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Abstract. Methods from provable security, developed over the last
twenty years, have been recently extensively used to support emerging
standards. However, the fact that proofs also need time to be validated
through public discussion was somehow overlooked. This became clear
when Shoup found that there was a gap in the widely believed security
proof of OAEP against adaptive chosen-ciphertext attacks. We give more
examples, showing that provable security is more subtle than it at first
appears. Our examples are in the area of signature schemes: one is related
to the security proof of ESIGN and the other two to the security proof
of ECDSA. We found that the ESIGN proof does not hold in the usual
model of security, but in a more restricted one. Concerning ECDSA,
both examples are based on the concept of duplication: one shows how
to manufacture ECDSA keys that allow for two distinct messages with
identical signatures, a duplicate signature; the other shows that from any
message-signature pair, one can derive a second signature of the same
message, the malleability. The security proof provided by Brown [7] does
not account for our first example while it surprisingly rules out malleabil-
ity, thus offering a proof of a property, non-malleability, that the actual
scheme does not possess.

1 Introduction

In the last twenty years provable security has dramatically developed, as a means
to validate the design of cryptographic schemes. Today, emerging standards only
receive widespread acceptance if they are supported by some form of provable ar-
gument. Of course, cryptography ultimately relies on the P vs. NP question and
actual proofs are out of reach. However, various security models and assumptions
allow us to interpret newly proposed schemes in terms of related mathematical
results, so as to gain confidence that their underlying design is not flawed. There
is however a risk that should not be underestimated: the use of provable security

? The first and last examples in this paper are based on the result of an evaluation
requested by the Japanese Cryptrec program and performed by this author.
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is more subtle than it appears, and flaws in security proofs themselves might have
a devastating effect on the trustworthiness of cryptography. By flaws, we do not
mean plain mathematical errors but rather ambiguities or misconceptions in the
security model. The first such example appeared recently, when Victor Shoup
noted in [29] that there was a gap in the widely believed security proof of OAEP
against adaptive chosen-ciphertext attacks. By means of a nice counter-example
in a relativized model of computation, he showed that, presumably, OAEP could
not be proven secure from the one-wayness of the underlying trapdoor permuta-
tion. A closer look at the literature, notably [4, 2], showed that the security proof
was actually valid in a weaker security model, namely against indifferent chosen-
ciphertext attacks (IND-CCA1), also called lunchtime attacks [18], and not in the
full (IND-CCA2) adaptive setting [24]. This came as a shock, even though Fu-
jisaki, Okamoto, Pointcheval and Stern [12] were quickly able to establish that
the security of RSA–OAEP could actually be proven under the RSA assumption
alone, in the random oracle model. Since the more general result could not hold,
a different argument based on specific properties of the RSA function had to be
used.

Goldwasser, Micali and Rivest [14] introduced the notion of existential forgery
against adaptive chosen-message attacks for public key signature schemes. This
notion has become the de facto security definition for digital signature algo-
rithms, against which all new signature algorithms are measured. The definition
involves a game in which the adversary is given a target user’s public key and
is asked to produce a valid message/signature pair with respect to this public
key. The adversary is given access to an oracle which will produce signatures on
messages of his choice. However, the above definition does not directly deal with
the most important property of a digital signature, namely non-repudiation: the
signer should be unable to repudiate his signature. One should not that an ad-
versary against the non-repudiation property of a signature scheme would be
the legitimate signer himself. Hence, such an adversary has access to the private
key, and may even control the key generation process.

The present paper gives further examples of flaws in security proofs, related
to signature schemes. Two of them stem from a subtle point that has apparently
been somehow overlooked: in non deterministic signature schemes, several signa-
tures may correspond to a given message. Accordingly, the security model should
unambiguously decide whether an adaptive attacker is allowed to query several
signatures of the same message. Similarly, it should make clear whether obtain-
ing a second signature of a given message, different from a previously obtained
signature of the same message, is a forgery or not, and namely an existential
forgery.

The first example that we give is related to the security proof offered in [22]
for the ESIGN signature scheme. Crosschecking the proof, with the above obser-
vations in mind, it can be seen that it implicitly assumes that the attacker is not
allowed to query the same message twice. Thus, the security proof does not pro-
vide security against existential forgeries under adaptive chosen-message attacks.
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It only applies to a more restricted class, which may be termed single-occurrence
chosen-message attacks.

The two other examples are related to the elliptic curve digital signature
algorithm ECDSA [1]. In [7], Brown uses the so-called generic group model to
prove the security of the generic DSA, a natural analog of DSA and ECDSA
in this setting. This result is viewed as supporting the security of the actual
ECDSA: in the generic model, ECDSA prevents existential forgeries under adap-
tive chosen-message attacks. But as already remarked, this security notion does
not deal with the important non-repudiation property that signature schemes
should guarantee. The obvious definition is that it should be hard for a legitimate
signer to produce two messages which have the same signature with respect to
the same public key. If a signature scheme did not have this property then a
user could publish the signature on one message and then claim it was actually
the signature on another. Such a signature we shall call a duplicate signature,
since it is the signature on two messages. This shows an inadequacy between
the classical security notions and the practical requirements. Furthermore, we
show that with ECDSA a signer which controls the key generation process can
easily manufacture duplicate signatures, without finding a collision in the hash
function. Luckily, however, our construction of duplicate signatures means that,
as soon as the signer reveals the second message, the signer’s private key is
revealed. Concerning the generic group model, which was the sole assumption
on which relies the security result provided in [7], carefully crosschecking the
proof, with the above observations in mind, we see that it actually prevents a
forgery which creates a different signature to a previously obtained signature of
the same message. Hence, the proof implies the scheme produces non-malleable
signatures. Unfortunately, ECDSA does not withstand such forgeries. What goes
wrong here is the adequacy of the model. The proof is correct but the underlying
model is flawed, since it disallows production of malleable signatures.

