of the 2001 International
Workshop on Practice and Theory in Public Key Cryptography (PKC’2001), pp.
104 – 118. Springer-Verlag, 2001.

23. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. Topics in Cryptology – CT-RSA 2001, pp. 159 – 175.
Springer Verlag, 2001.

24. L. C. Paulson. Inductive analysis of the Internet protocol TLS. ACM Transactions
on Information and System Security, 2(3), pp. 332 – 351. August 1999.

25. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. Advances in Cryptology – Crypto ’91, pp. 433 –
444. Springer-Verlag, 1992.

26. R. Rivest. IETF RFC 1321: The MD5 Message-Digest Algorithm. April 1992.
27. V. Shoup. OAEP Reconsidered. Advances in Cryptology – Crypto 2001, pp. 239 –

259. Springer Verlag, 2001.
28. V. Shoup. A Proposal for an ISO Standard for Public Key Encryption. Preprint,

December 2001. Available from eprint.iacr.org/2001/112.

140 J. Jonsson and B.S. Kaliski Jr.

29. National Institute of Standards and Technology (NIST). Draft FIPS 180-2: Secure
Hash Standard. Draft, May 2001.

30. R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2), pp. 120 - 126.
February 1978.

31. RSA Laboratories. PKCS #1 v1.5: RSA Encryption Standard. November 1993.
32. Y. Zheng and J. Seberry. Practical Approaches to Attaining Security Against

Adaptively Chosen Ciphertext Attacks. Advances in Cryptology – Crypto ’92, pp.
292-304. Springer Verlag, 1992.

A Proof of Theorem 1

First we show that the partial-RSA decision oracle DOf,kr can simulate the E
plaintext-checking oracle POE . As a consequence, DOf,kr is at least as strong
as POE .

Lemma 1. Let E be an RSA-P1 trapdoor mapping with parameter kr. Given a

pair (r, y), POE can be perfectly simulated via k−kr+1 queries to DOf,kr , where

k is the bit length of the RSA modulus. The running time for the simulation is

bounded by

O((k − kr + 1)TDOf,kr
) +O(k3) .

Proof of Lemma 1. Suppose that we are given a pair (r, y). Send (r, y) to DOf,kr .
If the response is 0, then either y is not a valid ciphertext (i.e., D(y) = φ) or y
is the encryption of a plaintext different from r. In this case, simulate POE by
responding with 0.

If the response is 1, proceed as follows. We want to determine the whole
of x = f−1(y). To achieve this, define y0 = y and yi = 2eyi−1 mod N for
0 < i ≤ k − kr. Each yi can be computed in time O(k

2); 2e mod N can be
precomputed in time O(log2 e · k

2). Put x0 = x and

xi = f−1(yi) = 2xi−1 mod N = 2ix mod N ;

define ri = xi mod 2
kr+i. Note that

rk−kr = xk−kr = 2
k−krx mod N ,

which implies that x can be determined from rk−kr . We use an induction argu-
ment to demonstrate how to determine rk−kr from r0 in k − kr steps, each of
complexity O(k2) + O(TDOf,kr

); O(k2) bounds the time needed to compute yi
from yi−1. Assume that we know ri−1, where i is an integer between 1 and k−kr.
Since xi = 2xi−1 mod N , ri is either equal to 2ri−1 or (2ri−1 − N) mod 2kr+i.
To distinguish between the cases, send (2ri−1, yi) to the decision oracle. If the
response is 1, then ri = 2ri−1; otherwise, ri = (2ri−1 − N) mod 2kr+i. Thus
rk−kr can be determined via k − kr applications of the decision oracle.

Once we know rk−kr , we can easily determine x via k−kr halving operations
modulo N . Now check whether x is valid. Respond with 1 if this is true and 0
otherwise; it is clear that the simulation is perfect, which concludes the proof. 2

On the Security of RSA Encryption in TLS 141

Proof of Theorem 1. Suppose that we are given a random integer y∗ = f(x∗),
where x∗ is unknown. Generate a random integer α < N . With probability
|Y0|/|Y |, the integer y

′ = αe · y∗ mod N is a valid encryption of a string r′.
Assume that there is an E-inverter that with probability ε′ outputs the string
r′. Thus with probability ε′ · |Y0|/|Y |, we have recovered the last kr bits of
x′ = αx∗ mod N . (To increase the probability of success, this procedure can be
repeated with different values of α until a plaintext is found.) By Lemma 1, each
application of POE can be replaced with k − kr + 1 applications of DOf,kr .