Note that we have not broken any of the two schemes. In particular, there
are some easy ways of revising ESIGN so that it satisfies the classical security
notions (see e.g. [15]).

2 Digital Signature Schemes and Security Proofs

2.1 Formal Framework

In modern terms (see [14]), a digital signature scheme consists of three algorithms
(K, Σ, V ):

– A key generation algorithm K, which, on input 1k, where k is the security
parameter, outputs a pair (pk, sk) of matching public and private keys. Al-
gorithm K is probabilistic.

– A signing algorithm Σ, which receives a message m and the private key sk,
and outputs a signature σ = Σsk(m). The signing algorithm might be prob-
abilistic.
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– A verification algorithm V which receives a candidate signature σ, a mes-
sagem and a public key pk, and returns an answer Vpk(m,σ) as to whether or
not σ is a valid signature of m with respect to pk. In general, the verification
algorithm need not be probabilistic.

Attacks against signature schemes can be classified according to the goals of
the adversary and to the resources that it can use. The goals are diverse:

– Disclosing the private key of the signer. This is the most drastic attack. It
is termed total break.

– Constructing an efficient algorithm which is able to sign any message with
significant probability of success. This is called universal forgery.

– Providing a single message/signature pair. This is called existential forgery.

In terms of resources, the setting can also vary. We focus on two specific at-
tacks against signature schemes: the no-message attacks and the known-message
attacks. In the first scenario, the attacker only knows the public key of the signer.
In the second, the attacker has access to a list of valid message/signature pairs.
Again, many sub-cases appear, depending on how the adversary gains knowledge.
The strongest is the adaptive chosen-message attack (CMA), where the attacker
can require the signer to sign any message of its choice, where the queries are
based upon previously obtained answers. When signature generation is not de-
terministic, there may be several signatures corresponding to a given message. A
slightly weaker security model, which we call single-occurrence adaptive chosen-
message attack (SO-CMA), allows the adversary at most one signature query for
each message. In other words the adversary cannot submit the same message
twice for signature.
In known-message attacks, one should point out that existential forgery be-

comes the ability to forge a fresh message/signature pair that has not been
obtained during the attack. Again there is a subtle point here, related to the
context where several signatures may correspond to a given message. We actu-
ally adopt the stronger rule that the attacker needs to forge the signature of
message, whose signature was not queried. The more liberal rule, which makes
the attacker successful, when it outputs a second signature of a given message,
different from a previously obtained signature of the same message, will be called
malleability.
Conversely, the non-repudiation property means the impossibility to produce

two messages with the same signature, which will be called a duplicate signature.
However, one should note that the adversary for such a forgery is the signer
himself, who may furthermore have control on the key generation process. Such
a security notion is not covered by the usual notions, and should be studied
independently.

2.2 The Random Oracle Model

Ideally, one would like to obtain provable security for a signature scheme, based
on the sole assumption that some underlying computational problem is hard.
Unfortunately, very few schemes are currently known that allow such a proof.
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The next step is to hope for a proof in a non-standard computational model,
as proposed by Bellare and Rogaway [3], following an earlier suggestion by Fiat
and Shamir [11]. In this model, called the random oracle model, concrete objects
such as hash functions are treated as random objects. This allows one to carry
through the usual reduction arguments to the context of relativized computa-
tions, where the hash function is treated as an oracle returning a random answer
for each new query. A reduction still uses an adversary as a subroutine of a pro-
gram that contradicts a mathematical assumption, such as the assumption that
RSA is one-way [25]. However, probabilities are taken not only over coin tosses
but also over the random oracle.
Of course, the significance of proofs carried in the random oracle is debatable.

Hash functions are deterministic and therefore do not return random answers.
Along those lines, Canetti et al. [8] gave an example of a signature scheme which
is secure in the random oracle model, but insecure under any instantiation of the
random oracle. Despite these restrictions, the random oracle model has proved
extremely useful to analyze many encryption and signature schemes. It clearly
provides an overall guarantee that a scheme is not flawed, based on the intuition
that an attacker would be forced to use the hash function in a non generic way.

2.3 Generic Algorithms

Recently, several authors have proposed to use yet another model to argue in
favor of the security of cryptographic schemes, that could not be tackled by the
random oracle model. This is the so-called black-box group model, or generic
model [27, 7, 17]. In particular, paper [7] considered the security of ECDSA in
this model. Generic algorithms had been earlier introduced by Nechaev and
Shoup [19, 28] to encompass group algorithms that do not exploit any special
property of the encodings of group elements other than the property that each
group element is encoded by a unique string. Typically, algorithms like Pollard’s
ρ algorithm [23] fall under the scope of this formalism, while index-calculus
methods do not.
We will now go into a bit more detail of proofs in this generic model, because

in one of our examples, this model is the origin of the apparent paradox. More
precisely, we will focus on groups which are isomorphic to (Zq,+), where q is
a prime. Such groups will be called standard cyclic groups. An encoding of a
standard cyclic group Γ is an injective map from Γ into a set of bit-strings S.
We give an example: consider a subgroup of prime order of the group of points
of a non-singular elliptic curve E over a finite field F. Given a generator g of
E, an encoding is obtained by computing σ(x) = x · g, where x · g denotes
the scalar multiplication of g by the integer x and providing coordinates for
σ(x). Note that the encoding set appears much larger than the group size, but
compact encodings using only one coordinate and a sign bit ±1 exist and, for
such encodings, the image of σ is included in the binary expansions of integers
< tq for some small integer t, provided that q is close enough to the size of
the underlying field F. This is exactly what is recommended for cryptographic
applications [16, 9].
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A generic algorithm A over a standard cyclic group Γ is a probabilistic
algorithm that takes as input an encoding list L = {σ(x1), . . . , σ(xk)}, where
each xi is in Γ . While it executes, the algorithm may consult an oracle for further
encodings. Oracle calls consist of triples {i, j, ε}, where i and j are indices of the
encoding list L and ε is ±. The oracle returns the string σ(xi±xj), according to
the value of ε and this bit-string is appended to the list L, unless it was already
present. In other words, A cannot access an element of Γ directly but only
through its name σ(x) and the oracle provides names for the sum or difference
of two elements addressed by their respective names. Note however that A may
access the list L at any time. In many cases, A takes as input a pair {σ(1), σ(x)}.
Probabilities related to such algorithms are computed with respect to the internal
coin tosses of A as well as the random choices of σ and x.
In [7], the adversary is furthermore allowed to include additional elements

z′i in the encoding list L, without calling the oracle. This is consistent with the
fact that one may detect whether an element is in the group or not (e.g. whether
the coordinates of a point satisfy the equation which defines the elliptic curve.)
However, this definitely enlarges the class of generic algorithm, compared to [19,
28]. One can keep the number of additional elements smaller than twice the
number of queries, since additional elements not appearing in a further query
can be deleted and since each query involves at most two additional elements.
Some useful results about the generic model are provided in Appendix A.1.
Again, from a methodological point of view, proofs in the generic model have

to be handled with care. A specific group is not generic and specific encodings
may further contradict genericity. If it happens, the exact meaning of a security
proof may become highly questionable.

3 The Provable Security of ESIGN

3.1 Description of ESIGN

We follow [22], where a specification of ESIGN appears. The key generation
algorithm of ESIGN chooses two large primes p, q of equal size k and computes
the modulus n = p2q. The sizes of p, q are set in such a way that the binary
length |n| of n equals 3k. Additionally, an exponent e > 4 prime to ϕ(n) is
chosen.
Signature generation is performed as follows, using a hash function H, out-

putting strings of length k − 1.

1. Pick at random r in Z?
pq.

2. Convert (0‖H(m)‖02k) into an integer y and compute z = (y − re) mod n.
3. Compute w0 = dz/pqe and w1 = w0.pq − z. If w1 ≥ 22k−1, return to step 1.
4. Set u = w0 · (er

e−1)−1 mod p and s = r + upq.
5. Output s as the signature of m.

The basic paradigm of ESIGN is that the arithmetical progression re mod n+tpq
consists of e-th powers of easily computed integers: one adjusts t so as to fall
into a prescribed interval of length 22k−1.
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Signature verification converts integer se mod n into a bit string S of length
3k and checks that [S]k = 0‖H(m), where [S]k denotes the k leading bits of S.

3.2 The Approximate e-th Root Problem

As noted in the previous section, RSA moduli of the from p2q offer a very efficient
way to solve the following problem, having knowledge of the factorization of n:
given n and y in Z?

n, find x such that xe mod n lies in the interval [y, y+22k−1),
where the bit-size of n is 3k and [y, y + 22k−1) denotes {u|y ≤ u < y + 22k−1}.
It is conjectured that the above problem, called the approximate e-th root

problem (AERP) in [22], is hard to solve. More precisely, denote by Succaerp(τ, k)
the probability for any adversary A to find an element whose e-th power lies in
the prescribed interval, within time τ . In symbols, it reads

Pr[(n, e)← K(1k), y ← Zn, x← A(n, e, y) : (x
e mod n) ∈ [y, y + 22k−1)],

then, for large enough moduli, this probability is extremely small. Variants of
the above can be considered, where the length of the interval is replaced by 22k

or 22k+1.

Of course, the factorization of n allows to solve the AERP problem. It is
unknown whether the converse is true, i.e. whether AERP and inverting RSA
are computationally equivalent. Various attacks against AERP are known for
e = 2, 3 (see [5, 30]). However, it is fair to say that there is no known attack
against AERP when e is greater or equal than 4.