Given that we know the last kr bits r
′ of x′, we want to determine the

whole of x′, and thereby the whole of x∗. This is done using the method in
the proof of Lemma 1 via k − kr applications of DOf,kr . The time bound in
the theorem includes the time needed to perform q(k − kr + 1) + k − kr <
(q + 1)(k − kr + 1) DOf,kr -oracle queries plus a bound on the time needed for
the arithmetic computations in the simulation of POE and the computations
y′ = ce · y∗ mod N and x∗ = c−1x′ mod N above. 2

B Proof Sketch of Theorem 3

Let y∗ be the target ciphertext. We deduced in Section 4 that the probability
that y∗ is a valid RSA-P1 ciphertext is lower-bounded by 2−24−(k−kr−24)/1416.
However, recall that there are 16 fixed bits in the RSA-P1 input r. This implies
that the probability that y∗ is a valid TKEM2 ciphertext is lower-bounded by
2−40−(k−kr−24)/1416. This is equal to the factor c in the theorem. From now on,
assume that y∗ is valid.

At the beginning of the attack, the RSA inverter I generates random strings
s∗0, s

∗
1, and z

∗. There are additional strings related to the target ciphertext:

u∗L‖u∗R = gt(r
∗L, ρ∗) ;

v∗L‖v∗R = ht(r
∗R, ρ∗) ;

note that

s∗0 = gs(u
∗L ⊕ v∗L, ρ∗)⊕ hs(u

∗R ⊕ v∗R, ρ∗) ; (1)

z∗ = gz(u
∗L ⊕ v∗L, δ∗)⊕ hz(u

∗R ⊕ v∗R, δ∗) , (2)

where δ∗ = ∆(ρ∗, L∗, y∗). I does not have to generate v∗L or v∗R in advance,
but at the end of the simulation the identities (1) and (2) must be satisfied. Note
that ρ∗ and L∗ are not known yet since they are not provided by the adversary
until the challenge generator is queried.

We need to demonstrate how to simulate the oracles corresponding to ht, hs,
and hz. I responds to an ht-query (r

R, ρ) as follows. First, I checks whether
the query is old; in that case the output is already defined. Otherwise, I sends
(rR, y∗) to the partial-RSA decision oracle. If the decision oracle outputs 1, we
can get the rest of the inverse f−1(y∗) via k− kr/2 additional queries, following
Lemma 1. In this case, I wins and exits. If the decision oracle outputs 0, I
generates a random string v as the response to the query.

142 J. Jonsson and B.S. Kaliski Jr.

I responds to an hs-query (t
R, ρ) in the straightforward manner, generating

a random output (unless the query is old). I responds to an hz-query (t
R, δ) in

an analogous manner.
I proceeds as follows on a decryption query (y, z, ρ, L); recall that ρ is differ-

ent for each decryption query and not equal to ρ∗. First, I sends (rR, y) to the
decision oracle for each string rR such that (rR, ρ) is a previous ht-query. If the
decision oracle outputs 0 on all queries, then I returns “Error”. If the decision
oracle outputs 1 for some rR, then I proceeds as follows.

– Extract the entirety of x = f−1(y) via k−kr/2 queries to the decision oracle
using the approach in the proof of Lemma 1.

– If x is not a valid P1 encoding, then output “Error” and exit.
– With r = x mod 2kr , compute the corresponding tag z′ via the appropriate
query to the hz-oracle combined with the relevant evaluation of gz.

– If z = z′, then compute the corresponding secret s via the appropriate query
to the hs-oracle combined with the relevant evaluation of gs, output s, and
exit. Otherwise, output “Error” and exit.

In the following discussion, some technical details are omitted; see the full version
of this paper for a rigorous treatment. It is easily seen that there are only two
possible simulation failures:

First, there might be an inconsistency between the simulation of the oracles
and the simulation of the challenge generator. This can be the case only if t∗R =
u∗R ⊕ v∗R is part of an hs- or hz-query. Hence, let tBad be the event that there
is an hs- or hz-query from the adversary or from the decryption oracle including
t∗R. The probability of tBad is bounded as follows. Note that there are at most
2qD + qs+ qz different hs- and hz-queries. Moreover, note that the simulation is
independent of t∗R (i.e., all responses to the adversary are independent of t∗R).
This implies that the probability of tBad is at most

(2qD + qs + qz) · 2
−kt/2 . (3)

Second, some valid ciphertext (y, z, ρ, L) might be erroneously rejected; let
BadReject be the event that this is the case. This event occurs if there is a valid
decryption query (y, z, ρ, L) such there is no matching previous ht-query (r

R, ρ).
Let (tR, δ) be the input to hz corresponding to this decryption query. If t

R is not
part of a previous hz-query, then the probability that the tag z is valid is 2

−kz .
The probability that tR is part of a previous hz-query is at most (qD+qz)·2

−kt/2.
This implies that the probability of BadReject is at most

qD(qD + qz) · 2
−kt/2 + qD · 2

−kz (4)

(this is a very rough bound but sufficient for our purposes).
It can be shown that the inverter will be successful if the adversary is suc-

cessful and neither of tBad and BadReject occurs. Combining (3) and (4), rear-
ranging, and multiplying with c, we obtain the desired probability.