3.3 The Security Proof

For this signature scheme, one can prove, in the random oracle model, the fol-
lowing security result, where Texp(k) denotes the computing time of modular
exponentiation modulo a 3k-bit integer.

Theorem 1. Let A be a SO-CMA-adversary against the ESIGN signature sche-
me that produces an existential forgery, with success probability ε, within time
τ , making qH queries to the hash function and qs distinct requests to the signing
oracle respectively. Then, AERP can be solved with probability ε′, and within
time τ ′, where

ε′ ≥
ε

qH
− (qH + qs)× (3/4)

k −
1

2k−1
and τ ′ ≤ τ + k(qs + qH) · Texp(k).

Our method of proof is inspired by Shoup [29] and differs from [22]: we
define a sequence of Game1, Game2, etc of modified attack games starting from
the actual game Game0. Each of the games operates on the same underlying
probability space, only the rules defining how the view is computed differ from
game to game.
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Proof. (of Theorem 1). We consider an adversary A outputting an existential
forgery (m, s), with probability ε, within time τ . We denote by qH and qs re-
spectively the number of queries from the random oracle H and from the signing
oracle. As explained, we start by playing the game coming from the actual ad-
versary, and modify it step by step, until we reach a final game, whose success
probability has an upper-bound obviously related to solving AERP.

Game0: The key generation algorithm K(1
k) is run and produces a pair of keys

(pk, sk). The adversary A is fed with pk and, querying the random oracle H
and the signing oracle Σsk, it outputs a pair (m, s). We denote by S0 the
event that Vpk(m, s) = 1. We use a similar notation Si in any Gamei below.
By definition, we have Pr[S0] = ε.

Game1: In this game, we discard executions, which end up outputting a valid
message/signature pair (m, s), such that m has not been queried from H.
This means restricting to the event AskH that m has been queried from H.
Unwinding the ESIGN format, we write: se = 0 ‖w ‖ ? modn. If AskH does
not hold, H(m) is undefined, and the probability that H(m) = w holds is
1/2k−1: Pr[S0 | ¬AskH] ≤ 2−k+1. Thus, Pr[S1] = Pr[S0 ∧ AskH] ≥ Pr[S0] −
2−k+1.

Game2: In this game, we choose at random an index κ between 1 and qH . We
let mκ be the κ-th message queried to H. We then discard executions which
output a valid message/signature pair (m, s), such that m 6= mκ. Since the
additional random value κ is chosen independently of the execution of Game1,
Pr[S2] = Pr[S1]/qH .

Game3: In this game, we immediately abort if a signing query involves message
mκ. By the definition of existential forgery, this only eliminates executions
outside S2. Thus: Pr[S3] = Pr[S2].

Game4: We now simulate the random oracle H, by maintaining an appropriate
list, which we denote by H-List. For any fresh query m, we pick at random
u ∈ Zn and compute z = ue mod n, until the most significant bit of z is 0.
We next parse z as 0 ‖w ‖ ?, where w is of length k − 1 and check whether
z − w.22k is less than 22k−1. If this is true, we store (m,u,w) in H-List

and returns w as the answer to the oracle call. Otherwise we restart the
simulation of the current query. However, we stop and abort the game after
k trials. This game differs from the previous one if z remains undefined after
k attempts: | Pr[S4]− Pr[S3] | ≤ (qH + qs)× (3/4)k.

Game5: We modify the simulation by replacing H(mκ) by v, where v is a bit
string of length k − 1, which serves as an additional input. The distribution
of H-outputs is unchanged: Pr[S5] = Pr[S4].

Game6: We finally simulate the signing oracle: for any m, whose signature is
queried, we know that m 6= mκ cannot hold, since corresponding executions
have been aborted. Thus H-List includes a triple (m,u,w), such that ue mod
n has its k leading bits of the form 0‖H(m). Accordingly, u provides a valid
signature of m. Therefore, Pr[S6] = Pr[S5].
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Summing up the above inequalities, we obtain

Pr[S6] ≥ Pr[S3]− (qH + qs)× (3/4)
k ≥

ε

qH
− (qH + qs)× (3/4)

k −
1

2k−1
.

When Game6 terminates outputting a valid message/signature pair (m, s), we
unwind the ESIGN format and get se = (0 ‖ v ‖ ?) mod n, with v = H(m). If S6

holds, we know thatm = mκ andH(m) = v. This leads to an element whose e-th
power lies in the interval [v22k, v22k + 22k), thus solving an instance of AERP.
We finally have: Pr[S6] ≤ Succaerp(τ ′, k), where τ ′ denotes the running time of
Game6. This is the requested bound. Observe that τ

′ is the sum of the time for
the original attack, plus the time required for simulations, which amounts to at
most k(qs + qH) modular exponentiations. We get τ

′ ≤ τ + k(qs + qH) · Texp(k).
ut

3.4 Comments on the Security Model

We definitely had to use the SO-CMA model. If the adversary was allowed to
submit the same message twice to the signing oracle, the simulation would fail
at the second call, since there is a single signature available. Thus, contrarily
to what is claimed in [22], the result only applies to single-occurrence adaptive
chosen-message attacks. We do not know how to extend the proof to deal with
the stronger CMA model.

4 Duplicates in ECDSA

Let us now turn to the ECDSA signature scheme, on which we give two more
examples.

4.1 Description of ECDSA

The ElGamal signature scheme [10] appeared in 1985 as the first DL-based signa-
ture scheme. In 1989, using the Fiat and Shamir heuristic [11] based on fair zero-
knowledge [13], Schnorr provided a zero-knowledge identification scheme [26],
together with the corresponding signature scheme. In 1994, a digital signature
standard DSA [20] was proposed, whose flavor was a mixture of ElGamal and
Schnorr. The standard was later adapted to the elliptic curve setting under the
name ECDSA [1, 20]. Following [6, 7], we propose the description of a generic
DSA (see Figure 1), which operates in any cyclic group G of prime order q,
thanks to a reduction function. This reduction function f applies to any element
of the group G, into Zq. In the DSA, f takes as input an integer modulo p and
outputs f(r) = r mod q. In the elliptic curve version [1, 20, 9], the function is
defined in a more intricate manner, which we now describe. An elliptic curve
point r is given by two coordinates (x, y), which take values in the base field.
For elliptic curves over prime fields, one simply sets f(r) = x mod q. For curves
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over F2m , x is a sequence of m bits and f(r) is obtained by first turning x into an
integer less than 2m, by a standard conversion routine. Anyway, one just has to
keep in mind that in ECDSA the function f depends on the x-coordinate only,
and thus f(−r) = f(r).
Before we review the security results proven about ECDSA, namely in [7],

let us show some surprising properties of the scheme due to the above choice of
reduction function f .

4.2 Duplicate Signatures

Let us first describe how to produce duplicate signatures for ECDSA. Recall
we have two messages m1 and m2 and we wish to produce a signature which is
valid for both messages, with a possible control on the key generation process.
We will do this by “concocting” a public/private key pair, hence we see that our
method assumes that the two target messages are known to the signer before he
generates his public/private key pair. We note that the special key pair is still
valid and the user is still able to sign other messages as usual.
We first compute h1 = H(m1) and h2 = H(m2). We generate a random

k ∈ {1, . . . q − 1}, compute r = f(k · g), and then set the private key to be

x = −

(

h1 + h2

2r

)

mod q,

with the public key being given by y = x ·g. To generate our duplicate signature
on m1 and m2 we compute s = k−1(h1 + xr) mod q.
That (r, s) is a valid signature on m1 follows from the definition of ECDSA,

we only need to show that (r, s) is also a valid signature on m2. We evaluate
the r′ in the verification algorithm for the signature (r, s) on the message m2,
noting that rx = −(h1 + h2)/2 mod q,

r′ = (h2/s)g + (r/s)y =

(

h2 + rx

s

)

g = k

(

h2 − h1

h1 − h2

)

g = −k · g = −r.

Hence, f(r′) = f(−r) = f(r) = r and the signature verifies.

Initialization

G a cyclic group of prime order q
g a generator of G

H : {0, 1}? → {0, 1}h a hash function
f : G → Zq a reduction function

K: Key Generation → (y, x)

private key 0 < x < q
public key y = x · g

Σ: Signature of m → (r, s)

k randomly chosen 0 < k < q
r = k · g r = f(r)
if r = 0 abort and start again
e = H(m) s = k−1(e+ xr) mod q
if s = 0 abort and start again

V : Verification of (m, r, s) → valid ?

check whether 0 < r, s < q and r = f(r′)
where e = H(m) and r′ = es−1 · g + rs−1 · y

Fig. 1. The Generic DSA
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Example. As an example we use one of the recommended curves from X9.62 [1].
The curve is defined over Fp where p = 2192 − 264 − 1, and is given by equation
y2 = x3 − 3x+ b, where

b = 0x64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1.

This curve has prime group order given by

q = 6277101735386680763835789423176059013767194773182842284081,

and a base point is given by g = (X,Y ) where

X = 0x188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012,

Y = 0x07192B95FFC8DA78631011ED6B24CDD573F977A11E794811.

Suppose we have a public key given by y = (X ′, Y ′)

X ′ = 0xA284DB03CAC23298DF9FD9C60560B16292FBE5C7E2C26C25,

Y ′ = 0x3F9EABD65A25DA6E72285670AA3D639B381952AFDDECEBAA.

Consider the two, hundred byte messages m1 = [0, 1, 2, 3, . . . , 99] and m2 =
[10, 11, 12, 13, . . . , 109], with hash values, computed via SHA-1 [21],

h1 = SHA-1(m1) = 0x1E6634BFAEBC0348298105923D0F26E47AA33FF5,

h2 = SHA-1(m2) = 0x71DDBA9666E28406506F839DAA4ECAF8D03D2440.

A duplicate signature on both m1 and m2 is provided by (r, s), with

r = 0x7B3281ED9C01372E09271667D88F840BEB888F43AF4A7783,

s = 0xAFC81CEC549C77F00B4790160A584FD636BB049FD9D9E0BD.

Note that, as soon as one publishes the duplicate signature, a third party can
recover the signer’s private key and so is able to forge messages. Hence, this
example of duplicate signatures should not be considered a security weakness.
However, one does not know that no other duplicate signature exists, for this
or any other signature scheme, which do not arise from collisions in the hash
function.

4.3 Malleability

Still using the above specific property of f , that is f(−r) = f(r), ECDSA is
easily malleable. Indeed, from a signature (r, s) of a message m, whatever the
keys are, one can derive a second signature, namely (r,−s). Referring to Figure 1,
we see that the values of r′ that appear in the verification of both signatures are
symmetric, so that their image by f is the same.
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4.4 Comments on the Security Results

Let us now see whether the above security notions have been appropriately
dealt with or not in the security analyses which appeared in the literature.
For the reader’s convenience, we include in Appendix A.3 our own version of
the theorem and its proof (it is highly based on [7]). The original theorem [7]
claims that the generic DSA withstands existential forgeries against adaptive
chosen-message attacks, in the generic model, under some assumptions, namely
the collision-resistance of the hash function and the almost-invertibility of the
reduction function (see more details in Appendix A.2). This latter property is
not satisfied for DSA, but is clearly satisfied with the reduction function used
in ECDSA: given an x-value, if it does not correspond to the x-coordinate of
a point on the curve, g outputs Fail, otherwise it randomly outputs one of the
(two) corresponding points. Hasse’s theorem ensures that g is an almost inverse
of f . It furthermore helps to say that the statistical distance between Dg and U
is less than 5/q. Therefore, f is (5/q, t)-almost-invertible for any t.
Going through the proof, the reader can check that it actually establishes

that, in the generic model, ECDSA is non-malleable under the collision-resistance
of the hash function only. The question now becomes: what is the meaning of
a proof supporting a scheme by means of an ideal model where the scheme has
a property (non-malleability) that it does not have in reality? The flaw here
comes from the encoding which is not generic because of the automorphism.
Notice that Koblitz curves, as advocated in some standards, are even “less”
generic since they have more automorphisms.
About the duplicate signatures, the proof does not deal with the problem at

all, since as already remarked, for non-repudiation the adversary is the signer
himself. The methodological lesson is that in some scenarios non-repudiation
does not necessarily follows from resistance to existential forgeries. In other
words, the security model does not properly account on a possible collusion
between the key generation algorithm and the signing algorithm. Whilst our
example of duplicate signatures is not a security concern, there may be others.
Hence, the proof methodology and security model should allow for this.

5 Conclusion

We have shown that the version of the ESIGN cryptosystem described in the
P1363 submission [22] withstands existential forgery against single-occurrence
adaptive chosen-message attacks, based on the hardness of AERP. However, the
proof does not extend to the usual CMA scenario. We have also considered a new
kind of attack, independent of existential forgeries, since the attacker may be the
signer himself. We have illustrated it on ECDSA. It shows that non-repudiation
is not totally encompassed by usual security analyses. Finally, we have proved
the non-malleability of the generic DSA under adaptive chosen-message attacks.
This is in contrast with the actual malleability of ECDSA and puts some doubts
on the significance of the generic model.
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In conclusion, we give the warning to practitioners, that security proofs need
some time to be discussed, accepted, and interpreted within the research com-
munity.
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A The Security Proof of ECDSA

A.1 Proofs in the Generic Model

With the proofs in the generic model, we identify the underlying probabilistic
space with the space Sn+2 × Γ × Γ 2n, where S is the set of bit-string encod-
ings. Given a tuple {z1, . . . , zn+2, x, x1, . . . , x2n} in this space, z1 and z2 are
used as σ(1) and σ(x), the successive zi are used in sequence to answer the n
oracle queries and the xi ∈ Γ serve as pre-images of the additional elements
z′i (in the group) included by the adversary into the encoding list L. However,
this interpretation may yield inconsistencies as it does not take care of possible
collisions.
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We give another interpretation of the encoding σ. This interpretation is
based on defining from the tuple {z1, . . . , zn+2}, a sequence of polynomials
Fi(X,X1, . . . , X2n), with coefficients modulo q, depending on the execution of
A:

– Polynomials F1 and F2 are set to F1 = 1 and F2 = X, respectively. Thus
L = {F1, F2}.

– When the adversary puts an additional k-th element z′k in the encoding list,
polynomial Fn+k+2 is defined as Xk, and added to L.

– At the `-th query {i, j, ε}, polynomial F` is defined as Fi±Fj , where the sign
± is chosen according to ε. If F` is already listed as a previous polynomial
Fh ∈ L, then F` is marked and A is fed with the answer corresponding to h.
Otherwise, z` is returned by the oracle and F` is added to L.

Observe that all Fi polynomials are affine, i.e. of the form a0 +
∑j

i=1
aiXi.

Once A has come to a stop, variable X is set to x, and the Xks are set
to xk. In other words, σ is set at random, subject to the conditions z` =
σ(F`(x, x1, . . . , x2n)), ` = 1, . . . , n + 2 and z′k = σ(xk), k = 1, . . . , 2n. It is
easy to check that the behavior of the algorithm that is driven by the polynomi-
als Fi is exactly similar to the behavior of the regular algorithm, granted that
elements in the sequence (z1, . . . , zn+2) are all distinct, and that no polynomial
Fi − Fj vanishes at (x, x1, . . . , x2n), where i, j range over the 3n + 2 indices of
polynomials in L. We call a sequence {z1, . . . , zn+2, x, x1, . . . , x2n} which satisfies
both requirements a safe sequence. As explained, an encoding σ can be defined
from a safe sequence, such that:

σ(Fi(x, x1, . . . , x2n)) = zi, for all unmarked Fi, and 1 ≤ i ≤ n+ 2,

σ(xk) = z′k, for k = 1, . . . , 2n.

This correspondence preserves probabilities. However, it does not completely
cover the sample space {σ, x} since executions such that Fi(x, x1, . . . , x2n) =
Fj(x, x1, . . . , x2n), for some indices i, j, such that Fi and Fj are not identical
are omitted. The following lemmas allow to bound the probability of unsafe
sequences.

Lemma 1. Let P be a non-zero affine polynomial in Zq[X1, . . . , Xj ], then

Pr
x1,...,xj∈Zq

[P (x1, . . . , xj) = 0] ≤
1

q
.

Lemma 2. Assume n2 < q. The probability of unsafe sequences is at upper-
bounded by 5(n+ 1)2/q.

Proof. We first observe that sequences of random elements {z1, z2, . . . , zn+2},
which are not all distinct appear with probability

1−
n+1
∏

k=1

(

1−
k

q

)

≤ 1−

(

1−
n+1
∑

k=1

k

q

)

≤
(n+ 1)(n+ 2)

2q
.
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Next, using Lemma 1, we can bound the probability that Fi − Fj vanishes at
(x, x1, . . . , x2n) by 1/q. Since there are at most

(

3n+2

2

)

such polynomials, we infer
that, once {z1, . . . , zn+2} have been set and are distinct, the set of (x, x1, . . . , x2n)
such that {z1, . . . , zn+2, x, x1, . . . , x2n} is not safe has probability bounded by
(

3n+2

2

)

/q = (3n+ 2)(3n+ 1)/2q. One easily completes the proof. ut

A.2 Preliminaries

Let f be a reduction function f : G → Zq. An almost-inverse g of f is a proba-
bilistic algorithm g, possibly outputting Fail, such that

(i) Pr
b∈RZq

[g(b) ∈ G ∧ f(g(b)) = b] ≥ 1/3

Function f is (δ, t)-almost-invertible, with almost-inverse g, if furthermore:

(ii) Dg ≈δ U , where

{

Dg = {g(b) | b ∈R Zq ∧ g(b) ∈ G}
U = {a | a ∈R G}.

In the second item, notation Dg ≈δ U means that no distinguisher with running
time bounded by t can get an advantage greater than δ.

A.3 The security proof

We now prove the security of the generic DSA in the generic model. We follow [7],
but we adopt a different style of proof, inspired by Shoup [29]. Referring to
Figure 1, we clarify our use of encodings. The base point g of the group G is
identified with the canonical generator 1 of Zq and therefore labeled by σ(1).
Similarly, the public key y is labeled by σ(x), where x is the private key. When
an element r is requested, at signature generation, it is obtained as σ(k), where
k is randomly chosen. Finally, the reduction function f directly operates on the
set of encodings S. Contrary to the earlier approach of [27], we do not model
the hash function as a random oracle. Rather, along the lines first investigated
in [6], we use specific properties of the hash function, such as one-wayness or
collision resistance.
A couple of lemmas will be needed. We first show how one can perfectly simu-

late the distribution of valid signatures. We define a simulator S. The simulator,
picks elements u ∈R S, and s ∈R Zq, and outputs the pair (r, s), with r = f(u).

Lemma 3. For any message m, the output distribution of S is perfectly indis-
tinguishable from the output distribution of Σsk(m).

We also state an easy lemma from elementary probability theory.

Lemma 4. Let S be a binomial distribution, which is the sum of k = 5 lnn
Bernoulli trials with probability for success ≥ 1/3. Then, the probability that
S = 0 is at most 1/n2.

We finally state the security result.
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Theorem 2. Let Γ be a standard cyclic group of prime order q. Let S be a
set of bit-string encodings. Let H : {0, 1}∗ → {0, 1}h be a hash function and
f : S → Zq be a reduction function with almost-inverse g. Let A be a generic
algorithm over Γ , that makes at most qs queries to the signing oracle and n
queries to the group-oracle, respectively. Assume that A, on input {σ(1), σ(x)},
returns a message m and a valid generic DSA signature (r, s) of m, achieving
malleability with probability ε = Succcma(A), within running time t. Then there
exist adversaries BH , CH , Dg, operating within time bound t′, and such that
BH is attempting to invert H ′ = H mod q with success probability εH , CH is
attempting to find collisions for H ′ = H mod q with success probability γH , and
Dg is playing a distinguishing game for g, with advantage δg, where

ε ≤ 2γH + 2n(δg + εH) +
5(n+ 1)(n+ qs + 1)

q
,

t′ ≤ t+ n× (5τg lnn+ τH),

with τg the running time of g and τH the running time for H.

Proof. Let A be a generic attacker able to forge a pair consisting of a message m
and a valid signature (r, s). We assume that, once these outputs have been issued,
A goes on checking the signature by requesting the encoding of es−1+xrs−1 mod
q, where e = H(m), and checking that its image under f is r. The request can be
performed by mimicking the usual double-and-add algorithm, calling the generic
encoding at each group operation. We assume furthermore, that, after each query
mj to the signing oracle, the adversary immediately performs a similar request
to check the validity of the answer. To keep things simple, we do not perform
any book-keeping of the additional requests and keep n to denote the overall
number of queries to the group oracle. We now play games as before:

Game0: An encoding σ is chosen and a key pair (pk, sk) is generated using K(1k).
Adversary A is fed with pk and, querying the generic encoding and the
signing oracle, outputs a message m and a signature (r, s). We denote by
S0 the event Vpk(m, (r, s)) = 1 and use a similar notation Si in any Gamei
below. By definition, we have Pr[S0] = ε.

Game1: We slightly modify this game, by using the interpretation of the encoding
proposed in Section A.1: this uses a sequence {z1, . . . , zn+2, x, x1, . . . , x2n}.
As shown in Section A.1, in Lemma 2, the new game only differs from the
old on unsafe sequences: | Pr[S1]− Pr[S0] | ≤ 5(n+ 1)

2/q.
Game2: In this game, we perform additional random tests, without modifying

the simulation of the generic oracle: a test is performed at each index `,
such that the corresponding affine polynomial appears for the first time (or
is unmarked following the terminology of Section A.1). Let F` = b`X + a`.
We pick at random ẽ` ∈R Zq, and compute c` ← g(b`a

−1

` ẽ` mod q) until the
computation of g returns an answer different from Fail. However, we stop
and abort the game after 5 lnn trials. This game differs from the previous
one if c` remains undefined after 5 lnn attempts. Since ẽ` is uniformly dis-
tributed, and since the successive trials are mutually independent, we may
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use Lemma 4 and bound the corresponding probability by 1/n2. This pro-
vides the overall bound 1/n, when ` varies. Taking into account the fact
that the experiments are independent from the execution of Game1, we get
Pr[S2] ≥ (1− 1/n) Pr[S1].

Game3: Here, we further modify the previous game by letting c` replace z`,
for each index ` such that F` is unmarked. Note that we have f(z`) =
b`a

−1

` ẽ` mod q. Since the ẽ`s are uniformly distributed, the inputs to g are
uniformly distributed as well. Applying the so-called hybrid technique, which
amounts to using n times the almost-invertibility of g, we bound the differ-
ence between the success probabilities of the two games by nδg, and thus:
| Pr[S3]− Pr[S2] | ≤ nδg.

Game4: In this game, we simulate the signing oracle. For any query mj to the
signing oracle, one computes ej = H(mj), and issues a random signature
(rj , sj), using the simulation of Lemma 3. Recall that the simulation picks
sj at random and computes rj as f(uj), where uj is randomly drawn from
S. By Lemma 3, this simulation is perfect. Observe that, while checking
the signature, the adversary requests, at some later time, the encoding of
ejsj

−1+xrjsj
−1 mod q. We let ` the first index corresponding to such query,

F` = b`X + a`. We modify z`, replacing its earlier value by uj and define
ẽ` as ej = H(mj). Observe that we still have f(z`) = b`a

−1

` ẽ` mod q. This
game only differs from the previous one if polynomial ejsj

−1 + Xrjsj
−1

collides with a previous one. Due to the randomness of sj , we can bound
| Pr[S4]− Pr[S3] | ≤ nqs/q.

We note that the final simulation runs in time t′ ≤ t + n × (5τg lnn + τH) and
we finally upper-bound Pr[S4]. We observe that, while checking the signature,
the final request of the adversary, with index n + 2, is the encoding of es−1 +
xrs−1 mod q, where e = H(m). We let ` be the first occurrence of Fn+2. If the
signature is valid, the following equalities hold:

es−1 = a` mod q, rs−1 = b` mod q, f(z`) = b`a
−1

` ẽ` mod q and r = f(z`).

From these equalities, it easily follows that r = f(z`) = re−1ẽ` mod q, which in
turn implies e = ẽ` mod q. We distinguish two cases:

– If z` has been created according to the rule of Game3, then a pre-image m
of some randomly chosen element ẽ` among the n possible ones has been
found.

– If z` has been created according to the rule of Game4, then ẽ` = ej is the
image underH of a messagemj queried from the signing oracle. Furthermore,
we have: ejs

−1
j = a` mod q and rjs

−1
j = b` mod q. Comparing to the above

equalities, we get that s = sj mod q and r = rj mod q. Note that mj cannot
be equal to m, since otherwise the output forged signature would coincide
with an earlier signature (rj , sj) of the same message m. Thus, a collision

has been found for H ′, where H ′(m)
def
= H(m) mod q.

The probability that an algorithm running in time t′ finds a preimage under H ′

of an element among n is at most nεH . From this, we obtain that: Pr[S4] ≤
nεH + γH . Summing up inequalities, we get the announced result. ut


